1
|
Mišík M, Nersesyan A, Ferk F, Holzmann K, Krupitza G, Herrera Morales D, Staudinger M, Wultsch G, Knasmueller S. Search for the optimal genotoxicity assay for routine testing of chemicals: Sensitivity and specificity of conventional and new test systems. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503524. [PMID: 36031336 DOI: 10.1016/j.mrgentox.2022.503524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Many conventional in vitro tests that are currently widely used for routine screening of chemicals have a sensitivity/specificity in the range between 60 % and 80 % for the detection of carcinogens. Most procedures were developed 30-40 years ago. In the last decades several assays became available which are based on the use of metabolically competent cell lines, improvement of the cultivation conditions and development of new endpoints. Validation studies indicate that some of these models may be more reliable for the detection of genotoxicants (i.e. many of them have sensitivity and specificity values between 80 % and 95 %). Therefore, they could replace conventional tests in the future. The bone marrow micronucleus (MN) assay with rodents is at present the most widely used in vivo test. The majority of studies indicate that it detects only 5-6 out of 10 carcinogens while experiments with transgenic rodents and comet assays seem to have a higher predictive value and detect genotoxic carcinogens that are negative in MN experiments. Alternatives to rodent experiments could be MN experiments with hen eggs or their replacement by combinations of new in vitro tests. Examples for promising candidates are ToxTracker, TGx-DDI, multiplex flow cytometry, γH2AX experiments, measurement of p53 activation and MN experiments with metabolically competent human derived liver cells. However, the realization of multicentric collaborative validation studies is mandatory to identify the most reliable tests.
Collapse
Affiliation(s)
- M Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - A Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - F Ferk
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - K Holzmann
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Krupitza
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - D Herrera Morales
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - M Staudinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Wultsch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - S Knasmueller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
2
|
Groff K, Evans SJ, Doak SH, Pfuhler S, Corvi R, Saunders S, Stoddart G. In vitro and integrated in vivo strategies to reduce animal use in genotoxicity testing. Mutagenesis 2021; 36:389-400. [PMID: 34555171 DOI: 10.1093/mutage/geab035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Scientific, financial, and ethical drivers have led to unprecedented interest in implementing human-relevant, mechanistic in vitro and in silico testing approaches. Further, as non-animal approaches are being developed and validated, researchers are interested in strategies that can immediately reduce the use of animals in toxicology testing. Here, we aim to outline a testing strategy for assessing genotoxicity beginning with standard in vitro methods, such as the bacterial reverse mutation test and the in vitro micronucleus test, followed by a second tier of in vitro assays including those using advanced 3D tissue models. Where regulatory agencies require in vivo testing, one demonstrated strategy is to combine genotoxicity studies traditionally conducted separately into a single test or to integrate genotoxicity studies into other toxicity studies. Standard setting organisations and regulatory agencies have encouraged such strategies, and examples of their use can be found in the scientific literature. Employing approaches outlined here will reduce animal use as well as study time and costs.
Collapse
Affiliation(s)
- Katherine Groff
- PETA Science Consortium International e.V., Stuttgart, Germany
| | | | | | | | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Gilly Stoddart
- PETA Science Consortium International e.V., Stuttgart, Germany
| |
Collapse
|
3
|
Maul K, Fieblinger D, Heppenheimer A, Kreutz J, Liebsch M, Luch A, Pirow R, Poth A, Strauch P, Dony E, Schulz M, Wolf T, Reisinger K. Validation of the hen's egg test for micronucleus induction (HETMN): Detailed protocol including scoring atlas, historical control data and statistical analysis. Mutagenesis 2021; 37:76-88. [PMID: 34313790 PMCID: PMC9071076 DOI: 10.1093/mutage/geab026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/03/2021] [Indexed: 11/14/2022] Open
Abstract
A validation exercise of the hen's egg test for micronucleus induction (HET-MN) was finalised with a very good predictivity based on the analysis of micronuclei in peripheral erythrocytes of fertilised chicken eggs [1]. For transparency reasons this complementary publication provides further details on the assay especially as this was the first validation study in the field of genotoxicity testing involving the use of chicken eggs. Thus, the experimental protocol is described in detail and is complemented by a scoring atlas for microscopic analysis of blood cells. In addition, general characteristics of the test system, which is able to mirror the systemic availability of test compounds, are delineated: the test compound passes the egg membrane and is taken up by the blood vessels of the underlying chorioallantoic membrane. Subsequently, it is distributed by the circulating blood, metabolised by the developing liver and the yolk sac membrane, and finally excreted into the allantois, a bladder equivalent. In specific, the suitability of the test system for genotoxicity testing is shown by, inter alia, a low background DNA damage in a comprehensive historical control database. In addition, the state-of-the-art statistical method used to evaluate obtained data is delineated. It combines laboratory-specific effect threshold with the Umbrella-Williams test a statistical model also of interest for other genotoxicity test methods.
Collapse
Affiliation(s)
- K Maul
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - D Fieblinger
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - A Heppenheimer
- ICCR-Roßdorf GmbH (former: Harlan Cytotest Cell Research, Envigo CRS), Roßdorf, Germany
| | - J Kreutz
- Henkel AG & Co KGaA, Duesseldorf, Germany
| | - M Liebsch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - A Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - R Pirow
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - A Poth
- ICCR-Roßdorf GmbH (former: Harlan Cytotest Cell Research, Envigo CRS), Roßdorf, Germany
| | - P Strauch
- ICCR-Roßdorf GmbH (former: Harlan Cytotest Cell Research, Envigo CRS), Roßdorf, Germany
| | - E Dony
- ICCR-Roßdorf GmbH (former: Harlan Cytotest Cell Research, Envigo CRS), Roßdorf, Germany
| | - M Schulz
- ICCR-Roßdorf GmbH (former: Harlan Cytotest Cell Research, Envigo CRS), Roßdorf, Germany
| | - T Wolf
- University of Osnabrueck, Osnabrueck, Germany
| | | |
Collapse
|
4
|
Kühnl J, Tao TP, Brandmair K, Gerlach S, Rings T, Müller-Vieira U, Przibilla J, Genies C, Jaques-Jamin C, Schepky A, Marx U, Hewitt NJ, Maschmeyer I. Characterization of application scenario-dependent pharmacokinetics and pharmacodynamic properties of permethrin and hyperforin in a dynamic skin and liver multi-organ-chip model. Toxicology 2020; 448:152637. [PMID: 33220337 DOI: 10.1016/j.tox.2020.152637] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Microphysiological systems (MPS) aim to mimic the dynamic microenvironment and the interaction between tissues. While MPS exist for investigating pharmaceuticals, the applicability of MPS for cosmetics ingredients is yet to be evaluated. The HUMIMIC Chip2 ("Chip2″), is the first multi-organ chip technology to incorporate skin models, allowing for the topical route to be tested. Therefore, we have used this model to analyze the impact of different exposure scenarios on the pharmacokinetics and pharmacodynamics of two topically exposed chemicals, hyperforin and permethrin. The Chip2 incorporated reconstructed human epidermis models (EpiDerm™) and HepaRG-stellate spheroids. Initial experiments using static incubations of single organoids helped determine the optimal dose. In the Chip2 studies, parent and metabolites were analyzed in the circuit over 5 days after application of single and repeated topical or systemic doses. The gene expression of relevant xenobiotic metabolizing enzymes in liver spheroids was measured to reflect toxicodynamics effects of the compounds in liver. The results show that 1) metabolic capacities of EpiDerm™ and liver spheroids were maintained over five days; 2) EpiDerm™ model barrier function remained intact; 3) repeated application of compounds resulted in higher concentrations of parent chemicals and most metabolites compared to single application; 4) compound-specific gene induction e.g. induction of CYP3A4 by hyperforin depended on the application route and frequency; 5) different routes of application influenced the systemic concentrations of both parents and metabolites in the chip over the course of the experiment; 6) there was excellent intra- and inter-lab reproducibility. For permethrin, a process similar to the excretion in a human in vivo study could be simulated which was remarkably comparable to the in vivo situation. These results support the use of the Chip2 model to provide information on parent and metabolite disposition that may be relevant to risk assessment of topically applied cosmetics ingredients.
Collapse
Affiliation(s)
- Jochen Kühnl
- Beiersdorf AG, Unnastraße 48, D-20253, Hamburg, Germany.
| | - Thi Phuong Tao
- TissUse GmbH, Oudenarder Str. 16, D-13347, Berlin, Germany
| | | | - Silke Gerlach
- Beiersdorf AG, Unnastraße 48, D-20253, Hamburg, Germany
| | - Thamée Rings
- Beiersdorf AG, Unnastraße 48, D-20253, Hamburg, Germany
| | | | - Julia Przibilla
- Pharmacelsus GmbH, Science Park 2, D-66123, Saarbrücken, Germany
| | | | | | | | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, D-13347, Berlin, Germany
| | - Nicola J Hewitt
- Cosmetics Europe, Avenue Herrmann-Debroux 40, 1160, Auderghem, Belgium
| | | |
Collapse
|