1
|
Wang R, Zhu B, Young P, Luo Y, Taylor J, Cameron AJ, Squire CJ, Travas-Sejdic J. A Portable and Disposable Electrochemical Sensor Utilizing Laser-Scribed Graphene for Rapid SARS-CoV-2 Detection. BIOSENSORS 2023; 14:10. [PMID: 38248387 PMCID: PMC10813335 DOI: 10.3390/bios14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
The COVID-19 pandemic caused by the virus SARS-CoV-2 was the greatest global threat to human health in the last three years. The most widely used methodologies for the diagnosis of COVID-19 are quantitative reverse transcription polymerase chain reaction (RT-qPCR) and rapid antigen tests (RATs). PCR is time-consuming and requires specialized instrumentation operated by skilled personnel. In contrast, RATs can be used in-home or at point-of-care but are less sensitive, leading to a higher rate of false negative results. In this work, we describe the development of a disposable, electrochemical, and laser-scribed graphene-based biosensor strips for COVID-19 detection that exploits a split-ester bond ligase system (termed 'EsterLigase') for immobilization of a virus-specific nanobody to maintain the out-of-plane orientation of the probe to ensure the efficacy of the probe-target recognition process. An anti-spike VHH E nanobody, genetically fused with the EsterLigase domain, was used as the specific probe for the spike receptor-binding domain (SP-RBD) protein as the target. The recognition between the two was measured by the change in the charge transfer resistance determined by fitting the electrochemical impedance spectroscopy (EIS) spectra. The developed LSG-based biosensor achieved a linear detection range for the SP-RBD from 150 pM to 15 nM with a sensitivity of 0.0866 [log(M)]-1 and a limit of detection (LOD) of 7.68 pM.
Collapse
Affiliation(s)
- Runzhong Wang
- Centre for Innovative Materials and Health, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (R.W.); (B.Z.)
| | - Bicheng Zhu
- Centre for Innovative Materials and Health, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (R.W.); (B.Z.)
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Paul Young
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (P.Y.); (J.T.); (C.J.S.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| | - Yu Luo
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - John Taylor
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (P.Y.); (J.T.); (C.J.S.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| | - Alan J. Cameron
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (P.Y.); (J.T.); (C.J.S.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| | - Christopher J. Squire
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (P.Y.); (J.T.); (C.J.S.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials and Health, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (R.W.); (B.Z.)
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
2
|
She T, Yang F, Chen S, Yang H, Tao Z, Xing H, Chen J, Chang H, Lu H, Su T, Jin Y, Zhong Y, Cheng J, Zhu H, Lu X. Snoopligase-catalyzed molecular glue enables efficient generation of hyperoligomerized TRAIL variant with enhanced antitumor effect. J Control Release 2023; 361:856-870. [PMID: 37516318 DOI: 10.1016/j.jconrel.2023.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Clinical application of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is predominantly limited by its inefficient apoptosis induction in tumor cells, which might be improved by using molecular superglue-mediated hyperoligomerization to increase its valency. Here, the minimal superglue peptide pairs, including Snoopligase-catalyzed SnoopTagJr/SnoopDogTag and SpyStapler-catalyzed SpyTag/SpyBDTag, were individually fused at the N- or C-terminus of the TRAIL promoter to produce superglue-fusion TRAIL variants. Similar to native trivalent TRAIL, these superglue-fusion TRAIL variants were highly expressed in Escherichia coli (E. coli) and spontaneously trimerized. In the presence of Snoopligase or SpyStapler, the trivalent superglue-fusion TRAIL variants were predominantly crosslinked into hexavalent TRAIL variants. Nevertheless, Snoopligase was more efficient than SpyStapler in the production of hexavalent TRAIL variants. In particular, Snoopligase-catalyzed trivalent TRAIL variants with N-terminal fusion of SnoopTagJr/SnoopDogTag produced hexavalent SnHexaTR with the highest yield (∼70%). The in vitro cytotoxicity of SnHexaTR was 10-40 times greater than that of TRAIL in several tumor cells. In addition, compared to trivalent TRAIL, hexavalent SnHexaTR showed a longer serum half-life and greater tumor uptake, which resulted in eradication of 50% of tumor xenografts of TRAIL-sensitive COLO 205. In mice bearing TRAIL-resistant HT-29 tumor xenografts, hexavalent SnHexaTR combined with bortezomib encapsulated in liposomes also showed robust tumor growth suppression, indicating that hyperoligomerization mediated by minimal molecular superglue significantly increased the cytotoxicity and antitumor effect of TRAIL. As a novel anticancer agent candidate, the hexavalent SnHexaTR has great potential for clinical application in cancer therapy.
Collapse
Affiliation(s)
- Tianshan She
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fen Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiyuan Chen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ze Tao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huimin Xing
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Chen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huansheng Chang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyu Lu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Su
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youmei Jin
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhong
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaofeng Lu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|