1
|
Wei KJ, Jiang AM, Jiang S, Huang YJ, Jiang SY, Su XL, Tettey CK, Wang XQ, Tang W, Cheng DJ. New isolate of sweet potato virus 2 from Ipomoea nil: molecular characterization, codon usage bias, and phylogenetic analysis based on complete genome. Virol J 2024; 21:222. [PMID: 39300471 DOI: 10.1186/s12985-024-02500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Viral diseases of sweet potatoes are causing severe crop losses worldwide. More than 30 viruses have been identified to infect sweet potatoes among which the sweet potato latent virus (SPLV), sweet potato mild speckling virus (SPMSV), sweet potato virus G (SPVG) and sweet potato virus 2 (SPV2) have been recognized as distinct species of the genus Potyvirus in the family Potyviridae. The sweet potato virus 2 (SPV2) is a primary pathogen affecting sweet potato crops. METHODS In this study, we detected an SPV2 isolate (named SPV2-LN) in Ipomoea nil in China. The complete genomic sequence of SPV2-LN was obtained using sequencing of small RNAs, RT-PCR, and RACE amplification. The codon usage, phylogeny, recombination analysis and selective pressure analysis were assessed on the SPV2-LN genome. RESULTS The complete genome of SPV2-LN consisted of 10,606 nt (GenBank No. OR842902), encoding 3425 amino acids. There were 28 codons in the SPV2-LN genome with a relative synonymous codon usage (RSCU) value greater than 1, of which 21 end in A/U. Among the 12 proteins of SPV2, P3 and P3N-PIPO exhibited the highest variability in their amino acid sequences, while P1 was the most conserved, with an amino acid sequence identity of 87-95.3%. The phylogenetic analysis showed that 21 SPV2 isolates were clustered into four groups, and SPV2-LN was clustered together with isolate yu-17-47 (MK778808) in group IV. Recombination analysis indicated no major recombination sites in SPV2-LN. Selective pressure analysis showed dN/dS of the 12 proteins of SPV2 were less than 1, indicating that all were undergoing negative selection, except for P1N-PISPO. CONCLUSION This study identified a sweet potato virus, SPV2-LN, in Ipomoea nil. Sequence identities and genome analysis showed high similarity between our isolate and a Chinese isolate, yu-17-47, isolated from sweet potato. These results will provide a theoretical basis for understanding the genetic evolution and viral spread of SPV2.
Collapse
Affiliation(s)
- Kun-Jiang Wei
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Ai-Ming Jiang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Shuo Jiang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Yang-Jian Huang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Song-Yu Jiang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Xiao-Ling Su
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China
| | - Carlos Kwesi Tettey
- Department of Molecular Biology and Biotechnology, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Xiao-Qiang Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, 221131, China.
| | - De-Jie Cheng
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, 520004, China.
| |
Collapse
|
2
|
Bwalya J, Kim KH. The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses. THE PLANT PATHOLOGY JOURNAL 2023; 39:28-38. [PMID: 36760047 PMCID: PMC9929168 DOI: 10.5423/ppj.rw.10.2022.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.
Collapse
Affiliation(s)
- John Bwalya
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Kook-Hyung Kim
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826,
Korea
- Research of Institute Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
3
|
Interaction of the intrinsically disordered C-terminal domain of the sesbania mosaic virus RNA-dependent RNA polymerase with the viral protein P10 in vitro: modulation of the oligomeric state and polymerase activity. Arch Virol 2019; 164:971-982. [PMID: 30721364 DOI: 10.1007/s00705-019-04163-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
The RNA-dependent RNA polymerase (RdRp) of sesbania mosaic virus (SeMV) was previously shown to interact with the viral protein P10, which led to enhanced polymerase activity. In the present investigation, the equilibrium dissociation constant for the interaction between the two proteins was determined to be 0.09 µM using surface plasmon resonance, and the disordered C-terminal domain of RdRp was shown to be essential for binding to P10. The association with P10 brought about a change in the oligomeric state of RdRp, resulting in reduced aggregation and increased polymerase activity. Interestingly, unlike the wild-type RdRp, C-terminal deletion mutants (C del 43 and C del 72) were found to exist predominantly as monomers and were as active as the RdRp-P10 complex. Thus, either the deletion of the C-terminal disordered domain or its masking by binding to P10 results in the activation of polymerase activity. Further, deletion of the C-terminal 85 residues of RdRp resulted in complete loss of activity. Mutation of a conserved tyrosine (RdRp Y480) within motif E, located between 72 and 85 residues from the C-terminus of RdRp, rendered the protein inactive, demonstrating the importance of motif E in RNA synthesis in vitro.
Collapse
|
4
|
Kovalev N, Inaba JI, Li Z, Nagy PD. The role of co-opted ESCRT proteins and lipid factors in protection of tombusviral double-stranded RNA replication intermediate against reconstituted RNAi in yeast. PLoS Pathog 2017; 13:e1006520. [PMID: 28759634 PMCID: PMC5552349 DOI: 10.1371/journal.ppat.1006520] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 08/10/2017] [Accepted: 07/07/2017] [Indexed: 01/28/2023] Open
Abstract
Reconstituted antiviral defense pathway in surrogate host yeast is used as an intracellular probe to further our understanding of virus-host interactions and the role of co-opted host factors in formation of membrane-bound viral replicase complexes in protection of the viral RNA against ribonucleases. The inhibitory effect of the RNA interference (RNAi) machinery of S. castellii, which only consists of the two-component DCR1 and AGO1 genes, was measured against tomato bushy stunt virus (TBSV) in wild type and mutant yeasts. We show that deletion of the co-opted ESCRT-I (endosomal sorting complexes required for transport I) or ESCRT-III factors makes TBSV replication more sensitive to the RNAi machinery in yeast. Moreover, the lack of these pro-viral cellular factors in cell-free extracts (CFEs) used for in vitro assembly of the TBSV replicase results in destruction of dsRNA replication intermediate by a ribonuclease at the 60 min time point when the CFE from wt yeast has provided protection for dsRNA. In addition, we demonstrate that co-opted oxysterol-binding proteins and membrane contact sites, which are involved in enrichment of sterols within the tombusvirus replication compartment, are required for protection of viral dsRNA. We also show that phosphatidylethanolamine level influences the formation of RNAi-resistant replication compartment. In the absence of peroxisomes in pex3Δ yeast, TBSV subverts the ER membranes, which provide as good protection for TBSV dsRNA against RNAi or ribonucleases as the peroxisomal membranes in wt yeast. Altogether, these results demonstrate that co-opted protein factors and usurped lipids are exploited by tombusviruses to build protective subcellular environment against the RNAi machinery and possibly other cellular ribonucleases. Positive-strand RNA viruses build membranous replication compartment to support their replication in the infected hosts. One of the proposed functions of the usurped subcellular membranes is to protect the viral RNA from recognition and destruction by various cellular RNA sensors and ribonucleases. To answer this fundamental question on the putative role of co-opted host factors and membranes in protecting the viral double-stranded RNA replication intermediate during replication, the authors took advantage of yeast (Saccharomyces cerevisiae), which lacks the conserved RNAi machinery, as a surrogate host for TBSV. The reconstituted RNAi machinery from S. castellii in S. cerevisiae was used as an intracellular probe to study the effect of various co-opted cellular proteins and lipids on the formation of RNAi-insensitive replication compartment. Overall, the authors demonstrate the interaction between the RNAi machinery and the viral replicase complex, and the essential roles of usurped host factors in protecting the viral dsRNA replication intermediate from RNAi-based degradation.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jun-ichi Inaba
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- Institute of Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, P. R. China
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
5
|
Huang YP, Chen IH, Tsai CH. Host Factors in the Infection Cycle of Bamboo mosaic virus. Front Microbiol 2017; 8:437. [PMID: 28360904 PMCID: PMC5350103 DOI: 10.3389/fmicb.2017.00437] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/02/2022] Open
Abstract
To complete the infection cycle efficiently, the virus must hijack the host systems in order to benefit for all the steps and has to face all the defense mechanisms from the host. This review involves a discussion of how these positive and negative factors regulate the viral RNA accumulation identified for the Bamboo mosaic virus (BaMV), a single-stranded RNA virus. The genome of BaMV is approximately 6.4 kb in length, encoding five functional polypeptides. To reveal the host factors involved in the infection cycle of BaMV, a few different approaches were taken to screen the candidates. One of the approaches is isolating the viral replicase-associated proteins by co-immunoprecipitation with the transiently expressed tagged viral replicase in plants. Another approach is using the cDNA-amplified fragment length polymorphism technique to screen the differentially expressed genes derived from N. benthamiana plants after infection. The candidates are examined by knocking down the expression in plants using the Tobacco rattle virus-based virus-induced gene silencing technique following BaMV inoculation. The positive or negative regulators could be described as reducing or enhancing the accumulation of BaMV in plants when the expression levels of these proteins are knocked down. The possible roles of these host factors acting on the accumulation of BaMV will be discussed.
Collapse
Affiliation(s)
- Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| |
Collapse
|
6
|
Imura Y, Molho M, Chuang C, Nagy PD. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants. Virology 2015; 484:265-275. [DOI: 10.1016/j.virol.2015.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/10/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
|
7
|
Ashton P, Wu B, D'Angelo J, Grigull J, White KA. Biologically-supported structural model for a viral satellite RNA. Nucleic Acids Res 2015; 43:9965-77. [PMID: 26384416 PMCID: PMC4787747 DOI: 10.1093/nar/gkv917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/04/2015] [Indexed: 01/05/2023] Open
Abstract
Satellite RNAs (satRNAs) are a class of small parasitic RNA replicon that associate with different viruses, including plus-strand RNA viruses. Because satRNAs do not encode a polymerase or capsid subunit, they rely on a companion virus to provide these proteins for their RNA replication and packaging. SatRNAs recruit these and other required factors via their RNA sequences and structures. Here, through a combination of chemical probing analysis of RNA structure, phylogenetic structural comparisons, and viability assays of satRNA mutants in infected cells, the biological importance of a deduced higher-order structure for a 619 nt long tombusvirus satRNA was assessed. Functionally-relevant secondary and tertiary RNA structures were identified throughout the length of the satRNA. Notably, a 3′-terminal segment was found to adopt two mutually-exclusive RNA secondary structures, both of which were required for efficient satRNA accumulation. Accordingly, these alternative conformations likely function as a type of RNA switch. The RNA switch was also found to engage in a required long-range kissing-loop interaction with an upstream sequence. Collectively, these results establish a high level of conformational complexity within this small parasitic RNA and provide a valuable structural framework for detailed mechanistic studies.
Collapse
Affiliation(s)
- Peter Ashton
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| | - Baodong Wu
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| | - Jessica D'Angelo
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| | - Jörg Grigull
- Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3 Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| |
Collapse
|
8
|
Prosser SW, Xiao H, Li C, Nelson RS, Meng B. Subcellular localization and membrane association of the replicase protein of grapevine rupestris stem pitting-associated virus, family Betaflexiviridae. J Gen Virol 2015; 96:921-932. [PMID: 25502653 DOI: 10.1099/jgv.0.000019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As a member of the newly established Betaflexiviridae family, grapevine rupestris stem pitting-associated virus (GRSPaV) has an RNA genome containing five ORFs. ORF1 encodes a putative replicase polyprotein typical of the alphavirus superfamily of positive-strand ssRNA viruses. Several viruses of this superfamily have been demonstrated to replicate in structures designated viral replication complexes associated with intracellular membranes. However, structure and cellular localization of the replicase complex have not been studied for members of Betaflexiviridae, a family of mostly woody plant viruses. As a first step towards the elucidation of the replication complex of GRSPaV, we investigated the subcellular localization of full-length and truncated versions of its replicase polyprotein via fluorescent tagging, followed by fluorescence microscopy. We found that the replicase polyprotein formed distinctive punctate bodies in both Nicotiana benthamiana leaf cells and tobacco protoplasts. We further mapped a region of 76 amino acids in the methyl-transferase domain responsible for the formation of these punctate structures. The punctate structures are distributed in close proximity to the endoplasmic reticulum network. Membrane flotation and biochemical analyses demonstrate that the N-terminal region responsible for punctate structure formation associated with cellular membrane is likely through an amphipathic α helix serving as an in-plane anchor. The identity of this membrane is yet to be determined. This is, to our knowledge, the first report on the localization and membrane association of the replicase proteins of a member of the family Betaflexiviridae.
Collapse
Affiliation(s)
- Sean W Prosser
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada N1G2W1
| | - Huogen Xiao
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada N1G2W1
| | - Caihong Li
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada N1G2W1
| | - Richard S Nelson
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73410, USA
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada N1G2W1
| |
Collapse
|
9
|
Conserved motifs in a tombusvirus polymerase modulate genome replication, subgenomic transcription, and amplification of defective interfering RNAs. J Virol 2015; 89:3236-46. [PMID: 25568204 DOI: 10.1128/jvi.03378-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The replication of plus-strand RNA virus genomes is mediated by virally encoded RNA-dependent RNA polymerases (RdRps). We have investigated the role of the C-proximal region in the RdRp of tomato bushy stunt virus (TBSV) in mediating viral RNA synthesis. TBSV is the prototype species in the genus Tombusvirus, family Tombusviridae, and its RdRp is responsible for replicating the viral genome, transcribing two subgenomic mRNAs, and supporting replication of defective interfering RNAs. Comparative sequence analysis of the RdRps of tombusvirids identified three highly conserved motifs in their C-proximal regions, and these sequences were subsequently targeted for mutational analysis in TBSV. The results revealed that these motifs are important for (i) synthesizing viral genomic RNA and subgenomic mRNAs, (ii) facilitating plus- and/or minus-strand synthesis, and (iii) modulating trans-replication of a defective interfering RNA. These motifs were also found to be conserved in other plant viruses as well as in a fungal and insect virus. The collective findings are discussed in relation to viral RNA synthesis and taxonomy. IMPORTANCE Little is currently known about the structure and function of the viral polymerases that replicate the genomes of RNA plant viruses. Tombusviruses, the prototype of the tombusvirids, have been used as model plus-strand RNA plant viruses for understanding many of the steps in the infectious process; however, their polymerases remain poorly characterized. To help address this issue, the function of the C-terminal region of the polymerase of a tombusvirus was investigated. Three conserved motifs were identified and targeted for mutational analysis. The results revealed that these polymerase motifs are important for determining what type of viral RNA is produced, facilitating different steps in viral RNA production, and amplifying subgenomic RNA replicons. Accordingly, the C-terminal region of the tombusvirus polymerase is needed for a variety of fundamental activities. Furthermore, as these motifs are also present in distantly related viruses, the significance of these results extends beyond tombusvirids.
Collapse
|
10
|
Novel mechanism of regulation of tomato bushy stunt virus replication by cellular WW-domain proteins. J Virol 2014; 89:2064-79. [PMID: 25473045 DOI: 10.1128/jvi.02719-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED Replication of (+)RNA viruses depends on several co-opted host proteins but is also under the control of cell-intrinsic restriction factors (CIRFs). By using tombusviruses, small model viruses of plants, we dissect the mechanism of inhibition of viral replication by cellular WW-domain-containing proteins, which act as CIRFs. By using fusion proteins between the WW domain and the p33 replication protein, we show that the WW domain inhibits the ability of p33 to bind to the viral RNA and to other p33 and p92 replication proteins leading to inhibition of viral replication in yeast and in a cell extract. Overexpression of WW-domain protein in yeast also leads to reduction of several co-opted host factors in the viral replicase complex (VRC). These host proteins, such as eEF1A, Cdc34 E2 ubiquitin-conjugating enzyme, and ESCRT proteins (Bro1p and Vps4p), are known to be involved in VRC assembly. Simultaneous coexpression of proviral cellular factors with WW-domain protein partly neutralizes the inhibitory effect of the WW-domain protein. We propose that cellular WW-domain proteins act as CIRFs and also as regulators of tombusvirus replication by inhibiting the assembly of new membrane-bound VRCs at the late stage of infection. We suggest that tombusviruses could sense the status of the infected cells via the availability of cellular susceptibility factors versus WW-domain proteins for binding to p33 replication protein that ultimately controls the formation of new VRCs. This regulatory mechanism might explain how tombusviruses could adjust the efficiency of RNA replication to the limiting resources of the host cells during infections. IMPORTANCE Replication of positive-stranded RNA viruses, which are major pathogens of plants, animals, and humans, is inhibited by several cell-intrinsic restriction factors (CIRFs) in infected cells. We define here the inhibitory roles of the cellular Rsp5 ubiquitin ligase and its WW domain in plant-infecting tombusvirus replication in yeast cells and in vitro using purified components. The WW domain of Rsp5 binds to the viral RNA-binding sites of p33 and p92 replication proteins and blocks the ability of these viral proteins to use the viral RNA for replication. The WW domain also interferes with the interaction (oligomerization) of p33 and p92 that is needed for the assembly of the viral replicase. Moreover, WW domain also inhibits the subversion of several cellular proteins into the viral replicase, which otherwise play proviral roles in replication. Altogether, Rsp5 is a CIRF against a tombusvirus, and it possibly has a regulatory function during viral replication in infected cells.
Collapse
|
11
|
The hop-like stress-induced protein 1 cochaperone is a novel cell-intrinsic restriction factor for mitochondrial tombusvirus replication. J Virol 2014; 88:9361-78. [PMID: 24920799 DOI: 10.1128/jvi.00561-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Recent genome-wide screens reveal that the host cells express an arsenal of proteins that inhibit replication of plus-stranded RNA viruses by functioning as cell-intrinsic restriction factors of viral infections. One group of cell-intrinsic restriction factors against tombusviruses contains tetratricopeptide repeat (TPR) domains that directly interact with the viral replication proteins. In this paper, we find that the TPR domain-containing Hop-like stress-inducible protein 1 (Sti1p) cochaperone selectively inhibits the mitochondrial membrane-based replication of Carnation Italian ringspot tombusvirus (CIRV). In contrast, Sti1/Hop does not inhibit the peroxisome membrane-based replication of the closely related Tomato bushy stunt virus (TBSV) or Cucumber necrosis virus (CNV) in a yeast model or in plants. Deletion of STI1 in yeast leads to up to a 4-fold increase in CIRV replication, and knockdown of the orthologous Hop cochaperone in plants results in a 3-fold increase in CIRV accumulation. Overexpression of Sti1p derivatives in yeast reveals that the inhibitory function depends on the TPR1 domain known to interact with heat shock protein 70 (Hsp70), but not on the TPR2 domain interacting with Hsp90. In vitro CIRV replication studies based on isolated mitochondrial preparations and purified recombinant proteins has confirmed that Sti1p, similar to the TPR-containing Cyp40-like Cpr7p cyclophilin and the Ttc4 oncogene-like Cns1 cochaperone, is a strong inhibitor of CIRV replication. Sti1p interacts and colocalizes with the CIRV replication proteins in yeast. Our findings indicate that the TPR-containing Hop/Sti1 cochaperone could act as a cell-intrinsic virus restriction factor of the mitochondrial CIRV, but not against the peroxisomal tombusviruses in yeast and plants. IMPORTANCE The host cells express various cell-intrinsic restriction factors that inhibit the replication of plus-stranded RNA viruses. In this paper, the authors find that the Hop-like stress-inducible protein 1 (Sti1p) cochaperone selectively inhibits the mitochondrial membrane-based replication of Carnation Italian ringspot tombusvirus (CIRV) in yeast. Deletion of STI1 in yeast or knockdown of the orthologous Hop cochaperone in plants leads to increased CIRV replication. In addition, overexpression of Sti1p derivatives in yeast reveals that the inhibitory function depends on the TPR1 domain known to interact with heat shock protein 70 (Hsp70), but not on the TPR2 domain interacting with Hsp90. In vitro CIRV replication studies based on isolated mitochondrial preparations and purified recombinant proteins have confirmed that Sti1p is a strong inhibitor of CIRV replication. The authors' findings reveal that the Hop/Sti1 cochaperone could act as a cell-intrinsic restriction factor against the mitochondrial CIRV, but not against the related peroxisomal tombusviruses.
Collapse
|
12
|
Noncanonical role for the host Vps4 AAA+ ATPase ESCRT protein in the formation of Tomato bushy stunt virus replicase. PLoS Pathog 2014; 10:e1004087. [PMID: 24763736 PMCID: PMC3999190 DOI: 10.1371/journal.ppat.1004087] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/07/2014] [Indexed: 12/13/2022] Open
Abstract
Assembling of the membrane-bound viral replicase complexes (VRCs) consisting of viral- and host-encoded proteins is a key step during the replication of positive-stranded RNA viruses in the infected cells. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the involvement of eleven cellular ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. The ESCRT proteins are involved in endosomal sorting of cellular membrane proteins by forming multiprotein complexes, deforming membranes away from the cytosol and, ultimately, pinching off vesicles into the lumen of the endosomes. In this paper, we show an unexpected key role for the conserved Vps4p AAA+ ATPase, whose canonical function is to disassemble the ESCRT complexes and recycle them from the membranes back to the cytosol. We find that the tombusvirus p33 replication protein interacts with Vps4p and three ESCRT-III proteins. Interestingly, Vps4p is recruited to become a permanent component of the VRCs as shown by co-purification assays and immuno-EM. Vps4p is co-localized with the viral dsRNA and contacts the viral (+)RNA in the intracellular membrane. Deletion of Vps4p in yeast leads to the formation of crescent-like membrane structures instead of the characteristic spherule and vesicle-like structures. The in vitro assembled tombusvirus replicase based on cell-free extracts (CFE) from vps4Δ yeast is highly nuclease sensitive, in contrast with the nuclease insensitive replicase in wt CFE. These data suggest that the role of Vps4p and the ESCRT machinery is to aid building the membrane-bound VRCs, which become nuclease-insensitive to avoid the recognition by the host antiviral surveillance system and the destruction of the viral RNA. Other (+)RNA viruses of plants and animals might also subvert Vps4p and the ESCRT machinery for formation of VRCs, which require membrane deformation and spherule formation. Replication of positive-stranded RNA viruses depends on recruitment of host proteins and cellular membranes to assemble the viral replicase complexes. Tombusviruses, small RNA viruses of plants, co-opt the cellular ESCRT (endosomal sorting complexes required for transport) proteins to facilitate replicase assembly on the peroxisomal membranes. The authors show a surprising role for the ESCRT-associated Vps4p AAA+ ATPase during tombusvirus replication. They show that Vps4p is recruited to and becomes a permanent member of the replicase complex through its interaction with the viral replication proteins. Also, EM and immuno-EM studies reveal that Vps4p is required for the formation of single-membrane vesicle-like structures, called spherules, which represent the sites of tombusvirus replication. The authors propose that Vps4p and other ESCRT proteins are required for membrane deformation and replicase assembly.
Collapse
|
13
|
Kovalev N, Nagy PD. The expanding functions of cellular helicases: the tombusvirus RNA replication enhancer co-opts the plant eIF4AIII-like AtRH2 and the DDX5-like AtRH5 DEAD-box RNA helicases to promote viral asymmetric RNA replication. PLoS Pathog 2014; 10:e1004051. [PMID: 24743583 PMCID: PMC3990711 DOI: 10.1371/journal.ppat.1004051] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/19/2014] [Indexed: 12/17/2022] Open
Abstract
Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. Several of the co-opted host factors bind to the viral RNA, which plays multiple roles, including mRNA function, as an assembly platform for the viral replicase (VRC), template for RNA synthesis, and encapsidation during infection. It is likely that remodeling of the viral RNAs and RNA-protein complexes during the switch from one step to another requires RNA helicases. In this paper, we have discovered a second group of cellular RNA helicases, including the eIF4AIII-like yeast Fal1p and the DDX5-like Dbp3p and the orthologous plant AtRH2 and AtRH5 DEAD box helicases, which are co-opted by tombusviruses. Unlike the previously characterized DDX3-like AtRH20/Ded1p helicases that bind to the 3' terminal promoter region in the viral minus-strand (-)RNA, the other class of eIF4AIII-like RNA helicases bind to a different cis-acting element, namely the 5' proximal RIII(-) replication enhancer (REN) element in the TBSV (-)RNA. We show that the binding of AtRH2 and AtRH5 helicases to the TBSV (-)RNA could unwind the dsRNA structure within the RIII(-) REN. This unique characteristic allows the eIF4AIII-like helicases to perform novel pro-viral functions involving the RIII(-) REN in stimulation of plus-strand (+)RNA synthesis. We also show that AtRH2 and AtRH5 helicases are components of the tombusvirus VRCs based on co-purification experiments. We propose that eIF4AIII-like helicases destabilize dsRNA replication intermediate within the RIII(-) REN that promotes bringing the 5' and 3' terminal (-)RNA sequences in close vicinity via long-range RNA-RNA base pairing. This newly formed RNA structure promoted by eIF4AIII helicase together with AtRH20 helicase might facilitate the recycling of the viral replicases for multiple rounds of (+)-strand synthesis, thus resulting in asymmetrical viral replication.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
14
|
Govind K, Bakshi A, Savithri HS. Interaction of Sesbania mosaic virus (SeMV) RNA-dependent RNA polymerase (RdRp) with the p10 domain of polyprotein 2a and its implications in SeMV replication. FEBS Open Bio 2014; 4:362-9. [PMID: 24918050 PMCID: PMC4050190 DOI: 10.1016/j.fob.2014.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 01/10/2023] Open
Abstract
SeMV RdRp strongly interacts with p10 domain of polyprotein 2a. C-terminal disordered domain of RdRp is required for interaction with p10. p10 acts as a positive regulator of RdRp activity.
Identification of viral encoded proteins that interact with RNA-dependent RNA polymerase (RdRp) is an important step towards unraveling the mechanism of replication. Sesbania mosaic virus (SeMV) RdRp was shown to interact strongly with p10 domain of polyprotein 2a and moderately with the protease domain. Mutational analysis suggested that the C-terminal disordered domain of RdRp is involved in the interaction with p10. Coexpression of full length RdRp and p10 resulted in formation of RdRp–p10 complex which showed significantly higher polymerase activity than RdRp alone. Interestingly, CΔ43 RdRp also showed a similar increase in activity. Thus, p10 acts as a positive regulator of RdRp by interacting with the C-terminal disordered domain of RdRp.
Collapse
Key Words
- 3AT, 3 amino-1,2,4 triazol
- CP, coat protein
- IPTG, isopropyl-1thio-β-d-galactopyranoside
- LB, Luria Bertani broth
- LacZ, β-galactosidase
- MEL1, α-galactosidase
- MP, movement protein
- Ni–NTA, nickel–nitrilo tri-acetic acid
- ONPG, ortho-nitrophenyl-β-galactoside
- PBST, phosphate buffered saline with 0.1% TWEEN 20
- Pro, protease
- Protein-protein interactions
- RNA-dependent RNA polymerase (RdRp)
- RdRp, RNA-dependent RNA polymerase
- Replication
- SD, synthetic dropout
- SeMV, Sesbania mosaic virus
- Sesbania mosaic virus
- Sobemovirus
- VPg, viral protein genome linked
- Y2H, yeast two hybrid
Collapse
Affiliation(s)
- Kunduri Govind
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Arindam Bakshi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
15
|
Li Z, Gonzalez PA, Sasvari Z, Kinzy TG, Nagy PD. Methylation of translation elongation factor 1A by the METTL10-like See1 methyltransferase facilitates tombusvirus replication in yeast and plants. Virology 2014; 448:43-54. [PMID: 24314635 DOI: 10.1016/j.virol.2013.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 11/17/2022]
Abstract
Replication of tombusviruses and other plus-strand RNA viruses depends on several host factors that are recruited into viral replicase complexes. Previous studies have shown that eukaryotic translation elongation factor 1A (eEF1A) is one of the resident host proteins in the highly purified tombusvirus replicase complex. In this paper, we show that methylation of eEF1A by the METTL10-like See1p methyltransferase is required for tombusvirus and unrelated nodavirus RNA replication in yeast model host. Similar to the effect of SEE1 deletion, yeast expressing only a mutant form of eEF1A lacking the 4 known lysines subjected to methylation supported reduced TBSV accumulation. We show that the half-life of several viral replication proteins is decreased in see1Δ yeast or when a mutated eEF1A was expressed as a sole source for eEF1A. Silencing of the plant ortholog of See1 methyltransferase also decreased tombusvirus RNA accumulation in Nicotiana benthamiana.
Collapse
Affiliation(s)
- Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | | | | | | | | |
Collapse
|
16
|
Kovalev N, Nagy PD. Cyclophilin A binds to the viral RNA and replication proteins, resulting in inhibition of tombusviral replicase assembly. J Virol 2013; 87:13330-42. [PMID: 24089553 PMCID: PMC3838255 DOI: 10.1128/jvi.02101-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/24/2013] [Indexed: 01/04/2023] Open
Abstract
Replication of plus-stranded RNA viruses is greatly affected by numerous host-encoded proteins that act as restriction factors. Cyclophilins, which are a large family of cellular prolyl isomerases, have been found to inhibit Tomato bushy stunt tombusvirus (TBSV) replication in a Saccharomyces cerevisiae model based on genome-wide screens and global proteomics approaches. In this report, we further characterize single-domain cyclophilins, including the mammalian cyclophilin A and plant Roc1 and Roc2, which are orthologs of the yeast Cpr1p cyclophilin, a known inhibitor of TBSV replication in yeast. We found that recombinant CypA, Roc1, and Roc2 strongly inhibited TBSV replication in a cell-free replication assay. Additional in vitro studies revealed that CypA, Roc1, and Roc2 cyclophilins bound to the viral replication proteins, and CypA and Roc1 also bound to the viral RNA. These interactions led to inhibition of viral RNA recruitment, the assembly of the viral replicase complex, and viral RNA synthesis. A catalytically inactive mutant of CypA was also able to inhibit TBSV replication in vitro due to binding to the replication proteins and the viral RNA. Overexpression of CypA and its mutant in yeast or plant leaves led to inhibition of tombusvirus replication, confirming that CypA is a restriction factor for TBSV. Overall, the current work has revealed a regulatory role for the cytosolic single-domain Cpr1-like cyclophilins in RNA virus replication.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
17
|
Fang L, Coutts RHA. Investigations on the Tobacco Necrosis Virus D p60 replicase protein. PLoS One 2013; 8:e80912. [PMID: 24278346 PMCID: PMC3836746 DOI: 10.1371/journal.pone.0080912] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/12/2013] [Indexed: 01/21/2023] Open
Abstract
Tobacco Necrosis Virus D (TNV-D), in the genus Betanecrovirus (family Tombusviridae), possesses a single-stranded, positive-sense RNA genome containing six open reading frames (ORFs). Two 5'-proximal ORFs (1 and 2) encode overlapping polypeptides of 22 and 82 kDa (p22 and p82, respectively) which are both required for replication. The p22 auxiliary protein contains no replication motifs but the C-terminal region, downstream of a leaky stop codon, encodes a 60 kDa polypeptide (p60) which contains conserved RNA-dependent RNA polymerase (RdRP) motifs. Here we have expressed and purified recombinant p60 and show that in vitro it binds and efficiently synthesises both TNV-D RNA and Satellite tobacco necrosis virus C RNA. Alanine scanning mutagenesis of conserved amino acids in characteristic motifs in p60 revealed that some mutations significantly reduced RNA synthesis but mutating the second asparagine residue in the conserved GDD box was lethal. The effects of mutating identical amino acids in p60 on virus replication in vivo were examined in Nicotiana benthamiana plants following infection with RNA transcribed from wild type (wt) and mutant constructs. In inoculated leaves the behaviour of the mutants paralleled the in vitro data but systemic infection was precluded in all but one mutant which had reverted to wt. This study is the first to demonstrate the nucleic acid-binding and synthetic capabilities of a betanecrovirus polymerase.
Collapse
Affiliation(s)
- Liang Fang
- Department of Human and Environmental Sciences, University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom
| | - Robert H. A. Coutts
- Department of Human and Environmental Sciences, University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom
| |
Collapse
|
18
|
Identification of novel host factors via conserved domain search: Cns1 cochaperone is a novel restriction factor of tombusvirus replication in yeast. J Virol 2013; 87:12600-10. [PMID: 24027337 DOI: 10.1128/jvi.00196-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A large number of host-encoded proteins affect the replication of plus-stranded RNA viruses by acting as susceptibility factors. Many other cellular proteins are known to function as restriction factors of viral infections. Previous studies with tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the inhibitory function of TPR (tetratricopeptide repeat) domain-containing cyclophilins, which are members of the large family of host prolyl isomerases, in TBSV replication. In this paper, we tested additional TPR-containing yeast proteins in a cell-free TBSV replication assay and identified the Cns1p cochaperone for heat shock protein 70 (Hsp70) and Hsp90 chaperones as a strong inhibitor of TBSV replication. Cns1p interacted with the viral replication proteins and inhibited the assembly of the viral replicase complex and viral RNA synthesis in vitro. Overexpression of Cns1p inhibited TBSV replication in yeast. The use of a temperature-sensitive (TS) mutant of Cns1p in yeast revealed that at a semipermissive temperature, TS Cns1p could not inhibit TBSV replication. Interestingly, Cns1p and the TPR-containing Cpr7p cyclophilin have similar inhibitory functions during TBSV replication, although some of the details of their viral restriction mechanisms are different. Our observations indicate that TPR-containing cellular proteins could act as virus restriction factors.
Collapse
|
19
|
Angel CA, Schoelz JE. A survey of resistance to Tomato bushy stunt virus in the genus Nicotiana reveals that the hypersensitive response is triggered by one of three different viral proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:240-8. [PMID: 23075040 DOI: 10.1094/mpmi-06-12-0157-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this study, we screened 22 Nicotiana spp. for resistance to the tombusviruses Tomato bushy stunt virus (TBSV), Cucumber necrosis virus, and Cymbidium ringspot virus. Eighteen species were resistant, and resistance was manifested in at least two different categories. In all, 13 species responded with a hypersensitive response (HR)-type resistance, whereas another five were resistant but either had no visible response or responded with chlorotic lesions rather than necrotic lesions. Three different TBSV proteins were found to trigger HR in Nicotiana spp. in an agroinfiltration assay. The most common avirulence (avr) determinant was the TBSV coat protein P41, a protein that had not been previously recognized as an avr determinant. A mutational analysis confirmed that the coat protein rather than the viral RNA sequence was responsible for triggering HR, and it triggered HR in six species in the Alatae section. The TBSV P22 movement protein triggered HR in two species in section Undulatae (Nicotiana glutinosa and N. edwardsonii) and one species in section Alatae (N. forgetiana). The TBSV P19 RNA silencing suppressor protein triggered HR in sections Sylvestres (N. sylvestris), Nicotiana (N. tabacum), and Alatae (N. bonariensis). In general, Nicotiana spp. were capable of recognizing only one tombusvirus avirulence determinant, with the exceptions of N. bonariensis and N. forgetiana, which were each able to recognize P41, as well as P19 and P22, respectively. Agroinfiltration failed to detect the TBSV avr determinants responsible for triggering HR in N. arentsii, N. undulata, and N. rustica. This study illustrates the breadth and variety of resistance responses to tombusviruses that exists in the Nicotiana genus.
Collapse
Affiliation(s)
- Carlos A Angel
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
20
|
Pathak KB, Jiang Z, Ochanine V, Sharma M, Pogany J, Nagy PD. Characterization of dominant-negative and temperature-sensitive mutants of tombusvirus replication proteins affecting replicase assembly. Virology 2013; 437:48-61. [PMID: 23332599 DOI: 10.1016/j.virol.2012.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/21/2012] [Accepted: 12/12/2012] [Indexed: 12/16/2022]
Abstract
The assembly of the viral replicase complex (VRC) on subcellular membranes is a key step in the replication process of plus-stranded RNA viruses. In this work, we have identified lethal and temperature sensitive (ts) point mutations within the essential p33:p33/p92 interaction domain of p33 and p92 replication proteins of Cucumber necrosis virus, a tombusvirus. Mutations within the p33:p33/p92 interaction domain also affected viral RNA recombination in yeast model host. An in vitro approach based on yeast cell free extract demonstrated that several p33 and p92 mutants behaved as dominant-negative during VRC assembly, and they showed reduced binding to the viral (+)RNA and affected activation of the p92 RdRp protein, while they did not directly influence (-) or (+)-strand synthesis. Overall, the presented data provide direct evidence that the p33:p33/p92 interaction domains in p33 and p92 are needed for the early stage of virus replication and also influence viral recombination.
Collapse
Affiliation(s)
- Kunj B Pathak
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | |
Collapse
|
21
|
Nawaz-ul-Rehman MS, Reddisiva Prasanth K, Baker J, Nagy PD. Yeast screens for host factors in positive-strand RNA virus replication based on a library of temperature-sensitive mutants. Methods 2012; 59:207-16. [PMID: 23147170 DOI: 10.1016/j.ymeth.2012.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/23/2012] [Accepted: 11/01/2012] [Indexed: 12/14/2022] Open
Abstract
RNA viruses exploit host cells by altering cellular pathways, recruiting host factors, remodeling intracellular membranes and escaping host antiviral responses. Model hosts, such as Saccharomyces cerevisiae (yeast), are valuable to identify host factors involved in viral RNA replication. The many advantages of using yeast include the availability of various yeast mutant libraries, such as (i) single gene-deletion library; (ii) the essential gene library (yTHC); and (iii) the yeast ORF over-expression library. Here, we have used a novel temperature-sensitive (ts) mutant library of essential yeast genes to identify 118 host proteins affecting replication of Tomato bushy stunt virus, in yeast model host. Testing 787 ts mutants led to the identification of host factors, of which 72 proteins facilitated TBSV replication in yeast and 46 proteins were inhibitory. Altogether, ~85% of the identified proteins are novel host factors affecting tombusvirus replication. The ts mutant library screen also led to the identification of 17 essential genes, which have been documented before, thus confirming the importance of these genomic screens. Overall, we show the power of ts mutant library in identification of host factors for RNA virus replication.
Collapse
|
22
|
Authentic in vitro replication of two tombusviruses in isolated mitochondrial and endoplasmic reticulum membranes. J Virol 2012; 86:12779-94. [PMID: 22973028 DOI: 10.1128/jvi.00973-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Replication of plus-stranded RNA viruses takes place on membranous structures derived from various organelles in infected cells. Previous works with Tomato bushy stunt tombusvirus (TBSV) revealed the recruitment of either peroxisomal or endoplasmic reticulum (ER) membranes for replication. In case of Carnation Italian ringspot tombusvirus (CIRV), the mitochondrial membranes supported CIRV replication. In this study, we developed ER and mitochondrion-based in vitro tombusvirus replication assays. Using purified recombinant TBSV and CIRV replication proteins, we showed that TBSV could use the purified yeast ER and mitochondrial preparations for complete viral RNA replication, while CIRV preferentially replicated in the mitochondrial membranes. The viral RNA became partly RNase resistant after ∼40 to 60 min of incubation in the purified ER and mitochondrial preparations, suggesting that assembly of TBSV and CIRV replicases could take place in the purified ER and mitochondrial membranes in vitro. Using chimeric and heterologous combinations of replication proteins, we showed that multiple domains within the replication proteins are involved in determining the efficiency of tombusvirus replication in the two subcellular membranes. Altogether, we demonstrated that TBSV is less limited while CIRV is more restricted in utilizing various intracellular membranes for replication. Overall, the current work provides evidence that tombusvirus replication could occur in vitro in isolated subcellular membranes, suggesting that tombusviruses have the ability to utilize alternative organellar membranes during infection that could increase the chance of mixed virus replication and rapid evolution during coinfection.
Collapse
|
23
|
Shah Nawaz-ul-Rehman M, Martinez-Ochoa N, Pascal H, Sasvari Z, Herbst C, Xu K, Baker J, Sharma M, Herbst A, Nagy PD. Proteome-wide overexpression of host proteins for identification of factors affecting tombusvirus RNA replication: an inhibitory role of protein kinase C. J Virol 2012; 86:9384-95. [PMID: 22718827 PMCID: PMC3416130 DOI: 10.1128/jvi.00019-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 06/13/2012] [Indexed: 01/08/2023] Open
Abstract
To identify host genes affecting replication of Tomato bushy stunt virus (TBSV), a small model positive-stranded RNA virus, we overexpressed 5,500 yeast proteins individually in Saccharomyces cerevisiae, which supports TBSV replication. In total, we identified 141 host proteins, and overexpression of 40 of those increased and the remainder decreased the accumulation of a TBSV replicon RNA. Interestingly, 36 yeast proteins were identified previously by various screens, greatly strengthening the relevance of these host proteins in TBSV replication. To validate the results from the screen, we studied the effect of protein kinase C1 (Pkc1), a conserved host kinase involved in many cellular processes, which inhibited TBSV replication when overexpressed. Using a temperature-sensitive mutant of Pkc1p revealed a high level of TBSV replication at a semipermissive temperature, further supporting the idea that Pkc1p is an inhibitor of TBSV RNA replication. A direct inhibitory effect of Pkc1p was shown in a cell-free yeast extract-based TBSV replication assay, in which Pkc1p likely phosphorylates viral replication proteins, decreasing their abilities to bind to the viral RNA. We also show that cercosporamide, a specific inhibitor of Pkc-like kinases, leads to increased TBSV replication in yeast, in plant single cells, and in whole plants, suggesting that Pkc-related pathways are potent inhibitors of TBSV in several hosts.
Collapse
|
24
|
Kovalev N, Barajas D, Nagy PD. Similar roles for yeast Dbp2 and Arabidopsis RH20 DEAD-box RNA helicases to Ded1 helicase in tombusvirus plus-strand synthesis. Virology 2012; 432:470-84. [PMID: 22832121 DOI: 10.1016/j.virol.2012.06.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 05/17/2012] [Accepted: 06/28/2012] [Indexed: 01/05/2023]
Abstract
Recruited host factors aid replication of plus-strand RNA viruses. In this paper, we show that Dbp2 DEAD-box helicase of yeast, which is a homolog of human p68 DEAD-box helicase, directly affects replication of Tomato bushy stunt virus (TBSV). We demonstrate that Dbp2 binds to the 3'-end of the viral minus-stranded RNA and enhances plus-strand synthesis by the viral replicase in a yeast-based cell-free TBSV replication assay. In vitro data with wt and an ATPase-deficient Dbp2 mutant indicate that Dbp2 unwinds local secondary structures at the 3'-end of the TBSV (-)RNA. We also show that Dbp2 complements the replication deficiency of TBSV in yeast containing reduced amount of Ded1 DEAD-box helicase, another host factor involved in TBSV replication, suggesting that Dbp2 and Ded1 helicases play redundant roles in TBSV replication. We also show that the orthologous AtRH20 DEAD-box helicase from Arabidopsis can increase tombusvirus replication in vitro and in yeast.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | | | | |
Collapse
|
25
|
Kovalev N, Pogany J, Nagy PD. A Co-Opted DEAD-Box RNA helicase enhances tombusvirus plus-strand synthesis. PLoS Pathog 2012; 8:e1002537. [PMID: 22359508 PMCID: PMC3280988 DOI: 10.1371/journal.ppat.1002537] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 01/03/2012] [Indexed: 01/09/2023] Open
Abstract
Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. In this paper, we show that an essential translation factor, Ded1p DEAD-box RNA helicase of yeast, directly affects replication of Tomato bushy stunt virus (TBSV). To separate the role of Ded1p in viral protein translation from its putative replication function, we utilized a cell-free TBSV replication assay and recombinant Ded1p. The in vitro data show that Ded1p plays a role in enhancing plus-strand synthesis by the viral replicase. We also find that Ded1p is a component of the tombusvirus replicase complex and Ded1p binds to the 3′-end of the viral minus-stranded RNA. The data obtained with wt and ATPase deficient Ded1p mutants support the model that Ded1p unwinds local structures at the 3′-end of the TBSV (−)RNA, rendering the RNA compatible for initiation of (+)-strand synthesis. Interestingly, we find that Ded1p and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is another host factor for TBSV, play non-overlapping functions to enhance (+)-strand synthesis. Altogether, the two host factors enhance TBSV replication synergistically by interacting with the viral (−)RNA and the replication proteins. In addition, we have developed an in vitro assay for Flock house virus (FHV), a small RNA virus of insects, that also demonstrated positive effect on FHV replicase activity by the added Ded1p helicase. Thus, two small RNA viruses, which do not code for their own helicases, seems to recruit a host RNA helicase to aid their replication in infected cells. Subverted host factors play a role in plus-strand RNA virus replication. Small RNA viruses do not code for their own helicases and they might recruit host RNA helicases to aid their replication in infected cells. In this paper, the authors show that the Ded1p DEAD-box helicase, which is an essential translation factor in yeast, is recruited by Tomato bushy stunt virus (TBSV) into its replicase complex. They also show that Ded1p binds to the viral (−)RNA and promotes (+)-strand TBSV synthesis when added to a yeast-based cell-free extract depleted for Ded1p. An ATPase defective Ded1p mutant failed to promote TBSV replication in vitro, suggesting that the helicase activity of Ded1p is essential for its function during TBSV replication. In addition, the authors also show that another host protein, which also binds to the (−)RNA, namely glyceraldehyde-3-phosphate dehydrogenase (GAPDH), further enhances TBSV (+)RNA when added together with Ded1p to yeast-based cell-free extract. In summary, the authors show that the major functions of Ded1p and GAPDH host proteins are to promote TBSV replication via selectively enhancing (+)-strand synthesis.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
26
|
Qin J, Barajas D, Nagy PD. An inhibitory function of WW domain-containing host proteins in RNA virus replication. Virology 2012; 426:106-19. [PMID: 22341780 DOI: 10.1016/j.virol.2012.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/01/2011] [Accepted: 01/20/2012] [Indexed: 01/23/2023]
Abstract
To identify new genes affecting Tomato bushy stunt virus (TBSV) replication in yeast model host, we are studying protein families, whose members have been identified during previous high throughput screening. In this paper, we have characterized the WW domain-containing protein family from yeast and plants. We find that, in addition to Rsp5 E3 ubiquitin ligase, yeast Wwm1 and Prp40 and three Arabidopsis WW domain-containing proteins are strong inhibitors of TBSV replication. The tombusvirus replicase complex isolated from yeast with down-regulated Wwm1 protein level was more active. Accumulation of viral p92(pol) was reduced when Wwm1 was over-expressed, suggesting that the stability of p92(pol) might be reduced, as observed with Rsp5. Moreover, replication of two insect RNA viruses is also inhibited by Wwm1 and Rsp5, suggesting that WW domain-containing proteins might have broad regulatory effects on RNA viruses. Thus, artificial antiviral proteins with WW domains could be useful antiviral strategy.
Collapse
Affiliation(s)
- Jun Qin
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | | | | |
Collapse
|
27
|
Lin JY, Mendu V, Pogany J, Qin J, Nagy PD. The TPR domain in the host Cyp40-like cyclophilin binds to the viral replication protein and inhibits the assembly of the tombusviral replicase. PLoS Pathog 2012; 8:e1002491. [PMID: 22346747 PMCID: PMC3276564 DOI: 10.1371/journal.ppat.1002491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/04/2011] [Indexed: 12/24/2022] Open
Abstract
Replication of plus-stranded RNA viruses is greatly affected by numerous host-coded proteins acting either as susceptibility or resistance factors. Previous genome-wide screens and global proteomics approaches with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of cyclophilins, which are a large family of host prolyl isomerases, in TBSV replication. In this paper, we identified those members of the large cyclophilin family that interacted with the viral replication proteins and inhibited TBSV replication. Further characterization of the most effective cyclophilin, the Cyp40-like Cpr7p, revealed that it strongly inhibits many steps during TBSV replication in a cell-free replication assay. These steps include viral RNA recruitment inhibited via binding of Cpr7p to the RNA-binding region of the viral replication protein; the assembly of the viral replicase complex and viral RNA synthesis. Since the TPR (tetratricopeptide repeats) domain, but not the catalytic domain of Cpr7p is needed for the inhibitory effect on TBSV replication, it seems that the chaperone activity of Cpr7p provides the negative regulatory function. We also show that three Cyp40-like proteins from plants can inhibit TBSV replication in vitro and Cpr7p is also effective against Nodamura virus, an insect pathogen. Overall, the current work revealed a role for Cyp40-like proteins and their TPR domains as regulators of RNA virus replication.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Venugopal Mendu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jun Qin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
28
|
Synergistic roles of eukaryotic translation elongation factors 1Bγ and 1A in stimulation of tombusvirus minus-strand synthesis. PLoS Pathog 2011; 7:e1002438. [PMID: 22194687 PMCID: PMC3240602 DOI: 10.1371/journal.ppat.1002438] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/31/2011] [Indexed: 12/26/2022] Open
Abstract
Host factors are recruited into viral replicase complexes to aid replication of plus-strand RNA viruses. In this paper, we show that deletion of eukaryotic translation elongation factor 1Bgamma (eEF1Bγ) reduces Tomato bushy stunt virus (TBSV) replication in yeast host. Also, knock down of eEF1Bγ level in plant host decreases TBSV accumulation. eEF1Bγ binds to the viral RNA and is one of the resident host proteins in the tombusvirus replicase complex. Additional in vitro assays with whole cell extracts prepared from yeast strains lacking eEF1Bγ demonstrated its role in minus-strand synthesis by opening of the structured 3′ end of the viral RNA and reducing the possibility of re-utilization of (+)-strand templates for repeated (-)-strand synthesis within the replicase. We also show that eEF1Bγ plays a synergistic role with eukaryotic translation elongation factor 1A in tombusvirus replication, possibly via stimulation of the proper positioning of the viral RNA-dependent RNA polymerase over the promoter region in the viral RNA template.These roles for translation factors during TBSV replication are separate from their canonical roles in host and viral protein translation. RNA viruses recruit numerous host proteins to facilitate their replication and spread. Among the identified host proteins are RNA-binding proteins (RBPs), such as ribosomal proteins, translation factors and RNA-modifying enzymes. In this paper, the authors show that deletion of eukaryotic translation elongation factor 1Bgamma (eEF1Bγ) reduces Tomato bushy stunt virus (TBSV) replication in a yeast model host. Knock down of eEF1Bγ level in plant host also decreases TBSV accumulation. Moreover, the authors demonstrate that eEF1Bγ binds to the viral RNA and is present in the tombusvirus replicase complex. Functional studies revealed that eEF1Bγ promotes minus-strand synthesis by serving as an RNA chaperone. The authors also show that eEF1Bγ and eukaryotic translation elongation factor 1A, another host factor, function together to promote tombusvirus replication.
Collapse
|
29
|
Identification of amino acids in auxiliary replicase protein p27 critical for its RNA-binding activity and the assembly of the replicase complex in Red clover necrotic mosaic virus. Virology 2011; 413:300-9. [PMID: 21440279 DOI: 10.1016/j.virol.2011.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/04/2011] [Accepted: 02/20/2011] [Indexed: 01/17/2023]
Abstract
The specific recognition of genomic RNAs by viral replicase proteins is a key regulatory step during the early replication process in positive-strand RNA viruses. In this study, we characterized the RNA-binding activity of the auxiliary replicase protein p27 of Red clover necrotic mosaic virus (RCNMV), which has a bipartite genome consisting of RNA1 and RNA2. Aptamer pull-down assays identified the amino acid residues of p27 involved in its specific interaction with RNA2. The RNA-binding activity of p27 correlated with its activity in recruiting RNA2 to membranes. We also identified the amino acids required for the formation of the 480-kDa replicase complex, a key player of RCNMV RNA replication. These amino acids are not involved in the functions of p27 that bind viral RNA or replicase proteins, suggesting an additional role for p27 in the assembly of the replicase complex. Our results demonstrate that p27 has multiple functions in RCNMV replication.
Collapse
|
30
|
Abstract
RNA viruses are the champions of evolution due to high frequency mutations and genetic recombination occurring during virus replication. These genetic events are due to the error-prone nature of viral RNA-dependent RNA polymerases (RdRp). Recently emerging models on viral RNA recombination, however, also include key roles for host and environmental factors. Accordingly, genome-wide screens and global proteomics approaches with Tomato bushy stunt virus (TBSV) and yeast (Saccharomyces cerevisiae) as a model host have identified 38 host proteins affecting viral RNA recombination. Follow-up studies have identified key host proteins and cellular pathways involved in TBSV RNA recombination. In addition, environmental factors, such as salt stress, have been shown to affect TBSV recombination via influencing key host or viral factors involved in the recombination process. These advances will help build more accurate models on viral recombination, evolution, and adaptation.
Collapse
|
31
|
Angel CA, Hsieh YC, Schoelz JE. Comparative analysis of the capacity of tombusvirus P22 and P19 proteins to function as avirulence determinants in Nicotiana species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:91-9. [PMID: 20977306 DOI: 10.1094/mpmi-04-10-0089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have used an agroinfiltration assay for a comparative study of the roles of tombusvirus P22 and P19 proteins in elicitation of hypersensitive response (HR)-like necrosis and the role of P19 in silencing suppression in Nicotiana species. The advantage of agroinfiltration rather than expression in plant virus vectors is that putative viral avirulence proteins can be evaluated in isolation, eliminating the possibility of synergistic effects with other viral proteins. We found that tombusvirus P22 and P19 proteins elicited HR-like necrosis in certain Nicotiana species but, also, that Nicotiana species could recognize subtle differences in sequence between these proteins. Furthermore, Nicotiana species that responded with systemic necrosis to virion inoculations responded to agroinfiltration of tombusvirus P19 with a very weak and delayed necrosis, indicating that the rapid HR-like necrosis was associated with putative resistance genes and a plant defense response that limited the spread of the virus. Tombusvirus P19 proteins also appeared to differ in their effectiveness as silencing suppressors; in our assay, the P19 proteins of Cymbidium ringspot virus and Tomato bushy stunt virus were stronger silencing suppressors than Cucumber necrosis virus P20. Finally, we show that agroinfiltration can be used to track the presence of putative plant resistance genes in Nicotiana species that target either tombusvirus P19 or P22.
Collapse
Affiliation(s)
- Carlos A Angel
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
32
|
Stork J, Kovalev N, Sasvari Z, Nagy PD. RNA chaperone activity of the tombusviral p33 replication protein facilitates initiation of RNA synthesis by the viral RdRp in vitro. Virology 2010; 409:338-47. [PMID: 21071052 PMCID: PMC7173327 DOI: 10.1016/j.virol.2010.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/19/2010] [Accepted: 10/12/2010] [Indexed: 12/18/2022]
Abstract
Small plus-stranded RNA viruses do not code for RNA helicases that would facilitate the proper folding of viral RNAs during replication. Instead, these viruses might use RNA chaperones as shown here for the essential p33 replication protein of Tomato bushy stunt virus (TBSV). In vitro experiments demonstrate that the purified recombinant p33 promotes strand separation of a DNA/RNA duplex. In addition, p33 renders dsRNA templates sensitive to single-strand specific S1 nuclease, suggesting that p33 can destabilize highly structured RNAs. We also demonstrate that the RNA chaperone activity of p33 facilitates self-cleavage by a ribozyme in vitro. In addition, purified p33 facilitates in vitro RNA synthesis on double-stranded (ds)RNA templates up to 5-fold by a viral RNA-dependent RNA polymerase. We propose that the RNA chaperone activity of p33 facilitates the initiation of plus-strand synthesis as well as affects RNA recombination. Altogether, the TBSV RNA chaperone might perform similar biological functions to the helicases of other RNA viruses with much larger coding capacity.
Collapse
Affiliation(s)
- Jozsef Stork
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
33
|
Li Z, Pogany J, Tupman S, Esposito AM, Kinzy TG, Nagy PD. Translation elongation factor 1A facilitates the assembly of the tombusvirus replicase and stimulates minus-strand synthesis. PLoS Pathog 2010; 6:e1001175. [PMID: 21079685 PMCID: PMC2973826 DOI: 10.1371/journal.ppat.1001175] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 10/01/2010] [Indexed: 11/18/2022] Open
Abstract
Replication of plus-strand RNA viruses depends on host factors that are recruited into viral replicase complexes. Previous studies showed that eukaryotic translation elongation factor (eEF1A) is one of the resident host proteins in the highly purified tombusvirus replicase complex. Using a random library of eEF1A mutants, we identified one mutant that decreased and three mutants that increased Tomato bushy stunt virus (TBSV) replication in a yeast model host. Additional in vitro assays with whole cell extracts prepared from yeast strains expressing the eEF1A mutants demonstrated several functions for eEF1A in TBSV replication: facilitating the recruitment of the viral RNA template into the replicase complex; the assembly of the viral replicase complex; and enhancement of the minus-strand synthesis by promoting the initiation step. These roles for eEF1A are separate from its canonical role in host and viral protein translation, emphasizing critical functions for this abundant cellular protein during TBSV replication. Plus-stranded RNA viruses are important pathogens of plants, animals and humans. They replicate in the infected cells by assembling viral replicase complexes consisting of viral- and host-coded proteins. In this paper, we show that the eukaryotic translation elongation factor (eEF1A), which is one of the resident host proteins in the highly purified tombusvirus replicase complex, is important for Tomato bushy stunt virus (TBSV) replication in a yeast model host. Based on a random library of eEF1A mutants, we identified eEF1A mutants that either decreased or increased TBSV replication. In vitro studies revealed that eEF1A facilitated the recruitment of the viral RNA template for replication and the assembly of the viral replicase complex, as well as eEF1A enhanced viral RNA synthesis in vitro. Altogether, this study demonstrates that eEF1A has several functions during TBSV replication.
Collapse
Affiliation(s)
- Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Steven Tupman
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Anthony M. Esposito
- Department of Molecular Genetics, Microbiology, and Immunology, UMDNJ Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Terri Goss Kinzy
- Department of Molecular Genetics, Microbiology, and Immunology, UMDNJ Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
34
|
Jiang Y, Cheng CP, Serviene E, Shapka N, Nagy PD. Repair of lost 5' terminal sequences in tombusviruses: Rapid recovery of promoter- and enhancer-like sequences in recombinant RNAs. Virology 2010; 404:96-105. [PMID: 20537671 DOI: 10.1016/j.virol.2010.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 04/16/2010] [Accepted: 04/23/2010] [Indexed: 11/29/2022]
Abstract
Maintenance of genome integrity is of major importance for plus-stranded RNA viruses that are vulnerable to degradation by host ribonucleases or to replicase errors. We demonstrate that short truncations at the 5' end of a model Tomato bushy stunt virus (TBSV) RNA could be repaired during replication in yeast and plant cells. Although the truncations led to the loss of important cis-regulatory elements, the genome repair mechanisms led to the recovery of promoter and enhancer-like sequences in 92% of TBSV progeny. Using in vitro approaches, we demonstrate that the repaired TBSV RNAs are replication-competent. We propose three different mechanisms for genome repair: initiation of RNA synthesis from internal sequences and addition of nonviral nucleotides by the tombusvirus replicase; and via RNA recombination. The ability to repair cis-sequences makes the tombusvirus genome more flexible, which could be beneficial to increase the virus fitness and adaptation to new hosts.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
35
|
Wang X, Kelman Z, Culver JN. Helicase ATPase activity of the Tobacco mosaic virus 126-kDa protein modulates replicase complex assembly. Virology 2010; 402:292-302. [PMID: 20413140 DOI: 10.1016/j.virol.2010.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/21/2010] [Accepted: 03/11/2010] [Indexed: 11/23/2022]
Abstract
Mutations disrupting helicase domain motifs of the Tobacco mosaic virus 126/183-kDa proteins were investigated for their effect on replicase function and assembly. These mutations inhibited virus replication but did not affect 126-kDa induced N gene resistance or RNAi suppression. However, in vivo expressed 126-kDa motif mutants yielded two distinct cytoplasmic phenotypes that correlated with ATPase activity. Specifically, ATPase active 126-kDa proteins produced small cytoplasmic bodies that resembled the ovoid granular-like bodies found early in virus infection while 126-kDa proteins defective in ATPase activity produced large tubule containing cytoplasmic bodies similar to those observed late in infection. Additional studies indicate that the helicase ATPase activity resides predominantly within monomer and dimer helicase forms and that motifs affecting ATPase activity induce alterations in helicase assembly. Combined these findings indicate that helicase ATPase activity modulates the progression of replicase complex assembly and maturation.
Collapse
Affiliation(s)
- Xiao Wang
- Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
36
|
Nagy PD, Pogany J. Global genomics and proteomics approaches to identify host factors as targets to induce resistance against Tomato bushy stunt virus. Adv Virus Res 2010; 76:123-77. [PMID: 20965073 PMCID: PMC7173251 DOI: 10.1016/s0065-3527(10)76004-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The success of RNA viruses as pathogens of plants, animals, and humans depends on their ability to reprogram the host cell metabolism to support the viral infection cycle and to suppress host defense mechanisms. Plus-strand (+)RNA viruses have limited coding potential necessitating that they co-opt an unknown number of host factors to facilitate their replication in host cells. Global genomics and proteomics approaches performed with Tomato bushy stunt virus (TBSV) and yeast (Saccharomyces cerevisiae) as a model host have led to the identification of 250 host factors affecting TBSV RNA replication and recombination or bound to the viral replicase, replication proteins, or the viral RNA. The roles of a dozen host factors involved in various steps of the replication process have been validated in yeast as well as a plant host. Altogether, the large number of host factors identified and the great variety of cellular functions performed by these factors indicate the existence of a truly complex interaction between TBSV and the host cell. This review summarizes the advantages of using a simple plant virus and yeast as a model host to advance our understanding of virus–host interactions at the molecular and cellular levels. The knowledge of host factors gained can potentially be used to inhibit virus replication via gene silencing, expression of dominant negative mutants, or design of specific chemical inhibitors leading to novel specific or broad-range resistance and antiviral tools against (+)RNA plant viruses.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA.
| | | |
Collapse
|
37
|
Barajas D, Jiang Y, Nagy PD. A unique role for the host ESCRT proteins in replication of Tomato bushy stunt virus. PLoS Pathog 2009; 5:e1000705. [PMID: 20041173 PMCID: PMC2791863 DOI: 10.1371/journal.ppat.1000705] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 11/24/2009] [Indexed: 12/24/2022] Open
Abstract
Plus-stranded RNA viruses replicate in infected cells by assembling viral replicase complexes consisting of viral- and host-coded proteins. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of seven ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. In this paper, we show that the expression of dominant negative Vps23p, Vps24p, Snf7p, and Vps4p ESCRT factors inhibited virus replication in the plant host, suggesting that tombusviruses co-opt selected ESCRT proteins for the assembly of the viral replicase complex. We also show that TBSV p33 replication protein interacts with Vps23p ESCRT-I and Bro1p accessory ESCRT factors. The interaction with p33 leads to the recruitment of Vps23p to the peroxisomes, the sites of TBSV replication. The viral replicase showed reduced activity and the minus-stranded viral RNA in the replicase became more accessible to ribonuclease when derived from vps23Delta or vps24Delta yeast, suggesting that the protection of the viral RNA is compromised within the replicase complex assembled in the absence of ESCRT proteins. The recruitment of ESCRT proteins is needed for the precise assembly of the replicase complex, which might help the virus evade recognition by the host defense surveillance system and/or prevent viral RNA destruction by the gene silencing machinery.
Collapse
Affiliation(s)
- Daniel Barajas
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yi Jiang
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
38
|
Defective Interfering RNAs: Foes of Viruses and Friends of Virologists. Viruses 2009; 1:895-919. [PMID: 21994575 PMCID: PMC3185524 DOI: 10.3390/v1030895] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 12/25/2022] Open
Abstract
Defective interfering (DI) RNAs are subviral RNAs produced during multiplication of RNA viruses by the error-prone viral replicase. DI-RNAs are parasitic RNAs that are derived from and associated with the parent virus, taking advantage of viral-coded protein factors for their multiplication. Recent advances in the field of DI RNA biology has led to a greater understanding about generation and evolution of DI-RNAs as well as the mechanism of symptom attenuation. Moreover, DI-RNAs are versatile tools in the hands of virologists and are used as less complex surrogate templates to understand the biology of their helper viruses. The ease of their genetic manipulation has resulted in rapid discoveries on cis-acting RNA replication elements required for replication and recombination. DI-RNAs have been further exploited to discover host factors that modulate Tomato bushy stunt virus replication, as well as viral RNA recombination. This review discusses the current models on generation and evolution of DI-RNAs, the roles of viral and host factors in DI-RNA replication, and the mechanisms of disease attenuation.
Collapse
|
39
|
Sasvari Z, Bach S, Blondel M, Nagy PD. Inhibition of RNA recruitment and replication of an RNA virus by acridine derivatives with known anti-prion activities. PLoS One 2009; 4:e7376. [PMID: 19823675 PMCID: PMC2757906 DOI: 10.1371/journal.pone.0007376] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 08/27/2009] [Indexed: 11/24/2022] Open
Abstract
Background Small molecule inhibitors of RNA virus replication are potent antiviral drugs and useful to dissect selected steps in the replication process. To identify antiviral compounds against Tomato bushy stunt virus (TBSV), a model positive stranded RNA virus, we tested acridine derivatives, such as chlorpromazine (CPZ) and quinacrine (QC), which are active against prion-based diseases. Methodology/Principal Findings Here, we report that CPZ and QC compounds inhibited TBSV RNA accumulation in plants and in protoplasts. In vitro assays revealed that the inhibitory effects of these compounds were manifested at different steps of TBSV replication. QC was shown to have an effect on multiple steps, including: (i) inhibition of the selective binding of the p33 replication protein to the viral RNA template, which is required for recruitment of viral RNA for replication; (ii) reduction of minus-strand synthesis by the tombusvirus replicase; and (iii) inhibition of translation of the uncapped TBSV genomic RNA. In contrast, CPZ was shown to inhibit the in vitro assembly of the TBSV replicase, likely due to binding of CPZ to intracellular membranes, which are important for RNA virus replication. Conclusion/Significance Since we found that CPZ was also an effective inhibitor of other plant viruses, including Tobacco mosaic virus and Turnip crinkle virus, it seems likely that CPZ has a broad range of antiviral activity. Thus, these inhibitors constitute effective tools to study similarities in replication strategies of various RNA viruses.
Collapse
Affiliation(s)
- Zsuzsanna Sasvari
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stéphane Bach
- USR3151-CNRS “Protein Phosphorylation & Human Disease”, Station Biologique, B.P. 74, 29682 Roscoff cedex, Bretagne, France
| | - Marc Blondel
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
40
|
The Nedd4-type Rsp5p ubiquitin ligase inhibits tombusvirus replication by regulating degradation of the p92 replication protein and decreasing the activity of the tombusvirus replicase. J Virol 2009; 83:11751-64. [PMID: 19759160 DOI: 10.1128/jvi.00789-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent in vitro proteomics screens revealed that many host proteins could interact with the replication proteins of Tomato bushy stunt virus (TBSV), which is a small, plus-stranded RNA virus (Z. Li, D. Barajas, T. Panavas, D. A. Herbst, and P. D. Nagy, J. Virol. 82:6911-6926, 2008). To further our understanding of the roles of host factors in TBSV replication, we have tested the effect of Rsp5p, which is a member of the Nedd4 family of E3 ubiquitin ligases. The full-length Rsp5p, via its WW domain, is shown to interact with p33 and the central portion of p92(pol) replication proteins. We find that overexpression of Rsp5p inhibits TBSV replication in Saccharomyces cerevisiae yeast, while downregulation of Rsp5p leads to increased TBSV accumulation. The inhibition is caused by Rsp5p-guided degradation of p92(pol), while the negative effect on the p33 level is less pronounced. Interestingly, recombinant Rsp5p also inhibits TBSV RNA replication in a cell-free replication assay, likely due to its ability to bind to p33 and p92(pol). We show that the WW domain of Rsp5p, which is involved in protein interactions, is responsible for inhibition of TBSV replication, whereas the HECT domain, involved in protein ubiquitination, is not necessary for Rsp5p-mediated inhibition of viral replication. Overall, our data suggest that direct binding between Rsp5p and p92(pol) reduces the stability of p92(pol), with consequent inhibition of TBSV replicase activity.
Collapse
|
41
|
Zhang X, Kazerounian S, Duquette M, Perruzzi C, Nagy JA, Dvorak HF, Parangi S, Lawler J. Thrombospondin-1 modulates vascular endothelial growth factor activity at the receptor level. FASEB J 2009; 23:3368-76. [PMID: 19528255 DOI: 10.1096/fj.09-131649] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a well-established stimulator of vascular permeability and angiogenesis, whereas thrombospondin-1 (TSP-1) is a potent angiogenic inhibitor. In this study, we have found that the TSP-1 receptors CD36 and beta1 integrin associate with the VEGF receptor 2 (VEGFR2). The coclustering of receptors that regulate angiogenesis may provide the endothelial cell with a platform for integration of positive and negative signals in the plane of the membrane. Thus, this complex may represent a molecular switch that regulates angiogenesis and determines endothelial cell behavior. In this context, physiological levels of TSP-1 appear to support VEGFR2 function on both the cellular and tissue level, because phosphorylation of VEGFR2 and vascular permeability in response to VEGF are decreased in TSP-1-null mice and isolated endothelial cells. A therapeutic agent based on the antiangiogenic domain of TSP-1, designated 3TSR (for three TSP-1 type 1 repeats), has significant antiangiogenic and antitumor efficacy. Systemic treatment of wild-type mice with 3TSR significantly decreased VEGF-induced permeability. Consistent with this result, VEGF-stimulated phosphorylation of VEGFR2 was also significantly decreased in lung extracts from 3TSR-treated mice. Moreover, 3TSR significantly decreased VEGF-stimulated VEGFR2 phosphorylation in human dermal microvascular endothelial cells in culture. Taken together, the results indicate that TSP-1 and 3TSR modulate the function of VEGFR2.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jaag HM, Nagy PD. Silencing of Nicotiana benthamiana Xrn4p exoribonuclease promotes tombusvirus RNA accumulation and recombination. Virology 2009; 386:344-52. [PMID: 19232421 DOI: 10.1016/j.virol.2009.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 11/08/2008] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
The cytosolic 5'-to-3' exoribonuclease Xrn1p plays a major role in recombination and degradation of Tomato bushy stunt tombusvirus (TBSV) replicon (rep)RNA in yeast, a model host (Serviene, E., Shapka, N., Cheng, C.P., Panavas, T., Phuangrat, B., Baker, J., and Nagy, P.D., 2005. Genome-wide screen identifies host genes affecting viral RNA recombination. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10545-10550.). To test if the plant cytosolic 5'-to-3' exoribonuclease Xrn4p, similar to the yeast Xrn1p, could also affect TBSV recombination, in this paper, we silenced XRN4 in Nicotiana benthamiana, an experimental host. The accumulation of tombusvirus genomic RNA and repRNA increased by 50% and 220%, respectively, in XRN4-silenced N. benthamiana. We also observed up to 125-fold increase in the emergence of new recombinants and partly degraded viral RNAs in the silenced plants. Using a cell-free assay based on a yeast extract, which supports authentic replication and recombination of TBSV, we demonstrate that the purified recombinant Xrn1p efficiently inhibited the accumulation of recombinants and partly degraded viral RNAs. Altogether, the data from a plant host and cell-free system confirm a central role for the plant cytosolic 5'-to-3' exoribonuclease in TBSV replication, recombination and viral RNA degradation.
Collapse
Affiliation(s)
- Hannah M Jaag
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY40546, USA
| | | |
Collapse
|
43
|
Wang RYL, Stork J, Nagy PD. A key role for heat shock protein 70 in the localization and insertion of tombusvirus replication proteins to intracellular membranes. J Virol 2009; 83:3276-87. [PMID: 19153242 PMCID: PMC2655559 DOI: 10.1128/jvi.02313-08] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 01/09/2009] [Indexed: 01/18/2023] Open
Abstract
Plus-stranded RNA viruses coopt host proteins to promote their robust replication in infected hosts. Tomato bushy stunt tombusvirus (TBSV) is a model virus that can replicate a small replicon RNA in Saccharomyces cerevisiae and in plants. The tombusvirus replicase complex contains heat shock protein 70 (Hsp70), an abundant cytosolic chaperone, which is required for TBSV replication. To dissect the function of Hsp70 in TBSV replication, in this paper we use an Hsp70 mutant (ssa1 ssa2) yeast strain that supports a low level of TBSV replication. Using confocal laser microscopy and cellular fractionation experiments, we find that the localization of the viral replication proteins changes to the cytosol in the mutant cells from the peroxisomal membranes in wild-type cells. An in vitro membrane insertion assay shows that Hsp70 promotes the integration of the viral replication proteins into subcellular membranes. This step seems to be critical for the assembly of the viral replicase complex. Using a gene-silencing approach and quercetin as a chemical inhibitor to downregulate Hsp70 levels, we also confirm the significance of cytosolic Hsp70 in the replication of TBSV and other plant viruses in a plant host. Taken together, our results suggest that cytosolic Hsp70 plays multiple roles in TBSV replication, such as affecting the subcellular localization and membrane insertion of the viral replication proteins as well as the assembly of the viral replicase.
Collapse
|
44
|
Li Z, Pogany J, Panavas T, Xu K, Esposito AM, Kinzy TG, Nagy PD. Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor. Virology 2009; 385:245-60. [PMID: 19131084 DOI: 10.1016/j.virol.2008.11.041] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/01/2008] [Accepted: 11/25/2008] [Indexed: 11/30/2022]
Abstract
Host RNA-binding proteins are likely to play multiple, integral roles during replication of plus-strand RNA viruses. To identify host proteins that bind to viral RNAs, we took a global approach based on the yeast proteome microarray, which contains 4080 purified yeast proteins. The biotin-labeled RNA probes included two distantly related RNA viruses, namely Tomato bushy stunt virus (TBSV) and Brome mosaic virus (BMV). Altogether, we have identified 57 yeast proteins that bound to TBSV RNA and/or BMV RNA. Among the identified host proteins, eleven bound to TBSV RNA and seven bound to BMV RNA with high selectivity, whereas the remaining 39 host proteins bound to both viral RNAs. The interaction between the TBSV replicon RNA and five of the identified host proteins was confirmed via gel-mobility shift and co-purification experiments from yeast. Over-expression of the host proteins in yeast, a model host for TBSV, revealed 4 host proteins that enhanced TBSV replication as well as 14 proteins that inhibited replication. Detailed analysis of one of the identified yeast proteins binding to TBSV RNA, namely translation elongation factor eEF1A, revealed that it is present in the highly purified tombusvirus replicase complex. We also demonstrate binding of eEF1A to the p33 replication protein and a known cis-acting element at the 3' end of TBSV RNA. Using a functional mutant of eEF1A, we provide evidence on the involvement of eEF1A in TBSV replication.
Collapse
Affiliation(s)
- Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, 40546, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
In vitro assembly of the Tomato bushy stunt virus replicase requires the host Heat shock protein 70. Proc Natl Acad Sci U S A 2008; 105:19956-61. [PMID: 19060219 DOI: 10.1073/pnas.0810851105] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To gain insights into the functions of a viral RNA replicase, we have assembled in vitro and entirely from nonplant sources, a fully functional replicase complex of Tomato bushy stunt virus (TBSV). The formation of the TBSV replicase required two purified recombinant TBSV replication proteins, which were obtained from E. coli, the viral RNA replicon, rATP, rGTP, and a yeast cell-free extract. The in vitro assembly of the replicase took place in the membraneous fraction of the yeast extract, in which the viral replicase-RNA complex became RNase- and proteinase-resistant. The assembly of the replicase complex required the heat shock protein 70 (Hsp70 = yeast Ssa1/2p) present in the soluble fraction of the yeast cell-free extract. The assembled TBSV replicase performed a complete replication cycle, synthesizing RNA complementary to the provided RNA replicon and using the complementary RNA as template to synthesize new TBSV replicon RNA.
Collapse
|
46
|
Hwang YT, McCartney AW, Gidda SK, Mullen RT. Localization of the Carnation Italian ringspot virus replication protein p36 to the mitochondrial outer membrane is mediated by an internal targeting signal and the TOM complex. BMC Cell Biol 2008; 9:54. [PMID: 18811953 PMCID: PMC2573885 DOI: 10.1186/1471-2121-9-54] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 09/23/2008] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Carnation Italian ringspot virus (CIRV) is a positive-strand RNA virus that causes massive structural alterations of mitochondria in infected host cells, the most conspicuous being the formation of numerous internal vesicles/spherules that are derived from the mitochondrial outer membrane and serve as the sites for viral RNA replication. While the membrane-bound components of the CIRV replication complex, including a 36-kD RNA-binding protein (p36), are known to be essential for these changes in mitochondrial morphology and are relatively well characterized in terms of their roles in nascent viral RNA synthesis, how these proteins are specifically targeted and inserted into mitochondria is poorly defined. RESULTS Here we report on the molecular signal responsible for sorting p36 to the mitochondrial outer membrane. Using a combination of gain-of-function assays with portions of p36 fused to reporter proteins and domain-swapping assays with p36 and another closely-related viral RNA-binding protein, p33, that sorts specifically to the peroxisomal boundary membrane, we show that the mitochondrial targeting information in p36 resides within its two transmembrane domains (TMDs) and intervening hydrophilic loop sequence. Comprehensive mutational analysis of these regions in p36 revealed that the primary targeting determinants are the moderate hydrophobicity of both TMDs and the positively-charged face of an amphipathic helix within the intervening loop sequence. We show also using bimolecular fluorescence complementation (BiFC) that p36 interacts with certain components of the translocase complex in the mitochondrial outer membrane (TOM), but not with the sorting and assembly machinery (SAM). CONCLUSION Our results provide insight to how viruses, such as CIRV, exploit specific host-cell protein sorting pathways to facilitate their replication. The characterization of the targeting and insertion of p36 into the mitochondrial outer membrane also sheds light on the mechanisms involved in sorting of host-cell membrane proteins to mitochondria, a process that has been largely unexplored in plants.
Collapse
Affiliation(s)
- Yeen Ting Hwang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Andrew W McCartney
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- JD Irving, Limited, Woodlands Division, 1350 Regent Street, Fredericton, New Brunswick, E3C 2G6, Canada
| | - Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
47
|
Pathak KB, Sasvari Z, Nagy PD. The host Pex19p plays a role in peroxisomal localization of tombusvirus replication proteins. Virology 2008; 379:294-305. [PMID: 18684480 DOI: 10.1016/j.virol.2008.06.044] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/19/2008] [Accepted: 06/24/2008] [Indexed: 11/29/2022]
Abstract
Replication of Tomato bushy stunt virus (TBSV) RNA takes place on the cytosolic membrane surface of peroxisomes in plants and in yeast, a model host. To identify the host proteins involved in assisting the peroxisomal localization of the tombusvirus p33 replication protein, we tested if p33 could bind directly to yeast proteins involved in peroxisomal transport in vitro. This work has led to the demonstration of Pex19p-p33 interaction via pull-down and co-purification experiments. Pex19p was also detected in the tombusvirus replicase after protein cross-linking, suggesting that Pex19p transiently binds to the replicase as could be expected from a transporter. To validate the importance of Pex19p-p33 interaction in TBSV replication in yeast, we re-targeted Pex19p to the mitochondria, which resulted in the re-distribution of a large fraction of p33 to the mitochondria. The expression of the mitochondrial-targeted Pex19p inhibited TBSV RNA accumulation by 2-4-fold in vivo and reduced the in vitro activity of the tombusvirus replicase by 80%. These data support the model that Pex19p is a cellular transporter for localization of p33 replication protein to the host peroxisomal membranes.
Collapse
Affiliation(s)
- Kunj B Pathak
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | |
Collapse
|
48
|
Cdc34p ubiquitin-conjugating enzyme is a component of the tombusvirus replicase complex and ubiquitinates p33 replication protein. J Virol 2008; 82:6911-26. [PMID: 18463149 DOI: 10.1128/jvi.00702-08] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To identify host proteins interacting with Tomato bushy stunt virus (TBSV) replication proteins in a genome-wide scale, we have used a yeast (Saccharomyces cerevisiae) proteome microarray carrying 4,088 purified proteins. This approach led to the identification of 58 yeast proteins that interacted with p33 replication protein. The identified host proteins included protein chaperones, ubiquitin-associated proteins, translation factors, RNA-modifying enzymes, and other proteins with yet-unknown functions. We confirmed that 19 of the identified host proteins bound to p33 in vitro or in a split-ubiquitin-based two-hybrid assay. Further analysis of Cdc34p E2 ubiquitin-conjugating enzyme, which is one of the host proteins interacting with p33, revealed that Cdc34p is a novel component of the purified viral replicase. Downregulation of Cdc34p expression in yeast, which supports replication of a TBSV replicon RNA (repRNA), reduced repRNA accumulation and the activity of the tombusvirus replicase by up to fivefold. Overexpression of wild-type Cdc34p, but not that of an E2-defective mutant of Cdc34p, increased repRNA accumulation, suggesting a significant role for the ubiquitin-conjugating enzyme function of Cdc34p in TBSV replication. Also, Cdc34p was able to ubiquitinate p33 in vitro. In addition, we have shown that p33 becomes ubiquitinated in vivo. We propose that ubiquitination of p33 likely alters its function or affects the recruitment of host factors during TBSV replication.
Collapse
|