1
|
Lee J, Lee SJ, Lim KT. ZPDC glycoprotein (24 kDa) induces apoptosis and enhances activity of NK cells in N-nitrosodiethylamine-injected Balb/c. Cell Immunol 2014; 289:1-6. [PMID: 24681514 DOI: 10.1016/j.cellimm.2014.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/31/2014] [Accepted: 03/04/2014] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells have anti-tumor activity in hepatocellular carcinoma (HCC) using secreting granules and cytotoxic ability. Recently, we isolated glycoprotein from Zanthoxylum piperitum DC (ZPDC) has anti-oxidant effect and anti-cancer effect. The objective of this study was to determine whether ZPDC glycoprotein enhances activity of NK cells and induces apoptosis of liver cancer cells in diethylnitrosamine (DEN)-treated Balb/c mice. This study evaluated the secreting of perforin and granzyme B and cytotoxicity of NK cells, interleukin (IL)-2 and IL-12, apoptosis-related factors (bid, cytochrome c, and caspase-3) in liver tissue using Immunoblot and ELISA. The results demonstrated that ZPDC glycoprotein (20mg/kg, BW) induces secretion of perforin and granzyme B and NK cells activity. Also, it induces expression of apoptosis-related factors (bid, cytochrome c, and caspase-3) in liver tissues. Collectively, ZPDC glycoprotein may have potential applications to prevent hepatocarcinogenesis without immunosuppression.
Collapse
Affiliation(s)
- Jin Lee
- Molecular Biochemistry Laboratory, Biotechnology Research Institute & Center for the Control of Animal Hazards Using Biotechnology (BK21), Chonnam National University, 300 Yongbong-Dong, Gwang-ju 500-757, South Korea
| | - Sei-Jung Lee
- Molecular Biochemistry Laboratory, Biotechnology Research Institute & Center for the Control of Animal Hazards Using Biotechnology (BK21), Chonnam National University, 300 Yongbong-Dong, Gwang-ju 500-757, South Korea
| | - Kye-Taek Lim
- Molecular Biochemistry Laboratory, Biotechnology Research Institute & Center for the Control of Animal Hazards Using Biotechnology (BK21), Chonnam National University, 300 Yongbong-Dong, Gwang-ju 500-757, South Korea.
| |
Collapse
|
2
|
Carlin LE, Guseva NV, Shey MR, Ballas ZK, Heusel JW. The Glycophosphatidylinositol Anchor of the MCMV Evasin, m157, Facilitates Optimal Cell Surface Expression and Ly49 Receptor Recognition. PLoS One 2013; 8:e67295. [PMID: 23840655 PMCID: PMC3686720 DOI: 10.1371/journal.pone.0067295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/17/2013] [Indexed: 11/18/2022] Open
Abstract
The murine cytomegalovirus-encoded protein m157 is a cognate ligand for both inhibitory and activating receptors expressed by natural killer cells. Additionally, m157 is expressed on the surface of infected cells by a glycophosphatidylinositol (GPI) anchor. Although endogenous GPI-anchored proteins are known to be ligands for the NK cell receptor, NKG2D, the contribution of the GPI anchor for viral m157 ligand function is unknown. To determine whether the GPI anchor for m157 is dispensable for m157 function, we generated m157 variants expressed as transmembrane fusion proteins and tested cells expressing transmembrane m157 for the capacity to activate cognate Ly49 receptors. We found that the GPI anchor is required for high-level cell surface expression of m157, and that the transmembrane m157 ligand retains the capacity to activate reporter cells and NK cells expressing Ly49H, as well as Ly49I(129) reporter cells, but with reduced potency. Importantly, target cells expressing the transmembrane form of m157 were killed less efficiently and failed to mediate Ly49H receptor downregulation on fresh NK cells compared to targets expressing GPI-anchored m157. Taken together, these results show that the GPI anchor for m157 facilitates robust cell surface expression, and that NK cells are sensitive to the altered cell surface expression of this potent viral evasin.
Collapse
Affiliation(s)
- Lindsey E. Carlin
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- The Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Natalya V. Guseva
- The Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael R. Shey
- The Iowa City VA Medical Center, University of Iowa, Iowa City, Iowa, United States of America
| | - Zuhair K. Ballas
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- The Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- The Iowa City VA Medical Center, University of Iowa, Iowa City, Iowa, United States of America
| | - Jonathan W. Heusel
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- The Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
3
|
Ballas ZK, Buchta CM, Rosean TR, Heusel JW, Shey MR. Role of NK cell subsets in organ-specific murine melanoma metastasis. PLoS One 2013; 8:e65599. [PMID: 23776508 PMCID: PMC3679158 DOI: 10.1371/journal.pone.0065599] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/25/2013] [Indexed: 01/19/2023] Open
Abstract
Tumor metastasis plays a major role in the morbidity and mortality of cancer patients. Among solid tumors that undergo metastasis, there is often a predilection to metastasize to a particular organ with, for example, prostate cancer preferentially metastasizing to bones and colon cancer preferentially metastasizing to the liver. Although many factors are thought to be important in establishing permissiveness for metastasis, the reasons for organ-specific predilection of each tumor are not understood. Using a B16 murine melanoma model, we tested the hypothesis that organ-specific NK cell subsets play a critical role in organ-specific metastasis of this tumor. Melanoma cells, given intravenously, readily colonized the lungs but not the liver. NK cell depletion (either iatrogenically or by using genetically targeted mice) resulted in substantial hepatic metastasis. Analysis of NK cell subsets, defined by the differential expression of a combination of CD27 and CD11b, indicated a significant difference in the distribution of NK cell subsets in the lung and liver with the mature subset being dominant in the lung and the immature subset being dominant in the liver. Several experimental approaches, including adoptive transfer, clearly indicated that the immature hepatic NK cell subset, CD27+ CD11b–, was protective against liver metastasis; this subset mediated its protection by a perforin-dependent cytotoxic mechanism. In contrast, the more mature NK cell subsets were more efficient at reducing pulmonary tumor load. These data indicate that organ-specific immune responses may play a pivotal role in determining the permissiveness of a given organ for the establishment of a metastatic niche.
Collapse
Affiliation(s)
- Zuhair K. Ballas
- Iowa City VA Medical Center and the Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- * E-mail: (ZKB); (MRS)
| | - Claire M. Buchta
- Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Timothy R. Rosean
- Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Jonathan W. Heusel
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Michael R. Shey
- Iowa City VA Medical Center and the Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- * E-mail: (ZKB); (MRS)
| |
Collapse
|
4
|
Kim JE, Cho HS, Yang HS, Jung DJ, Hong SW, Hung CF, Lee WJ, Kim D. Depletion of ascorbic acid impairs NK cell activity against ovarian cancer in a mouse model. Immunobiology 2012; 217:873-81. [PMID: 22306178 DOI: 10.1016/j.imbio.2011.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/27/2011] [Indexed: 01/28/2023]
Abstract
Ascorbic acid (Vitamin C) administration has been used to prevent infectious diseases in public or as a therapeutic agent by the physicians in treatment of several diseases. Ascorbic acid is also involved in immune cell functions and immune responses, although the mechanisms by which it exerts effects on immune cells against cancer cells are not fully understood at the normal plasma level. In this study, we used the mice lacking l-gulono-γ-lactone oxidase (Gulo), the enzyme required for the biosynthesis of ascorbic acid, to characterize the effects of ascorbic acid on NK cell cytotoxicity against ovarian cancer cells, MOSECs (murine ovarian surface epithelial cells). Gulo(-/-) mice depleted of ascorbic acid survived for a shorter time than the normal control or Gulo(-/-) mice supplemented with ascorbic acid after tumor challenge regardless of treatment with IL-2. CD69 and NKG2D expression was clearly reduced in NK cells isolated from mice depleted of ascorbic acid as compared to that in the normal control and the mice supplemented with ascorbic acid. We also observed that IFN-γ secretion by NK cells isolated from Gulo(-/-) mice depleted of ascorbic acid was decreased after NK cells were co-cultured with MOSECs. Furthermore, the mRNA expression of perforin and granzyme B genes was also significantly decreased in NK cells isolated from mice depleted of ascorbic acid. Taken together, our results suggest that ascorbic acid at the normal plasma concentration has an essential role in maintaining the NK cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Jee-Eun Kim
- Department of Anatomy, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Ballas ZK, Cook RT, Shey MR, Coleman RA. A dynamic flux in natural killer cell subsets as a function of the duration of alcohol ingestion. Alcohol Clin Exp Res 2011; 36:826-34. [PMID: 22150608 DOI: 10.1111/j.1530-0277.2011.01678.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic ethanol (EtOH) consumption is associated with a wide variety of immune abnormalities including changes in T cells, B cells, dendritic cells, and natural killer (NK) cells. However, there is conflicting information as to the direction of such immune changes. The hypothesis that was tested in this report is that, for NK cells, the changes can vary as a function of the duration of alcohol ingestion. METHODS Using the Meadows-Cook murine model of chronic alcohol ingestion, the changes in NK cell function and subset distribution were examined as a function of the duration of alcohol ingestion. RESULTS Acute alcohol ingestion resulted in decreased number and cytotoxic function of NK cells with no effect on intracellular interferon gamma expression. These abnormalities normalized after 12 to 14 days of alcohol ingestion and there was an increase of NK cell number and cytotoxicity after 8 weeks of continued EtOH ingestion. Ten weeks of continued alcohol consumption results in a significant decrease in the Ly49H+ CD11b+ CD27- splenic NK cell subset; this difference continued to be significant at 30 weeks. CONCLUSIONS This report may explain some of the conflicting data in the literature that examined NK cell activity in alcoholic patients. It is apparent that various abnormalities can be seen in NK cell activity and subset distribution with the flux being a function of the duration of alcohol ingestion. The demonstration of a decrease in the Ly49H+ subset (which is known to be involved in resisting murine cytomegalovirus infection) may explain the reported increase in susceptibility to some viral infections in chronic alcohol abuse. Another novel finding is that changes of some subsets of NK cells are not evident until at least 10 weeks of continued EtOH consumption.
Collapse
Affiliation(s)
- Zuhair K Ballas
- Iowa City VA Medical Center, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, USA.
| | | | | | | |
Collapse
|
6
|
Guseva NV, Fullenkamp CA, Naumann PW, Shey MR, Ballas ZK, Houtman JCD, Forbes CA, Scalzo AA, Heusel JW. Glycosylation contributes to variability in expression of murine cytomegalovirus m157 and enhances stability of interaction with the NK-cell receptor Ly49H. Eur J Immunol 2010; 40:2618-31. [PMID: 20662096 DOI: 10.1002/eji.200940134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
NK cell-mediated resistance to murine cytomegalovirus (MCMV) is controlled by allelic Ly49 receptors, including activating Ly49H (C57BL/6 strain) and inhibitory Ly49I (129 strain), which specifically recognize MCMV m157, a glycosylphosphatidylinositol-linked protein with homology to MHC class I. Although the Ly49 receptors retain significant homology to classic carbohydrate-binding lectins, the role of glycosylation in ligand binding is unclear. Herein, we show that m157 is expressed in multiple, differentially N-glycosylated isoforms in m157-transduced or MCMV-infected cells. We used site-directed mutagenesis to express single and combinatorial asparagine (N)-to-glutamine (Q) mutations at N178, N187, N213, and N267 in myeloid and fibroblast cell lines. Progressive loss of N-linked glycans led to a significant reduction of total cellular m157 abundance, although all variably glycosylated m157 isoforms were expressed at the cell surface and retained the capacity to activate Ly49H(B6) and Ly49I(129) reporter cells and Ly49H(+) NK cells. However, the complete lack of N-linked glycans on m157 destabilized the m157-Ly49H interaction and prevented physical transfer of m157 to Ly49H-expressing cells. Thus, glycosylation on m157 enhances expression and binding to Ly49H, factors that may impact the interaction between NK cells and MCMV in vivo where receptor-ligand interactions are more limiting.
Collapse
Affiliation(s)
- Natalya V Guseva
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chuang CM, Monie A, Wu A, Mao CP, Hung CF. Treatment with LL-37 peptide enhances antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer. Hum Gene Ther 2009; 20:303-13. [PMID: 19272013 DOI: 10.1089/hum.2008.124] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is an urgent need for innovative therapies against ovarian cancer, one of the leading causes of death from gynecological cancers in the United States. Immunotherapy employing Toll-like receptor (TLR) ligands, such as CpG oligodeoxynucleotides (CpG-ODN), may serve as a potentially promising approach in the control of ovarian tumors. The CpG-ODN requires intracellular delivery into the endosomal compartment, where it can bind to TLR9 in order to activate the immune system. In the current study, we aim to investigate whether the antimicrobial polypeptide from the cathelicidin family, LL-37, could enhance the immunostimulatory effects of CpG-ODN by increasing the uptake of CpG-ODN into the immune cells, thus enhancing the antitumor effects against ovarian cancer. We found that treatment with the combination of CpG-ODN and LL-37 generated significantly better therapeutic antitumor effects and enhanced survival in murine ovarian tumor-bearing mice compared with treatment with CpG-ODN or LL-37 alone. We also observed that treatment with the combination of CpG-ODN and LL-37 enhanced proliferation and activation of natural killer (NK) cells, but not CD4(+) or CD8(+) T cells, in the peritoneal cavity. Furthermore, in vivo antibody depletion experiments indicated that peritoneal NK cells played a critical role in the observed antitumor effects. Thus, our data suggest that the combination of CpG-ODN with LL-37 peptide may lead to the control of ovarian tumors through the activation of innate immunity.
Collapse
Affiliation(s)
- Chi-Mu Chuang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
8
|
Xu D, Holko M, Sadler AJ, Scott B, Higashiyama S, Berkofsky-Fessler W, McConnell MJ, Pandolfi PP, Licht JD, Williams BR. Promyelocytic leukemia zinc finger protein regulates interferon-mediated innate immunity. Immunity 2009; 30:802-16. [PMID: 19523849 PMCID: PMC2711215 DOI: 10.1016/j.immuni.2009.04.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 03/23/2009] [Accepted: 04/17/2009] [Indexed: 11/18/2022]
Abstract
Interferons (IFNs) direct innate and acquired immune responses and, accordingly, are used therapeutically to treat a number of diseases, yet the diverse effects they elicit are not fully understood. Here, we identified the promyelocytic leukemia zinc finger (PLZF) protein as a previously unrecognized component of the IFN response. IFN stimulated an association of PLZF with promyelocytic leukemia protein (PML) and histone deacetylase 1 (HDAC1) to induce a decisive subset of IFN-stimulated genes (ISGs). Consequently, PLZF-deficient mice had a specific ISG expression defect and as a result were more susceptible to viral infection. This susceptibility correlated with a marked decrease in the expression of the key antiviral mediators and an impaired IFN-mediated induction of natural killer cell function. These results provide new insights into the regulatory mechanisms of IFN signaling and the induction of innate antiviral immunity.
Collapse
Affiliation(s)
- Dakang Xu
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | - Michelle Holko
- Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Anthony J. Sadler
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | - Bernadette Scott
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, To-on, Ehime 791-0295, Japan
| | - Windy Berkofsky-Fessler
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Lurie 5-123, Chicago, IL 60611, USA
| | - Melanie J. McConnell
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Lurie 5-123, Chicago, IL 60611, USA
| | - Pier Paolo Pandolfi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center and Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jonathan D. Licht
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Lurie 5-123, Chicago, IL 60611, USA
| | - Bryan R.G. Williams
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| |
Collapse
|