1
|
Müller J, Bertsch T, Volke J, Schmid A, Klingbeil R, Metodiev Y, Karaca B, Kim SH, Lindner S, Schupp T, Kittel M, Poschet G, Akin I, Behnes M. Narrative review of metabolomics in cardiovascular disease. J Thorac Dis 2021; 13:2532-2550. [PMID: 34012599 PMCID: PMC8107570 DOI: 10.21037/jtd-21-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases are accompanied by disorders in the cardiac metabolism. Furthermore, comorbidities often associated with cardiovascular disease can alter systemic and myocardial metabolism contributing to worsening of cardiac performance and health status. Biomarkers such as natriuretic peptides or troponins already support diagnosis, prognosis and treatment of patients with cardiovascular diseases and are represented in international guidelines. However, as cardiovascular diseases affect various pathophysiological pathways, a single biomarker approach cannot be regarded as ideal to reveal optimal clinical application. Emerging metabolomics technology allows the measurement of hundreds of metabolites in biological fluids or biopsies and thus to characterize each patient by its own metabolic fingerprint, improving our understanding of complex diseases, significantly altering the management of cardiovascular diseases and possibly personalizing medicine. This review outlines current knowledge, perspectives as well as limitations of metabolomics for diagnosis, prognosis and treatment of cardiovascular diseases such as heart failure, atherosclerosis, ischemic and non-ischemic cardiomyopathy. Furthermore, an ongoing research project tackling current inconsistencies as well as clinical applications of metabolomics will be discussed. Taken together, the application of metabolomics will enable us to gain more insights into pathophysiological interactions of metabolites and disease states as well as improving therapies of patients with cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Julian Müller
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Bertsch
- Institute of Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremburg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Justus Volke
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Schmid
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rebecca Klingbeil
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Yulian Metodiev
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bican Karaca
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Seung-Hyun Kim
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Simon Lindner
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tobias Schupp
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian Kittel
- Institute for Clinical Chemistry, Faculty of Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Behnes
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
2
|
Aged Monkeys Fed a High-Fat/High-Sugar Diet Recapitulate Metabolic Disorders and Cardiac Contractile Dysfunction. J Cardiovasc Transl Res 2021; 14:799-815. [PMID: 33591467 DOI: 10.1007/s12265-021-10105-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/28/2022]
Abstract
Aged nonhuman primate (NHP) models are of great value for studying the pathology of metabolic heart diseases and developing therapeutic strategies. In this study, aged male cynomolgus monkeys were fed a regular diet or a high-fat/high-sugar diet (HFSD) for 8 months. Metabolic disorders were diagnosed by 1H-NMR and serum biochemistry, and cardiac function was evaluated by echocardiography. Our results showed that serum metabolic profiles were altered in aged monkeys fed a HFSD, in line with aortic tissue damage, cardiac remodeling, and contractile dysfunction. This aged monkey model significantly increased expression of proinflammatory cytokines and altered expression and phosphorylation of intracellular signaling proteins in the heart, as compared to aged monkeys on a regular diet. Furthermore, the animals demonstrated increased phosphorylation of cardiac myofilament proteins which are causatively associated with decreased myofilament contractility. We conclude that the aged monkey model fed a HFSD exhibits metabolic disorders and cardiac contractile dysfunction.
Collapse
|