1
|
Nagasaki SC, Fukuda TD, Yamada M, Suzuki YIII, Kakutani R, Guy AT, Imayoshi I. Enhancement of Vivid-based photo-activatable Gal4 transcription factor in mammalian cells. Cell Struct Funct 2023; 48:31-47. [PMID: 36529516 PMCID: PMC10721950 DOI: 10.1247/csf.22074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The Gal4/UAS system is a versatile tool to manipulate exogenous gene expression of cells spatially and temporally in many model organisms. Many variations of light-controllable Gal4/UAS system are now available, following the development of photo-activatable (PA) molecular switches and integration of these tools. However, many PA-Gal4 transcription factors have undesired background transcription activities even in dark conditions, and this severely attenuates reliable light-controlled gene expression. Therefore, it is important to develop reliable PA-Gal4 transcription factors with robust light-induced gene expression and limited background activity. By optimization of synthetic PA-Gal4 transcription factors, we have validated configurations of Gal4 DNA biding domain, transcription activation domain and blue light-dependent dimer formation molecule Vivid (VVD), and applied types of transcription activation domains to develop a new PA-Gal4 transcription factor we have named eGAV (enhanced Gal4-VVD transcription factor). Background activity of eGAV in dark conditions was significantly lower than that of hGAVPO, a commonly used PA-Gal4 transcription factor, and maximum light-induced gene expression levels were also improved. Light-controlled gene expression was verified in cultured HEK293T cells with plasmid-transient transfections, and in mouse EpH4 cells with lentivirus vector-mediated transduction. Furthermore, light-controlled eGAV-mediated transcription was confirmed in transfected neural stem cells and progenitors in developing and adult mouse brain and chick spinal cord, and in adult mouse hepatocytes, demonstrating that eGAV can be applied to a wide range of experimental systems and model organisms.Key words: optogenetics, Gal4/UAS system, transcription, gene expression, Vivid.
Collapse
Affiliation(s)
- Shinji C. Nagasaki
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tomonori D. Fukuda
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Mayumi Yamada
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Cell Biology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yusuke III Suzuki
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Ryo Kakutani
- Laboratory of Cell Biology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Adam T. Guy
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Science Communication, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Itaru Imayoshi
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Deconstruction of Stem Cells, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
2
|
Baeriswyl T, Dumoulin A, Schaettin M, Tsapara G, Niederkofler V, Helbling D, Avilés E, Frei JA, Wilson NH, Gesemann M, Kunz B, Stoeckli ET. Endoglycan plays a role in axon guidance by modulating cell adhesion. eLife 2021; 10:64767. [PMID: 33650489 PMCID: PMC7946425 DOI: 10.7554/elife.64767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/25/2021] [Indexed: 01/27/2023] Open
Abstract
Axon navigation depends on the interactions between guidance molecules along the trajectory and specific receptors on the growth cone. However, our in vitro and in vivo studies on the role of Endoglycan demonstrate that in addition to specific guidance cue – receptor interactions, axon guidance depends on fine-tuning of cell-cell adhesion. Endoglycan, a sialomucin, plays a role in axon guidance in the central nervous system of chicken embryos, but it is neither an axon guidance cue nor a receptor. Rather, Endoglycan acts as a negative regulator of molecular interactions based on evidence from in vitro experiments demonstrating reduced adhesion of growth cones. In the absence of Endoglycan, commissural axons fail to properly navigate the midline of the spinal cord. Taken together, our in vivo and in vitro results support the hypothesis that Endoglycan acts as a negative regulator of cell-cell adhesion in commissural axon guidance.
Collapse
Affiliation(s)
- Thomas Baeriswyl
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Alexandre Dumoulin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Martina Schaettin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Georgia Tsapara
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Vera Niederkofler
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Denise Helbling
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Evelyn Avilés
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Jeannine A Frei
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Nicole H Wilson
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Gesemann
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Beat Kunz
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Esther T Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Tsapara G, Andermatt I, Stoeckli ET. Gene Silencing in Chicken Brain Development. Methods Mol Biol 2020; 2047:439-456. [PMID: 31552670 DOI: 10.1007/978-1-4939-9732-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the development of brain organoids and neural cultures derived from iPSCs (induced pluripotent stem cells), brain development can only be studied in an animal. The mouse is the most commonly used vertebrate model for the analysis of gene function because of the well-established genetic tools that are available for loss-of-function studies. However, studies of gene function during development can be problematic in mammals. Many genes are active during different stages of development. Absence of gene function during early development may cause aberrant neurogenesis or even embryonic lethality and thus prevent analysis of later stages of development. To avoid these problems, precise temporal control of gene silencing is required.In contrast to mammals, oviparous animals are accessible for experimental manipulations during embryonic development. The combination of accessibility and RNAi- or Crispr/Cas9-based gene silencing makes the chicken embryo a powerful model for developmental studies. Depending on the time window during which gene silencing is attempted, chicken embryos can be used in ovo or ex ovo in a domed dish for easier access during later stages of development. Both techniques allow for precise temporal control of gene silencing during embryonic development.
Collapse
Affiliation(s)
- Georgia Tsapara
- Neuroscience Center Zurich, Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Irwin Andermatt
- Neuroscience Center Zurich, Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Esther T Stoeckli
- Neuroscience Center Zurich, Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Vancamp P, Darras VM. Dissecting the role of regulators of thyroid hormone availability in early brain development: Merits and potential of the chicken embryo model. Mol Cell Endocrinol 2017; 459:71-78. [PMID: 28153797 DOI: 10.1016/j.mce.2017.01.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
Thyroid hormones (THs) are important mediators of vertebrate central nervous system (CNS) development, thereby regulating the expression of a wide variety of genes by binding to nuclear TH receptors. TH transporters and deiodinases are both needed to ensure appropriate intracellular TH availability, but the precise function of each of these regulators and their coaction during brain development is only partially understood. Rodent knockout models already provided some crucial insights, but their in utero development severely hampers research regarding the role of TH regulators during early embryonic stages. The establishment of novel gain- and loss-of-function techniques has boosted the position of externally developing non-mammalian vertebrates as research models in developmental endocrinology. Here, we elaborate on the chicken as a model organism to elucidate the function of TH regulators during embryonic CNS development. The fast-developing, relatively big and accessible embryo allows easy experimental manipulation, especially at early stages of brain development. Recent data on the characterisation and spatiotemporal expression pattern of different TH regulators in embryonic chicken CNS have provided the necessary background to dissect the function of each of them in more detail. We highlight some recent advances and important strategies to investigate the role of TH transporters and deiodinases in various CNS structures like the brain barriers, the cerebellum, the retina and the hypothalamus. Exploiting the advantages of this non-classical model can greatly contribute to complete our understanding of the regulation of TH bioavailability throughout embryonic CNS development.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium.
| |
Collapse
|
5
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
6
|
Sahasrabudhe A, Ghate K, Mutalik S, Jacob A, Ghose A. Formin 2 regulates the stabilization of filopodial tip adhesions in growth cones and affects neuronal outgrowth and pathfinding in vivo. Development 2015; 143:449-60. [PMID: 26718007 DOI: 10.1242/dev.130104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/23/2015] [Indexed: 12/28/2022]
Abstract
Growth cone filopodia are actin-based mechanosensory structures that are essential for chemoreception and the generation of contractile forces necessary for directional motility. However, little is known about the influence of filopodial actin structures on substrate adhesion and filopodial contractility. Formin 2 (Fmn2) localizes along filopodial actin bundles and its depletion does not affect filopodia initiation or elongation. However, Fmn2 activity is required for filopodial tip adhesion maturation and the ability of filopodia to generate traction forces. Dysregulation of filopodia in Fmn2-depleted neurons leads to compromised growth cone motility. Additionally, in mouse fibroblasts, Fmn2 regulates ventral stress fiber assembly and affects the stability of focal adhesions. In the developing chick spinal cord, Fmn2 activity is required cell-autonomously for the outgrowth and pathfinding of spinal commissural neurons. Our results reveal an unanticipated function for Fmn2 in neural development. Fmn2 regulates structurally diverse bundled actin structures, parallel filopodial bundles in growth cones and anti-parallel stress fibers in fibroblasts, in turn modulating the stability of substrate adhesions. We propose Fmn2 as a mediator of actin bundle integrity, enabling efficient force transmission to the adhesion sites.
Collapse
Affiliation(s)
- Abhishek Sahasrabudhe
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India
| | - Ketakee Ghate
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India
| | - Sampada Mutalik
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India
| | - Ajesh Jacob
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India
| | - Aurnab Ghose
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India
| |
Collapse
|
7
|
In ovo electroporation of miRNA-based-plasmids to investigate gene function in the developing neural tube. Methods Mol Biol 2014; 1101:353-68. [PMID: 24233790 DOI: 10.1007/978-1-62703-721-1_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
When studying gene function in vivo during development, gene expression has to be controlled in a precise temporal and spatial manner. Technologies based on RNA interference (RNAi) are well suited for such studies, as they allow for the efficient silencing of a gene of interest. In contrast to challenging and laborious approaches in mammalian systems, the use of RNAi in combination with oviparous animal models allows temporal control of gene silencing in a fast and precise manner. We have developed approaches using RNAi in the chicken embryo to analyze gene function during neural tube development. Here we describe the construction of plasmids that direct the expression of one or two artificial microRNAs (miRNAs) to knock down expression of endogenous protein/s of interest upon electroporation into the spinal cord. The miRNA cassette is directly linked to a fluorescent protein reporter, for the direct visualization of transfected cells. The transcripts are under the control of different promoters/enhancers which drive expression in genetically defined cell subpopulations in the neural tube. Mixing multiple RNAi vectors allows combinatorial knockdowns of two or more genes in different cell types of the spinal cord, thus permitting the analysis of complex cellular and molecular interactions in a fast and precise manner. The technique that we describe can easily be applied to other cell types in the neural tube, or even adapted to other organisms in developmental studies.
Collapse
|
8
|
Abstract
The mouse is the most commonly used vertebrate model for the analysis of gene function because of the well-established genetic tools that are available for loss-of-function studies. However, studies of gene function during development can be problematic in mammals. Many genes are active during different stages of development. Absence of gene function during early development may cause embryonic lethality and thus prevent analysis of later stages of development. To avoid these problems, precise temporal control of gene silencing is required. In contrast to mammals, oviparous animals are accessible for experimental manipulations during embryonic development. The combination of accessibility and RNAi-based gene silencing makes the chicken embryo a powerful model for developmental studies. Depending on the time window during which gene silencing is attempted, chicken embryos can be used for RNAi in ovo or cultured in a domed dish for easier access during ex ovo RNAi. Both techniques allow for precise temporal control of gene silencing during embryonic development.
Collapse
Affiliation(s)
- Irwin Andermatt
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
9
|
Stoeckli ET, Kilinc D, Kunz B, Kunz S, Lee GU, Martines E, Rader C, Suter D. Analysis of cell-cell contact mediated by Ig superfamily cell adhesion molecules. CURRENT PROTOCOLS IN CELL BIOLOGY 2013; 61:9.5.1-9.5.85. [PMID: 24510806 DOI: 10.1002/0471143030.cb0905s61] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell-cell adhesion is a fundamental requirement for all multicellular organisms. The calcium-independent cell adhesion molecules of the immunoglobulin superfamily (IgSF-CAMs) represent a major subgroup. They consist of immunoglobulin folds alone or in combination with other protein modules, often fibronectin type-III folds. More than 100 IgSF-CAMs have been identified in vertebrates and invertebrates. Most of the IgSF-CAMs are cell surface molecules that are membrane-anchored either by a single transmembrane segment or by a glycosylphosphatidylinositol (GPI) anchor. Some of the IgSF-CAMs also occur in soluble form, e.g., in the cerebrospinal fluid or in the vitreous fluid of the eye, due to naturally occurring cleavage of the GPI anchor or the membrane-proximal peptide segment. Some IgSF-CAMs, such as NCAM, occur in various forms that are generated by alternative splicing. This unit contains a series of protocols that have been used to study the function of IgSF-CAMs in vitro and in vivo.
Collapse
Affiliation(s)
- Esther T Stoeckli
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Devrim Kilinc
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Beat Kunz
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gil U Lee
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Elena Martines
- Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Christoph Rader
- Department of Cancer Biology, Scripps Florida, Jupiter, Florida
| | - Daniel Suter
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
10
|
Abstract
Electroporation has been used successfully to introduce macromolecules such as DNA into the chick embryo for at least 15 years. Purified plasmid DNA is microinjected into embryo and then a series of low voltage electrical pulses are applied to the embryo which allows naked DNA to enter cells. Following entrance into the cytoplasm, the DNA is transported to the nucleus where it is transiently expressed. This powerful technique is useful for studies involving overexpression, misexpression, and knockdown of genes of interest at a variety of developmental timepoints.
Collapse
Affiliation(s)
- Teri L Belecky-Adams
- Department of Biology & Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| | | | | |
Collapse
|
11
|
Geetha-Loganathan P, Nimmagadda S, Hafez I, Fu K, Cullis PR, Richman JM. Development of high-concentration lipoplexes for in vivo gene function studies in vertebrate embryos. Dev Dyn 2011; 240:2108-19. [PMID: 21805533 DOI: 10.1002/dvdy.22708] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2011] [Indexed: 12/23/2022] Open
Abstract
Here we report that highly concentrated cationic lipid/helper lipid-nucleic acid complexes (lipoplexes) can facilitate reproducible delivery of a variety of oligonucleotides and plasmids to chicken embryos or to mouse embryonic mesenchyme. Specifically, liposomes composed of N,N-dioleyl-N,N-dimethylammonium chloride (DODAC)/1,2 dioleoyl glycero-3-phosphorylethanolamine (DOPE) prepared at 18-mM concentrations produced high levels of transfection of exogenous genes in vivo and in vitro. Furthermore, we report sufficient uptake of plasmids expressing interference RNA to decrease expression of both exogenous and endogenous genes. The simplicity of preparation, implementation, and relatively low toxicity of this transfection reagent make it an attractive alternative for developmental studies in post-gastrulation vertebrate embryos.
Collapse
Affiliation(s)
- Poongodi Geetha-Loganathan
- Department of Oral Health Sciences, Life Sciences Centre, The University of British Columbia, Vancouver Canada
| | | | | | | | | | | |
Collapse
|