1
|
Zahran SS, Ragab FA, Soliman AM, El-Gazzar MG, Mahmoud WR, Ghorab MM. Utility of sulfachloropyridazine in the synthesis of novel anticancer agents as antiangiogenic and apoptotic inducers. Bioorg Chem 2024; 148:107411. [PMID: 38733747 DOI: 10.1016/j.bioorg.2024.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
In a search for new anticancer agents with better activity and selectivity, the present work described the synthesis of several new series of sulfachloropyridazine hybrids with thiocarbamates 3a-e, thioureids 4a-h, 5a-e and 4-substituted sulfachloropyridazines 6a, b, 7a, b and 8. The synthesized compounds were screened in vitro against a panel of 60 cancer cell lines in one dose assay. The most potent derivatives 3a, 3c, 4c, 4d, 5e, 7a and 7b were tested for their antiangiogenic activity by measuring their ability to inhibit VEGFR-2. The most potent compounds in VEGFR-2 inhibitory assay were further evaluated for their ability to inhibit PDGFR. In addition, the ability of 4c compound to inhibit cell migration on HUVEC cells and cell cycle effect on UO-31 cells has been studied. The pro-apoptotic effect of compound 4c was studied by the evaluation of caspase-3, Bax and BCl-2. Alternatively, the IC50 of compounds 3a, 3c, 4c, 5e, 7a and 7b against certain human cancer cell lines were determined. Re-evaluation in combination with γ-radiation was carried out for compounds 4c, 5e and 7b to study the possible synergistic effect on cytotoxicity. Docking studies of the most active compounds were performed to give insights into the binding mode within VEGFR-2 active site.
Collapse
Affiliation(s)
- Sally S Zahran
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Fatma A Ragab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Aiten M Soliman
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| | - Marwa G El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Mostafa M Ghorab
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| |
Collapse
|
2
|
Ma Z, Ding J, Wang Y, Zhang T, Chen G, Huang J. Study of platelet-rich fibrin promoting endothelial cell differentiation and angiogenesis induced by transplantation of adipose-derived stem cells. Acta Histochem 2023; 125:152059. [PMID: 37329849 DOI: 10.1016/j.acthis.2023.152059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/04/2023] [Accepted: 06/04/2023] [Indexed: 06/19/2023]
Abstract
Diabetic patients are characterized by long wound healing time, and adipose stem cells (ADSCs) can secrete growth factors to promote angiogenesis and improve diabetic wound healing. In this research, we attempted to interrogate the impact of platelet-rich fibrin (PRF) on ADSCs in diabetic wound healing. ADSCs were harvested from human adipose tissues and identified through flow cytometry. After pretreatment with cultured medium supplemented with different concentrations of PRF (2.5%, 5%, and 7.5%), proliferation and differentiation capacity of ADSCs were assessed by CCK-8 assay, qRT-PCR and immunofluorescence (IF), respectively. Tube formation assay measured angiogenesis. Western blot analysis analyzed expression of endothelial markers and the extracellular signal-regulated kinase (ERK) and serine/threonine kinase (Akt) pathways in PRF-induced ADSCs. The CCK-8 experiment indicated that PRF enhanced proliferation of ADSCs in dose-dependent manner, relative to normal control group. The expression of endothelial markers and the capacity of tube formation were significantly promoted by 7.5% PRF. The release of growth factors containing vascular endothelial grow factor (VEGF) and insulin-like growth factor-1 (IGF-1) from PRF was increased with the extension of detection time. When the receptors of VEGF or/and IGF-1 were neutralized, ADSCs differentiation into endothelial cells were obviously inhibited. Additionally, PRF stimulated ERK and Akt pathways, and the inhibitors of ERK and Akt attenuated PRF-induced differentiation of ADSCs into endothelial cells. In conclusion, PRF promoted endothelial cell differentiation and angiogenesis induced by ADSCs in diabetic wound healing, which appears to give guidance for treating patients.
Collapse
Affiliation(s)
- Zhibing Ma
- Department of Plastic Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210000, People's Republic of China
| | - Jin Ding
- Department of Pathology, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, People's Republic of China
| | - Yawen Wang
- Department of Plastic Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210000, People's Republic of China
| | - Tianqi Zhang
- Department of Plastic Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210000, People's Republic of China
| | - Gang Chen
- Department of Plastic Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210000, People's Republic of China
| | - Jinlong Huang
- Department of Plastic Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210000, People's Republic of China.
| |
Collapse
|
3
|
Biphenylurea/thiourea derivatives tagged with heteroarylsulfonamide motifs as novel VEGFR2 inhibitors; Design, synthesis and anti-angiogenic activity. Bioorg Chem 2021; 107:104640. [PMID: 33485105 DOI: 10.1016/j.bioorg.2021.104640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as a vital tool for cancer treatment. In this study, a new series of biphenylurea/thiourea derivatives tagged with heteroarylsulfonamide motifs (3a-l) was designed and synthesized as novel VEGFR2 inhibitors. The biochemical profiles of the target compounds were investigated using viability of human umbilical vascular endothelial cells (HUVECs), migration assay and Western blot using sorafenib as reference antiangiogenic drug. Most of the tested compounds exhibited significant antiproliferative activity against HUVECs, where compounds 3a, 3e, 3g, 3h and 3l exhibited better antiproliferative activity than sorafenib. All compounds significantly inhibited VEGF stimulated migration of HUVECs at 10 µM dose with (3a, 3e, 3g, 3h and 3l) showing better or comparable inhibitory activities to that of sorafenib. Moreover, Western blotting analysis confirmed antiangiogenic effect of those compounds with significant reduction in the level of VEGFR-2 compared to sorafenib. Finally, cytotoxicity screening of these derivatives against four cancer cells and RPE1 as normal cell line was performed. The mechanistic effectiveness in cell cycle progression and apoptotic induction were evaluated for the promising compound 3e due to its remarkable cytotoxic activity against tested cancer cell lines and significant VEGFR-2 inhibition. Flow cytometric analysis showed that compound 3e induced cell growth arrest at G2/M phase and stimulated the apoptotic death of HepG2 cells.
Collapse
|
4
|
Xu D, Yang F, Wu K, Xu X, Zeng K, An Y, Xu F, Xun J, Lv X, Zhang X, Yang X, Xu L. Lost miR-141 and upregulated TM4SF1 expressions associate with poor prognosis of pancreatic cancer: regulation of EMT and angiogenesis by miR-141 and TM4SF1 via AKT. Cancer Biol Ther 2020; 21:354-363. [PMID: 31906774 DOI: 10.1080/15384047.2019.1702401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Transmembrane-4-L-six-family-1 (TM4SF1) functions to regulate cell growth and mobility and TM4SF1 expression was upregulated in pancreatic cancer. This study further investigated the role of TM4SF1 in regulating pancreatic cancer epithelial-mesenchymal transition (EMT) and angiogenesis and the underlying molecular events.Methods: Tissue specimens were collected from 90 pancreatic cancer patients for immunohistochemical and qRT-PCR analysis of miR-141 and TM4SF1 levels, respectively. Pancreatic cancer cell lines were used for in vitro assays, while nude mice were used for the in vivo assay.Results: TM4SF1 expression was upregulated, whereas miR-141 expression was lost in pancreatic cancer tissues, both of which was associated with advanced clinicopathological features and poor survival of pancreatic cancer patients. Furthermore, miR-141 was able to target and reduce TM4SF1 expression in pancreatic cancer cells and miR-141 expression inhibited pancreatic cancer cell EMT in vitro and Matrigel plug angiogenesis and lung metastasis in nude mice. At the gene level, miR-141 directly targeted and reduced TM4SF1 expression and in turn induced E-cadherin expression and reduced VEGF-A expression by suppressing activation of the AKT signaling pathway.Conclusions: This study demonstrated that upregulated TM4SF1 and lost miR-141 expression were associated with advanced clinicopathological features and poor survival of pancreatic cancer patients. Lost miR-141 expression but induced TM4SF1 expression altered expression of VEGF-A and E-cadherin and promoted pancreatic cancer cell EMT and angiogenesis via the AKT signaling pathway, suggesting that targeting of miR-141 and TM4SF1 may be a potential therapeutic strategy to control pancreatic cancer.
Collapse
Affiliation(s)
- Dong Xu
- Department of General Surgery, Gaochun People's Hospital, Nanjing, Jiangsu, China
| | - Fei Yang
- Department of General Surgery, Gaochun People's Hospital, Nanjing, Jiangsu, China
| | - Kangjian Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinxing Xu
- Department of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Zeng
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong An
- Department of Hepatopancreato-Biliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Fubao Xu
- Department of General Surgery, Gaochun People's Hospital, Nanjing, Jiangsu, China
| | - Jiang Xun
- Department of General Surgery, Gaochun People's Hospital, Nanjing, Jiangsu, China
| | - Xiang Lv
- Department of General Surgery, Gaochun People's Hospital, Nanjing, Jiangsu, China
| | - Xiaohui Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Yang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lijian Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Akirin2 is modulated by miR-490-3p and facilitates angiogenesis in cholangiocarcinoma through the IL-6/STAT3/VEGFA signaling pathway. Cell Death Dis 2019; 10:262. [PMID: 30886152 PMCID: PMC6423123 DOI: 10.1038/s41419-019-1506-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023]
Abstract
Akirin2 is a key regulator of embryonic development and the innate immunity response. However, this regulator’s role in tumorigenesis especially in cholangiocarcinoma (CCA) development has not been thoroughly elucidated to date. In the current work, we used RT-qPCR, western blot analysis, and immunohistochemistry (IHC) to explore the expression level of Akirin2, and the relationship between Akirin2 levels and clinicopathological characteristics was evaluated. The biological functions of Akirin2 were examined in vitro and in vivo by using a lentiviral vector system. Luciferase reporter assays were applied to detect the direct binding relationship between the 3′-UTR of Akirin2 mRNA and miR-490-3p. The results showed that Akirin2 was overexpressed in CCA and this upregulation was associated with a shorter overall survival. Silencing or overexpressing Akirin2 by lentiviral approaches significantly influenced CCA cell proliferation, migration, invasion, and angiogenesis. An in vivo tumor model further validated the oncogenic effect of Akirin2 on CCA cell growth, metastasis, and angiogenesis. Mechanistic studies demonstrated that Akirin2 induced angiogenesis by increasing the expression of VEGFA by activating the IL-6/STAT3 signaling pathway. Akirin2 promoted cell migratory and invasive potential by affecting the epithelial–mesenchymal transition (EMT) process. In addition, Akirin2 expression was negatively controlled by miR-490-3p in CCA cells, and miR-490-3p attenuated cell migration and angiogenesis in CCA cells by silencing Akirin2. Taken together, the data indicated that Akirin2 could be regulated by miR-490-3p at the posttranscriptional level and facilitate CCA cell progression via the IL-6/STAT3/VEGFA signaling pathway. The present study may expedite the development of novel therapeutic strategies for CCA.
Collapse
|
6
|
Xiang R, Guan XW, Hui L, Jin YX, Chen SW. Investigation of the anti-angiogenesis effects induced by deoxypodophyllotoxin-5-FU conjugate C069 against HUVE cells. Bioorg Med Chem Lett 2017; 27:713-717. [PMID: 28129979 DOI: 10.1016/j.bmcl.2017.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/27/2016] [Accepted: 01/14/2017] [Indexed: 12/14/2022]
Abstract
We have found that the deoxypodophyllotoxin-5-fluorouracil conjugate, 4'-O-demethyl-4-deoxyppodophyllotoxin-4'-yl 4-((6-(2-(5-fluorouracil-yl)acetamido) hexyl)amino)-4-oxobutanoate (C069), possessed superior cytotoxicities and less toxicity compared with etoposide. In this paper, the anti-angiogenic and vascular disrupting activities of C069 were examined with several in vitro and in vivo models. First, we demonstrated that C069 significantly inhibited the proliferation, migration, tube formation and disrupted the formed tube-like structures of HUVE cells, and inhibited angiogenesis in chicken chorioallantoic membrane assay. Furthermore, we found that C069 inhibited tube formation of HUVE cells by down-regulating the MMP-2, MMP-9, and phosphorylation of Akt and β-catenin. These results provided the initial evidence that C069 exerts potent anti-angiogenic and vascular disrupting effects.
Collapse
Affiliation(s)
- Rong Xiang
- Department of Medicinal, Second Clinical Hospital of Northwest University for Nationalities & Second Provincial People's Hospital, Lanzhou 730000, PR China.
| | - Xiao-Wen Guan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Ling Hui
- Experimental Center of Medicine, General Hospital of Lanzhou Military Command, Lanzhou 730050, PR China
| | - Yong-Xin Jin
- Department of Medicinal, Second Clinical Hospital of Northwest University for Nationalities & Second Provincial People's Hospital, Lanzhou 730000, PR China
| | - Shi-Wu Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
7
|
Andrikopoulos P, Kieswich J, Harwood SM, Baba A, Matsuda T, Barbeau O, Jones K, Eccles SA, Yaqoob MM. Endothelial Angiogenesis and Barrier Function in Response to Thrombin Require Ca2+ Influx through the Na+/Ca2+ Exchanger. J Biol Chem 2015; 290:18412-28. [PMID: 25979335 DOI: 10.1074/jbc.m114.628156] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 01/11/2023] Open
Abstract
Thrombin acts on the endothelium by activating protease-activated receptors (PARs). The endothelial thrombin-PAR system becomes deregulated during pathological conditions resulting in loss of barrier function and a pro-inflammatory and pro-angiogenic endothelial phenotype. We reported recently that the ion transporter Na(+)/Ca(2+) exchanger (NCX) operating in the Ca(2+)-influx (reverse) mode promoted ERK1/2 activation and angiogenesis in vascular endothelial growth factor-stimulated primary human vascular endothelial cells. Here, we investigated whether Ca(2+) influx through NCX was involved in ERK1/2 activation, angiogenesis, and endothelial barrier dysfunction in response to thrombin. Reverse-mode NCX inhibitors and RNAi-mediated NCX1 knockdown attenuated ERK1/2 phosphorylation in response to thrombin or an agonist of PAR-1, the main endothelial thrombin receptor. Conversely, promoting reverse-mode NCX by suppressing Na(+)-K(+)-ATPase activity enhanced ERK1/2 activation. Reverse-mode NCX inhibitors and NCX1 siRNA suppressed thrombin-induced primary human vascular endothelial cell angiogenesis, quantified as proliferation and tubular differentiation. Reverse-mode NCX inhibitors or NCX1 knockdown preserved barrier integrity upon thrombin stimulation in vitro. Moreover, the reverse-mode NCX inhibitor SEA0400 suppressed Evans' blue albumin extravasation to the lung and kidneys and attenuated edema formation and ERK1/2 activation in the lungs of mice challenged with a peptide activator of PAR-1. Mechanistically, thrombin-induced ERK1/2 activation required NADPH oxidase 2-mediated reactive oxygen species (ROS) production, and reverse-mode NCX inhibitors and NCX1 siRNA suppressed thrombin-induced ROS production. We propose that reverse-mode NCX is a novel mechanism contributing to thrombin-induced angiogenesis and hyperpermeability by mediating ERK1/2 activation in a ROS-dependent manner. Targeting reverse-mode NCX could be beneficial in pathological conditions involving unregulated thrombin signaling.
Collapse
Affiliation(s)
- Petros Andrikopoulos
- From Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary's University of London, London EC1M 6BQ, United Kingdom,
| | - Julius Kieswich
- From Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary's University of London, London EC1M 6BQ, United Kingdom
| | - Steven M Harwood
- From Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary's University of London, London EC1M 6BQ, United Kingdom
| | - Akemichi Baba
- the Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe-shi, Hyogo 650-8530, Japan
| | - Toshio Matsuda
- the Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan, and
| | - Olivier Barbeau
- the Division of Cancer Therapeutics, Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Keith Jones
- the Division of Cancer Therapeutics, Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Suzanne A Eccles
- the Division of Cancer Therapeutics, Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Muhammad M Yaqoob
- From Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary's University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
8
|
Ravishankar D, Watson KA, Boateng SY, Green RJ, Greco F, Osborn HMI. Exploring quercetin and luteolin derivatives as antiangiogenic agents. Eur J Med Chem 2015; 97:259-74. [PMID: 25984842 DOI: 10.1016/j.ejmech.2015.04.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 02/08/2023]
Abstract
The formation of new blood vessels from the pre-existing vasculature (angiogenesis) is a crucial stage in cancer progression and, indeed, angiogenesis inhibitors are now used as anticancer agents, clinically. Here we have explored the potential of flavonoid derivatives as antiangiogenic agents. Specifically, we have synthesised methoxy and 4-thio derivatives of the natural flavones quercetin and luteolin, two of which (4-thio quercetin and 4-thio luteolin) had never been previously reported. Seven of these compounds showed significant (p < 0.05) antiangiogenic activity in an in vitro scratch assay. Their activity ranged from an 86% inhibition of the vascular endothelium growth factor (VEGF)-stimulated migration (observed for methoxyquercetin at 10 μM and for luteolin at 1 μM) to a 36% inhibition (for thiomethoxy quercetin at 10 μM). Western blotting studies showed that most (4 out of 7) compounds inhibited phosphorylation of the VEGF receptor-2 (VEGFR2), suggesting that the antiangiogenic activity was due to an interference with the VEGF/VEGFR2 pathway. Molecular modelling studies looking at the affinity of our compounds towards VEGFR and/or VEGF confirmed this hypothesis, and indeed the compound with the highest antiangiogenic activity (methoxyquercetin) showed the highest affinity towards VEGFR and VEGF. As reports from others have suggested that structurally similar compounds can elicit biological responses via a non-specific, promiscuous membrane perturbation, potential interactions of the active compounds with a model lipid bilayer were assessed via DSC. Luteolin and its derivatives did not perturb the model membrane even at concentrations 10 times higher than the biologically active concentration and only subtle interactions were observed for quercetin and its derivatives. Finally, cytotoxicity assessment of these flavonoid derivatives against MCF-7 breast cancer cells demonstrated also a direct anticancer activity albeit at generally higher concentrations than those required for an antiangiogenic effect (10 fold higher for the methoxy analogues). Taken together these results show promise for flavonoid derivatives as antiangiogenic agents.
Collapse
Affiliation(s)
| | - Kimberly A Watson
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Whiteknights, RG6 6AD Berkshire, UK
| | - Samuel Y Boateng
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Whiteknights, RG6 6AD Berkshire, UK
| | - Rebecca J Green
- School of Pharmacy, University of Reading, Whiteknights, RG6 6AD Berkshire, UK
| | - Francesca Greco
- School of Pharmacy, University of Reading, Whiteknights, RG6 6AD Berkshire, UK.
| | - Helen M I Osborn
- School of Pharmacy, University of Reading, Whiteknights, RG6 6AD Berkshire, UK.
| |
Collapse
|
9
|
|
10
|
Zimmermann M, Box C, Eccles SA. Two-dimensional vs. three-dimensional in vitro tumor migration and invasion assays. Methods Mol Biol 2013; 986:227-52. [PMID: 23436416 DOI: 10.1007/978-1-62703-311-4_15] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Motility and invasion are key hallmarks that distinguish benign from malignant tumors, enabling cells to cross tissue boundaries, disseminate in blood and lymph and establish metastases at distant sites. Similar properties are also utilized by activated endothelial cells during tumor-induced angiogenesis. It is now appreciated that these processes might provide a rich source of novel molecular targets with the potential for inhibitors to restrain both metastasis and neoangiogenesis. Such therapeutic strategies require assays that can rapidly and quantitatively measure cell movement and the ability to traverse physiological barriers. The need for high-throughput, however, must be balanced by assay designs that accommodate, as far as possible, the complexity of the in vivo tumor microenvironment. This chapter aims to give an overview of some commonly used migration and invasion assays to aid in the selection of a balanced portfolio of techniques for the rapid and accurate evaluation of novel therapeutic agents.
Collapse
Affiliation(s)
- Miriam Zimmermann
- Tumour Biology and Metastasis, Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, McElwain Laboratories, The Institute of Cancer Research, Surrey, UK
| | | | | |
Collapse
|
11
|
Biswas K, Yoshioka K, Asanuma K, Okamoto Y, Takuwa N, Sasaki T, Takuwa Y. Essential role of class II phosphatidylinositol-3-kinase-C2α in sphingosine 1-phosphate receptor-1-mediated signaling and migration in endothelial cells. J Biol Chem 2012. [PMID: 23192342 DOI: 10.1074/jbc.m112.409656] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The phosphatidylinositol (PtdIns) 3-kinase (PI3K) family regulates diverse cellular processes, including cell proliferation, migration, and vesicular trafficking, through catalyzing 3'-phosphorylation of phosphoinositides. In contrast to class I PI3Ks, including p110α and p110β, functional roles of class II PI3Ks, comprising PI3K-C2α, PI3K-C2β, and PI3K-C2γ, are little understood. The lysophospholipid mediator sphingosine 1-phosphate (S1P) plays the important roles in regulating vascular functions, including vascular formation and barrier integrity, via the G-protein-coupled receptors S1P(1-3). We studied the roles of PI3K-C2α in S1P-induced endothelial cell (EC) migration and tube formation. S1P stimulated cell migration and activation of Akt, ERK, and Rac1, the latter of which acts as a signaling molecule essential for cell migration and tube formation, via S1P(1) in ECs. Knockdown of either PI3K-C2α or class I p110β markedly inhibited S1P-induced migration, lamellipodium formation, and tube formation, whereas that of p110α or Vps34 did not. Only p110β was necessary for S1P-iduced Akt activation, but both PI3K-C2α and p110β were required for Rac1 activation. FRET imaging showed that S1P induced Rac1 activation in both the plasma membrane and PtdIns 3-phosphate (PtdIns(3)P)-enriched endosomes. Knockdown of PI3K-C2α but not p110β markedly reduced PtdIns(3)P-enriched endosomes and suppressed endosomal Rac1 activation. Also, knockdown of PI3K-C2α but not p110β suppressed S1P-induced S1P(1) internalization into PtdIns(3)P-enriched endosomes. Finally, pharmacological inhibition of endocytosis suppressed S1P-induced S1P(1) internalization, Rac1 activation, migration, and tube formation. These observations indicate that PI3K-C2α plays the crucial role in S1P(1) internalization into the intracellular vesicular compartment, Rac1 activation on endosomes, and thereby migration through regulating vesicular trafficking in ECs.
Collapse
Affiliation(s)
- Kuntal Biswas
- Department of Physiology, Kanazawa University School of Medicine, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Muslim NS, Nassar ZD, Aisha AFA, Shafaei A, Idris N, Majid A, Ismail Z. Antiangiogenesis and antioxidant activity of ethanol extracts of Pithecellobium jiringa. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:210. [PMID: 23126282 PMCID: PMC3522529 DOI: 10.1186/1472-6882-12-210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 10/31/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Angiogenesis plays a critical role in embryonic development and various physiological processes. However, excessive angiogenesis is associated with several pathological conditions including cancer. Pithecellobium jiringa (Jack) Prain is a traditional medicinal plant from the family Leguminosae. It is native to the Southeast Asia, where it has been used traditionally for treatment of various ailments such as hypertension and diabetes. The present work is aimed to study antioxidant and antiangiogenesis activities of P. jiringa ethanol extracts. METHODS P. jiringa fruit rinds were extracted with ethanol and 50% ethanol. The antioxidant property was analysed using, 1,1-diphenyl-2-picryl-hydrazyl free radical scavenging assay. Phytochemical analysis was performed using thin layer chromatography and colorimetric methods. Then, cell growth inhibition was studied against a panel of human cell lines by MTT test. In vitro inhibition of angiogenesis was studied by the following assays: isolated rat aortic rings cell viability, colony formation, endothelial cell migration, endothelial tube formation on matrigel, and expression of vascular endothelial growth factor by endothelial cells. In vivo antiangiogenesis effect was studied by utilising fertilised chick embryos assay. The results were statistically analysed by analysis of variance. RESULTS Ethanolic and 50% hydro-ethanolic extracts showed relatively high concentration of total phenolics associated with potent antioxidant activity. The rat aortic rings study conducted showed potent inhibition of the microvessels outgrowth with IC50s 5.27 ± 0.81 μg/ml (ethanolic) and 4.45 ± 0.63 μg/ml (50% hydro-ethanolic). Both extracts arrested the growth of human endothelial cells via down-regulation of VEGF expression, leading to inhibition of other angiogenesis cascades including migration of endothelial cells, and formation of capillary network on matrigel matrix. The extracts also inhibited the neovascularisation of chick embryo chorioallantoic membrane. CONCLUSIONS P. jiringa extracts inhibit angiogenesis by blocking the VEGF expression thus inhibiting endothelial cells proliferation, migration and differentiation most likely due to presence of the antioxidant phenolics.
Collapse
|
13
|
Xue X, Gao W, Sun B, Xu Y, Han B, Wang F, Zhang Y, Sun J, Wei J, Lu Z, Zhu Y, Sato Y, Sekido Y, Miao Y, Kondo Y. Vasohibin 2 is transcriptionally activated and promotes angiogenesis in hepatocellular carcinoma. Oncogene 2012; 32:1724-34. [PMID: 22614011 DOI: 10.1038/onc.2012.177] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) typically relies on angiogenesis for its malignant behavior, including growth and metastasis. Vasohibin 2 (VASH2) was previously identified as an angiogenic factor, but its role in tumorigenesis is unknown. Using quantitative PCR and western blot analyses, we found that VASH2 is overexpressed in HCC cells and tissues. Using chromatin immunoprecipitation, we detected histone modifications at the putative VASH2 promoter, with increased H3K4 trimethylation and H3 acetylation and decreased H3K27 trimethylation, suggesting that epigenetic mechanisms are responsible for the deregulated VASH2 transcription in HCC. Knockdown of VASH2 via siRNA inhibited the proliferation of the hepatoma cell lines by delaying cell cycle progression and increasing apoptosis. Importantly, we found VASH2 secreted in the culture supernatant, and co-expression of its secretory chaperone small vasohibin-binding protein (SVBP) further enhanced VASH2 secretion. The supernatant from HepG2 cells expressing VASH2 enhanced the proliferation, migration and tube formation of human umbilical vein endothelial cells, and knockdown of VASH2 significantly inhibited these effects. In an in vivo study using a nude mouse model, we found that exogenous VASH2 significantly contributed to tumor growth, microvessel density and hemoglobin concentration in the tumors. Further analyses showed that the VASH2-mediated increase in the transcription of fibroblast growth factor-2, vascular endothelial growth factor and vasohibin 1 may be the mechanism underlying these effects. Taken together, these data indicate that VASH2 is abnormally expressed in HCC cells as a result of histone modifications and that VASH2 contributes to the angiogenesis in HCC via an SVBP-mediated paracrine mechanism. These results indicate a novel and important role for VASH2 in HCC angiogenesis and malignant transformation.
Collapse
Affiliation(s)
- X Xue
- Department of General Surgery, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Andrikopoulos P, Baba A, Matsuda T, Djamgoz MBA, Yaqoob MM, Eccles SA. Ca2+ influx through reverse mode Na+/Ca2+ exchange is critical for vascular endothelial growth factor-mediated extracellular signal-regulated kinase (ERK) 1/2 activation and angiogenic functions of human endothelial cells. J Biol Chem 2011; 286:37919-37931. [PMID: 21873429 PMCID: PMC3207468 DOI: 10.1074/jbc.m111.251777] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/25/2011] [Indexed: 11/06/2022] Open
Abstract
VEGF is a key angiogenic cytokine and a major target in anti-angiogenic therapeutic strategies. In endothelial cells (ECs), VEGF binds VEGF receptors and activates ERK1/2 through the phospholipase γ (PLCγ)-PKCα-B-Raf pathway. Our previous work suggested that influx of extracellular Ca(2+) is required for VEGF-induced ERK1/2 activation, and we hypothesized that this could occur through reverse mode (Ca(2+) in and Na(+) out) Na(+)-Ca(2+) exchange (NCX). However, the role of NCX activity in VEGF signaling and angiogenic functions of ECs had not previously been described. Here, using human umbilical vein ECs (HUVECs), we report that extracellular Ca(2+) is required for VEGF-induced ERK1/2 activation and that release of Ca(2+) from intracellular stores alone, in the absence of extracellular Ca(2+), is not sufficient to activate ERK1/2. Furthermore, inhibitors of reverse mode NCX suppressed the VEGF-induced activation of ERK1/2 in a time- and dose-dependent manner and attenuated VEGF-induced Ca(2+) transients. Knockdown of NCX1 (the main NCX isoform in HUVECs) by siRNA confirmed the pharmacological data. A panel of NCX inhibitors also significantly reduced VEGF-induced B-Raf activity and inhibited PKCα translocation to the plasma membrane and total PKC activity in situ. Finally, NCX inhibitors reduced VEGF-induced HUVEC proliferation, migration, and tubular differentiation in surrogate angiogenesis functional assays in vitro. We propose that Ca(2+) influx through reverse mode NCX is required for the activation and the targeting of PKCα to the plasma membrane, an essential step for VEGF-induced ERK1/2 phosphorylation and downstream EC functions in angiogenesis.
Collapse
Affiliation(s)
- Petros Andrikopoulos
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, McElwain Laboratories, Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, United Kingdom; Division of Cell and Molecular Biology, Neuroscience Solutions to Cancer Research Group, Imperial College London, London SW7 2AZ, United Kingdom; Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary's University of London, London EC1M 6BQ, United Kingdom.
| | - Akemichi Baba
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871
| | - Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871
| | - Mustafa B A Djamgoz
- Division of Cell and Molecular Biology, Neuroscience Solutions to Cancer Research Group, Imperial College London, London SW7 2AZ, United Kingdom
| | - Muhammad M Yaqoob
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary's University of London, London EC1M 6BQ, United Kingdom
| | - Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, McElwain Laboratories, Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, United Kingdom.
| |
Collapse
|
15
|
Andrikopoulos P, Fraser SP, Patterson L, Ahmad Z, Burcu H, Ottaviani D, Diss JKJ, Box C, Eccles SA, Djamgoz MBA. Angiogenic functions of voltage-gated Na+ Channels in human endothelial cells: modulation of vascular endothelial growth factor (VEGF) signaling. J Biol Chem 2011; 286:16846-60. [PMID: 21385874 DOI: 10.1074/jbc.m110.187559] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Voltage-gated sodium channel (VGSC) activity has previously been reported in endothelial cells (ECs). However, the exact isoforms of VGSCs present, their mode(s) of action, and potential role(s) in angiogenesis have not been investigated. The main aims of this study were to determine the role of VGSC activity in angiogenic functions and to elucidate the potentially associated signaling mechanisms using human umbilical vein endothelial cells (HUVECs) as a model system. Real-time PCR showed that the primary functional VGSC α- and β-subunit isoforms in HUVECs were Nav1.5, Nav1.7, VGSCβ1, and VGSCβ3. Western blots verified that VGSCα proteins were expressed in HUVECs, and immunohistochemistry revealed VGSCα expression in mouse aortic ECs in vivo. Electrophysiological recordings showed that the channels were functional and suppressed by tetrodotoxin (TTX). VGSC activity modulated the following angiogenic properties of HUVECs: VEGF-induced proliferation or chemotaxis, tubular differentiation, and substrate adhesion. Interestingly, different aspects of angiogenesis were controlled by the different VGSC isoforms based on TTX sensitivity and effects of siRNA-mediated gene silencing. Additionally, we show for the first time that TTX-resistant (TTX-R) VGSCs (Nav1.5) potentiate VEGF-induced ERK1/2 activation through the PKCα-B-RAF signaling axis. We postulate that this potentiation occurs through modulation of VEGF-induced HUVEC depolarization and [Ca(2+)](i). We conclude that VGSCs regulate multiple angiogenic functions and VEGF signaling in HUVECs. Our results imply that targeting VGSC expression/activity could be a novel strategy for controlling angiogenesis.
Collapse
Affiliation(s)
- Petros Andrikopoulos
- Division of Cell and Molecular Biology, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang YZ, Cao ML, Liu YW, He YQ, Yang CX, Gao F. CD44 mediates oligosaccharides of hyaluronan-induced proliferation, tube formation and signal transduction in endothelial cells. Exp Biol Med (Maywood) 2011; 236:84-90. [DOI: 10.1258/ebm.2010.010206] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oligosaccharides of hyaluronan (o-HA) can induce angiogenesis and the growth and tube formation of vascular endothelial cells (ECs) in particular. As the major o-HA receptor, CD44 has been implicated in EC function, but its role in mediating o-HA-induced EC proliferation and tube formation remains unclear. In this study, we investigated the role of CD44 in o-HA-induced proliferation and tube formation of human umbilical vein endothelial cells (HUVECs) and explored the molecular mechanisms underlying the angiogenesis process. A CD44 siRNA was delivered into HUVECs by electroporation and o-HA-induced proliferation and tube formation capacity of CD44-silenced or control HUVECs were assessed by methylthiazolyldiphenyl-tetrazolium bromide (MTT) and Matrigel assays. Furthermore, the changes in Src, focal adhesion kinase (FAK) and extracellular signal-regulated kinase1 and 2 (ERK1/2) phosphorylation, as well as the expression of c-jun and c-fos were examined by Western blot and realtime-polymerase chain reaction assays. Our results demonstrated that 10 μg/mL o-HA obviously induced the proliferation and tube formation in HUVECs, and stimulated the phosphorylation of Src, FAK and ERK1/2 and upregulation of c-jun and c-fos, which could be inhibited by CD44 silencing. Altogether our data suggest that CD44 functions to initiate tyrosine phosphorylation of Src, FAK and ERK1/2, and upregulates the expression of c-jun and c-fos, thus mediating o-HA-induced proliferation and tube formation in HUVECs.
Collapse
Affiliation(s)
| | - Man Lin Cao
- Department of Rehabilitation Medicine, Shanghai No. 6 People's Hospital Affiliated Shanghai Jiaotong University, Shanghai 200233, People's Republic of China
| | - Yi Wen Liu
- Department of Molecular Biology Laboratory
| | - Yi Qing He
- Department of Molecular Biology Laboratory
| | | | - Feng Gao
- Department of Molecular Biology Laboratory
| |
Collapse
|