1
|
Li Y, Li X, Wu L, Shi L, Wang S, Fu P, Zhang Y, Lai S. Analysis of amino acid enantiomers in ambient aerosols: Effects and removal of coexistent aerosol matrix. J Environ Sci (China) 2024; 137:732-740. [PMID: 37980055 DOI: 10.1016/j.jes.2023.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 11/20/2023]
Abstract
Amino acids (AAs) including D- and L- enantiomers are a group of organic nitrogen species in ambient aerosol. Due to the low abundances of AAs (level of ng/m3) and the matrix effects by coexistent components, it is challenging to quantify AA enantiomers in ambient aerosols especially under pollution conditions. In this study, we present an optimized method for analyzing AA enantiomers in atmospheric aerosol samples including a pretreatment process and the detection by high performance liquid chromatography coupled to a fluorescence detector (HPLC-FLD). Matrix effects caused by coexistent chemicals on AA enantiomers analysis in ambient aerosol samples were investigated especially for those collected in pollution episodes. The results revealed that the determination of AA enantiomers is significantly affected by the coexistent organic carbon (as a proxy of organic matter) and water-soluble ion of NH4+. To remove the matrix effects, we applied a pretreatment using the solid phase extraction column coupled with alkaline adjustment to sample extract. After pretreatment, 18 AAs including 6 pairs of D- and L-enantiomers (i.e., leucine, isoleucine, valine, alanine, serine, and aspartic acid) can be successfully separated and quantified in aerosol samples by HPLC-FLD. The recoveries are in the range of 67%-106%. This method was successfully applied to the urban aerosol samples from pollution and non-pollution periods for AA enantiomers determination. We suggest that the concentrations of D-AAs and the ratio of D-AA/L-AA are indicative of the contribution of bacterial sources and the influence of biomass burning.
Collapse
Affiliation(s)
- Ying Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaoying Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Libin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Luhan Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shan Wang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; now at Hong Kong University of Science and Technology, Hong Kong 00852, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yingyi Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Senchao Lai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Bogos LG, Pralea IE, Moldovan RC, Iuga CA. Indirect Enantioseparations: Recent Advances in Chiral Metabolomics for Biomedical Research. Int J Mol Sci 2022; 23:ijms23137428. [PMID: 35806433 PMCID: PMC9267260 DOI: 10.3390/ijms23137428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
Chiral metabolomics is starting to become a well-defined research field, powered by the recent advances in separation techniques. This review aimed to cover the most relevant advances in indirect enantioseparations of endogenous metabolites that were published over the last 10 years, including improvements and development of new chiral derivatizing agents, along with advances in separation methodologies. Moreover, special emphasis is put on exciting advances in separation techniques combined with mass spectrometry, such as chiral discrimination by ion-mobility mass spectrometry together with untargeted strategies for profiling of chiral metabolites in complex matrices. These advances signify a leap in chiral metabolomics technologies that will surely offer a solid base to better understand the specific roles of enantiomeric metabolites in systems biology.
Collapse
Affiliation(s)
- Luisa-Gabriela Bogos
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
| | - Radu-Cristian Moldovan
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
- Correspondence:
| | - Cristina-Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Uz Zaman KA, Sarotti AM, Wu X, DeVine L, Cao S. Polyketides, diketopiperazines and an isochromanone from the marine-derived fungal strain Fusarium graminearum FM1010 from Hawaii. PHYTOCHEMISTRY 2022; 198:113138. [PMID: 35219734 DOI: 10.1016/j.phytochem.2022.113138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The fungal strain Fusarium graminearum FM1010 was isolated from a shallow-water volcanic rock known as "live rock" at the Richardson's Beach, Hilo, Hawaii. Eleven specialised metabolites, including two undescribed diketopiperazines, three undescribed polyketides, and one undescribed isochromanone, along with five known fusarielin derivatives were obtained from F. graminearum FM1010. The structures of the six undescribed compounds were elucidated by extensive analysis of NMR spectroscopy, HRESIMS, chemical reactions, and electronic circular dichroism (ECD) data. Kaneoheoic acids G-I showed mild inhibitory activity against S. aureus with the MIC values in the range of 20-40 μg/mL when assayed in combination with chloramphenicol (half of the MIC, 1 μg/mL), an FDA approved antibiotic. Kaneoheoic acid I exhibited both anti-proliferative activity against ovarian cancer cell line A2780 and TNF-α induced NF-κB inhibitory activity with the IC50 values of 18.52 and 15.86 μM, respectively.
Collapse
Affiliation(s)
- Kh Ahammad Uz Zaman
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, 96720, United States
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Argentina.
| | - Xiaohua Wu
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, 96720, United States
| | - Lela DeVine
- Department of Cellular and Molecular Biology, Barnard College of Columbia University, USA.
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, 96720, United States.
| |
Collapse
|