1
|
Gunturkun MH, Flashner E, Wang T, Mulligan MK, Williams RW, Prins P, Chen H. GeneCup: mining PubMed and GWAS catalog for gene-keyword relationships. G3 (BETHESDA, MD.) 2022; 12:jkac059. [PMID: 35285473 PMCID: PMC9073678 DOI: 10.1093/g3journal/jkac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022]
Abstract
Interpreting and integrating results from omics studies typically requires a comprehensive and time consuming survey of extant literature. GeneCup is a literature mining web service that retrieves sentences containing user-provided gene symbols and keywords from PubMed abstracts. The keywords are organized into an ontology and can be extended to include results from human genome-wide association studies. We provide a drug addiction keyword ontology that contains over 300 keywords as an example. The literature search is conducted by querying the PubMed server using a programming interface, which is followed by retrieving abstracts from a local copy of the PubMed archive. The main results presented to the user are sentences where gene symbol and keywords co-occur. These sentences are presented through an interactive graphical interface or as tables. All results are linked to the original abstract in PubMed. In addition, a convolutional neural network is employed to distinguish sentences describing systemic stress from those describing cellular stress. The automated and comprehensive search strategy provided by GeneCup facilitates the integration of new discoveries from omic studies with existing literature. GeneCup is free and open source software. The source code of GeneCup and the link to a running instance is available at https://github.com/hakangunturkun/GeneCup.
Collapse
Affiliation(s)
- Mustafa H Gunturkun
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Efraim Flashner
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| |
Collapse
|
2
|
Birkus G, Snyder C, Jordan R, Kobayashi T, Dick R, Puscau V, Li L, Ramirez R, Willkom M, Morikawa Y, Delaney Iv WE, Schmitz U. Anti-HBV activity of retinoid drugs in vitro versus in vivo. Antiviral Res 2019; 169:104538. [PMID: 31226346 DOI: 10.1016/j.antiviral.2019.104538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/20/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
We describe here the anti-HBV activity of natural and synthetic retinoids in primary human hepatocytes (PHHs). The most potent compounds inhibited HBsAg, HBeAg, viral RNA and DNA production by HBV infected cells with EC50 values ranging from 0.4 to 2.6 μM. The activity was independent of PHH donor and HBV genotype used in testing. 13-cis retinoic acid (Accutane) was selected for further evaluation in the PXB chimeric mouse model of HBV infection at doses allowing to achieve Accutane peak serum concentrations near its antiviral EC90 and exposures ∼5-fold higher than a typical clinical dose. While these supraclinical exposures of 100 mg/kg/day were well-tolerated by regular Balb/c mice, PXB mice were more sensitive and even a lower those of 60 mg/kg/day led to significant weight loss. Despite dosing at this maximal tolerated dose for 28 days, Accutane failed to show any anti-HBV activity. RAR target engagement was verified using transcriptome analysis of liver samples from treated versus vehicle groups. However, gene expression changes in PXB liver samples were vastly muted when compared to the in vitro PHH system. When comparing transcriptional changes associated with the conditioning of fresh hepatocytes toward enabling HBV infection, we also observed a large number of changes. Noticeably, a significant number of genes that were up- or down-regulated by the conditioning process were down- or up-regulated by HBV infected PHH treatment with Accutane, respectively. While the lack of efficacy in the PXB model may have many explanations, the observed, opposing transcriptional changes upon conditioning PHH and treating these cultured, HBV-infected PHH with Accutane allow for the possibility that the PHH system may yield artificial anti-HBV hits.
Collapse
Affiliation(s)
- Gabriel Birkus
- IOCB, Flemingovo nám. 542/2, 160 00, Praha 6, Czech Republic
| | - Chelsea Snyder
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94494, USA
| | - Robert Jordan
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94494, USA
| | | | - Ryan Dick
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94494, USA
| | - Vlad Puscau
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94494, USA
| | - Li Li
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94494, USA
| | - Ricardo Ramirez
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94494, USA
| | | | - Yoshida Morikawa
- Phoenix Bio, 3-4-1, Kagamiyama, Higashi-Hiroshima City, 739-0046, Japan
| | | | - Uli Schmitz
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA, 94494, USA.
| |
Collapse
|
3
|
Li XH, Zhou XM, Li XJ, Liu YY, Liu Q, Guo XL, Yang LQ, Chen JX. Effects of Xiaoyaosan on the Hippocampal Gene Expression Profile in Rats Subjected to Chronic Immobilization Stress. Front Psychiatry 2019; 10:178. [PMID: 31031647 PMCID: PMC6474260 DOI: 10.3389/fpsyt.2019.00178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Objective: This study examined the effect of Xiaoyaosan and its anti-stress mechanism in rats subjected to chronic immobilization stress at the whole genome level. Methods: Rat whole genome expression chips (Illumina) were used to detect differences in hippocampal gene expression in rats from the control group (CN group), model group (M group) and Xiaoyaosan group (XYS group) that were subjected to chronic immobilization stress. The Gene Ontology terms and signaling pathways that were altered in the hippocampus gene expression profile were analyzed. The network regulating the transcription of the differentially expressed genes was also established. To verify the results from the gene chips, real-time quantitative polymerase chain reaction was used to determine the expression of the GABRA1, FADD, CRHR2, and CDK6 genes in hippocampal tissues. In situ hybridization (ISH) and immunohistochemistry were used to determine the expression of the GABRA1 and CRHR2 genes and proteins, respectively. Results: Compared with the CN group, 566 differentially expressed genes were identified in the M group. Compared with the M group, 544 differentially expressed genes were identified in the XYS group. In the M and XYS groups, multiple significantly upregulated or downregulated genes functioned in various biological processes. The cytokine receptor interaction pathway was significantly inhibited in the hippocampus of the model group. The actin cytoskeleton regulation pathway was significantly increased in the hippocampus of the XYS group. The inhibition of hippocampal cell growth was the core molecular event of network regulating the transcription of the differentially expressed genes in the model group. Promotion of the regeneration of hippocampal neurons was the core molecular event of the transcriptional regulatory network in the XYS group. The levels of the GABRA1, FADD, CRHR2 and CDK6 mRNAs, and proteins were basically consistent with the results obtained from the gene chip. Conclusion: XYS may have the ability of resistance to stress, enhancement immunity and promotion nerve cell regeneration by regulating the expression of multiple genes in numerous pathways and repaired the stress-induced impairments in hippocampal structure and function by inducing cytoskeletal reorganization. These results may provide the possible target spots in the treatment of stress in rats with XYS.
Collapse
Affiliation(s)
- Xiao-Hong Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Basic Medical Sciences, Guangxi University of Chinese Medicine, Nanning, China
| | - Xue-Ming Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiao-Juan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Ling Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Qiang Yang
- School of Basic Medical Sciences, Guangxi University of Chinese Medicine, Nanning, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Zhang Y, Hou Y, Wang X, Ping J, Ma Z, Suo C, Lei Z, Li X, Zhang Z, Jia C, Su J. The effects of kisspeptin-10 on serum metabolism and myocardium in rats. PLoS One 2017; 12:e0179164. [PMID: 28692647 PMCID: PMC5503227 DOI: 10.1371/journal.pone.0179164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/24/2017] [Indexed: 12/15/2022] Open
Abstract
Kisspeptin is a peptide encoded by the Kiss 1 gene and is also called metastin. Previous studies have generally focused on several functions of this peptide, including metastasis, puberty, vasoconstriction and reproduction. However, few studies have focused on the cardiac functions of kisspeptin. In the present study, cardiac histomorphology was observed via TEM (transmission electron microscope) and HE and Masson staining to observe instinctive changes. Serum metabolites levels were also measured and analyzed using GC/TOF-MS after injection with kisspeptin-10. A gene chip was employed to screen the potential genes and pathways in the myocardium at the transcriptional leve, while RT-PCR and Western Blot were conducted to verify the relevant mRNA and protein expression, respectively. Histopathological findings demonstrated that there were many irregular wavy contractions through HE staining and increased fibrosis around the heart cells through Masson staining after treatment with kisspeptin-10. Additionally, the main changes in ultrastructure, including changes in mitochondrial and broken mitochondrial cristae, could be observed with TEM after treatment with kisspeptin-10. The PCA scores plot of the serum metabolites was in the apparent partition after injection of kisspeptin-10. Twenty-six obviously changed metabolites were detected and classified as amino acids, carbohydrate metabolites, organic acids and other metabolites. Furthermore, gene chip analysis showed 1112 differentially expressed genes after treatment with kisspeptin-10, including 330 up-regulated genes and 782 down-regulated genes. These genes were enriched in several signaling pathways related to heart diseases. The RT-PCR result for ITGB8, ITGA4, ITGB7, MYL7, HIF1-α and BNP corresponded with the gene chip assay. Moreover, the upregulated genes ITGB8, ITGA4 and BNP also displayed consistent protein levels in Western Blot results. In summary, these findings suggest that kisspeptin-10 could alter the morphology and structure of myocardial cells, serum metabolite levels, and expression of genes and proteins in heart tissues. Our work determined the profound effects of kisspeptin-10 on the heart, which could further lead to the development of therapeutics related to kisspeptin-10, including antagonists and analogs.
Collapse
Affiliation(s)
- Ying Zhang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Yuanlong Hou
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Xiaoyan Wang
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jihui Ping
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Zhiyu Ma
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Chuan Suo
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Zhihai Lei
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Xiang Li
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Zheng Zhang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Cuicui Jia
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Juan Su
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
- * E-mail:
| |
Collapse
|
5
|
Liu H, Mastriani E, Yan ZQ, Yin SY, Zeng Z, Wang H, Li QH, Liu HY, Wang X, Bao HX, Zhou YJ, Kou JJ, Li D, Li T, Liu J, Liu Y, Yin L, Qiu L, Gong L, Liu SL. SOX7 co-regulates Wnt/β-catenin signaling with Axin-2: both expressed at low levels in breast cancer. Sci Rep 2016; 6:26136. [PMID: 27188720 PMCID: PMC4870566 DOI: 10.1038/srep26136] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/27/2016] [Indexed: 12/29/2022] Open
Abstract
SOX7 as a tumor suppressor belongs to the SOX F gene subfamily and is associated with a variety of human cancers, including breast cancer, but the mechanisms involved are largely unclear. In the current study, we investigated the interactions between SOX7 and AXIN2 in their co-regulation on the Wnt/β-catenin signal pathway, using clinical specimens and microarray gene expression data from the GEO database, for their roles in breast cancer. We compared the expression levels of SOX7 and other co-expressed genes in the Wnt/β-catenin pathway and found that the expression of SOX7, SOX17 and SOX18 was all reduced significantly in the breast cancer tissues compared to normal controls. AXIN2 had the highest co-relativity with SOX7 in the Wnt/β-catenin signaling pathway. Clinicopathological analysis demonstrated that the down-regulated SOX7 was significantly correlated with advanced stages and poorly differentiated breast cancers. Consistent with bioinformatics predictions, SOX7 was correlated positively with AXIN2 and negatively with β-catenin, suggesting that SOX7 and AXIN2 might play important roles as co-regulators through the Wnt-β-catenin pathway in the breast tissue to affect the carcinogenesis process. Our results also showed Smad7 as the target of SOX7 and AXIN2 in controlling breast cancer progression through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Huidi Liu
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCFM Centre for Infection and Genomics, Harbin, 150081, China.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada
| | - Emilio Mastriani
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Zi-Qiao Yan
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Si-Yuan Yin
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Zheng Zeng
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Hong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Qing-Hai Li
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Hong-Yu Liu
- Pathology Department, The First Hospital of Qiqihaer City, Qiqihaer, 161006, China
| | - Xiaoyu Wang
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Hong-Xia Bao
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Yu-Jie Zhou
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Jun-Jie Kou
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Dongsheng Li
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ting Li
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jianrui Liu
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Yongfang Liu
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lin Yin
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Li Qiu
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Liling Gong
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shu-Lin Liu
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,HMU-UCFM Centre for Infection and Genomics, Harbin, 150081, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| |
Collapse
|
6
|
Morota G, Peñagaricano F, Petersen JL, Ciobanu DC, Tsuyuzaki K, Nikaido I. An application of MeSH enrichment analysis in livestock. Anim Genet 2015; 46:381-7. [PMID: 26036323 PMCID: PMC5032990 DOI: 10.1111/age.12307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2015] [Indexed: 01/01/2023]
Abstract
An integral part of functional genomics studies is to assess the enrichment of specific biological terms in lists of genes found to be playing an important role in biological phenomena. Contrasting the observed frequency of annotated terms with those of the background is at the core of overrepresentation analysis (ORA). Gene Ontology (GO) is a means to consistently classify and annotate gene products and has become a mainstay in ORA. Alternatively, Medical Subject Headings (MeSH) offers a comprehensive life science vocabulary including additional categories that are not covered by GO. Although MeSH is applied predominantly in human and model organism research, its full potential in livestock genetics is yet to be explored. In this study, MeSH ORA was evaluated to discern biological properties of identified genes and contrast them with the results obtained from GO enrichment analysis. Three published datasets were employed for this purpose, representing a gene expression study in dairy cattle, the use of SNPs for genome‐wide prediction in swine and the identification of genomic regions targeted by selection in horses. We found that several overrepresented MeSH annotations linked to these gene sets share similar concepts with those of GO terms. Moreover, MeSH yielded unique annotations, which are not directly provided by GO terms, suggesting that MeSH has the potential to refine and enrich the representation of biological knowledge. We demonstrated that MeSH can be regarded as another choice of annotation to draw biological inferences from genes identified via experimental analyses. When used in combination with GO terms, our results indicate that MeSH can enhance our functional interpretations for specific biological conditions or the genetic basis of complex traits in livestock species.
Collapse
Affiliation(s)
- G Morota
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - F Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - J L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - D C Ciobanu
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - K Tsuyuzaki
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan.,Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - I Nikaido
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| |
Collapse
|
7
|
Duan P, Li B, Li C, Han X, Xu Y, Xing Y, Yan W. Effects of delayed motherhood on hippocampal gene expression in offspring rats. Mol Cell Biochem 2015; 405:89-95. [PMID: 25976665 DOI: 10.1007/s11010-015-2399-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/27/2015] [Indexed: 10/25/2022]
Abstract
While many studies have examined the pregnancy and health-related outcomes of delayed motherhood for women, less is known concerning the potential consequences for their children. This study aims to investigate the effect of delayed motherhood on the hippocampus at the whole genome level. Sprague-Dawley rat females, either at the age of 3 or 12 months, were individually housed with a randomly selected 3-month-old male. The rat whole genome expression chips were used to detect gene expression differences in the hippocampus of newborn rats. The gene expression profile was studied through gene ontology and signal pathway analyses. qRT-PCR was used to determine the mRNA expression of solute carrier family 2 (SLC2A1) and S-phase kinase-associated protein 2 (SKP2). Western blot was used to detect the protein expression of SKP2. Compared to the control group, 1291 differentially expressed genes were detected, including 635 up-regulated genes and 656 down-regulated genes. These differential expressed genes were involved in 110 significant biological process and nine significant signaling pathways, in which the pathway in cancer is the most changed pathway. For SKP2 (up-regulated) and SLC2A1 (up-regulated) genes which were relevant to the pathway in cancer, qRT-PCR results were consistent with gene chip assay results. The upregulation of SKP2 was also demonstrated at protein level. In conclusion, delayed motherhood led to unique patterns of hippocampal gene expression in offspring and the newly identified genes afford a quantitative view of the changes which enable deeper insights into the molecular basis underlying the role of delayed motherhood.
Collapse
Affiliation(s)
- Ping Duan
- Department of Basic Medicine, Institute of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | | | | | | | | | | | | |
Collapse
|
8
|
He Y. Ontology-supported research on vaccine efficacy, safety and integrative biological networks. Expert Rev Vaccines 2014; 13:825-41. [PMID: 24909153 DOI: 10.1586/14760584.2014.923762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including Vaccine Ontology, Ontology of Adverse Events and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network ('OneNet') Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms.
Collapse
Affiliation(s)
- Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Li H, Liu J, Sun Y, Wang W, Weng S, Xiao S, Huang H, Zhang W. N-hexane inhalation during pregnancy alters DNA promoter methylation in the ovarian granulosa cells of rat offspring. J Appl Toxicol 2013; 34:841-56. [DOI: 10.1002/jat.2893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Hong Li
- Department of Occupational and Environmental Health, School of Public Health; Fujian Medical University; Fuzhou China
| | - Jin Liu
- Department of Occupational and Environmental Health, School of Public Health; Fujian Medical University; Fuzhou China
| | - Yan Sun
- Assisted Reproductive Technology Laboratory; Fuzhou China
| | - Wenxiang Wang
- Department of Occupational and Environmental Health, School of Public Health; Fujian Medical University; Fuzhou China
| | - Shaozheng Weng
- Department of Occupational and Environmental Health, School of Public Health; Fujian Medical University; Fuzhou China
| | - Shihua Xiao
- Department of Occupational and Environmental Health, School of Public Health; Fujian Medical University; Fuzhou China
| | - Huiling Huang
- Union Hospital of Fujian Medical University; Fuzhou China
| | - Wenchang Zhang
- Department of Occupational and Environmental Health, School of Public Health; Fujian Medical University; Fuzhou China
| |
Collapse
|
10
|
Li XH, Chen JX, Yue GX, Liu YY, Zhao X, Guo XL, Liu Q, Jiang YM, Bai MH. Gene expression profile of the hippocampus of rats subjected to chronic immobilization stress. PLoS One 2013; 8:e57621. [PMID: 23544040 PMCID: PMC3609811 DOI: 10.1371/journal.pone.0057621] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/24/2013] [Indexed: 02/07/2023] Open
Abstract
Objective This study systematically investigated the effect of chronic stress on the hippocampus and its damage mechanism at the whole genome level. Methods The rat whole genome expression chips (Illumina) were used to detect gene expression differences in the hippocampus of rats subjected to chronic immobilization stress (daily immobilization stress for 3 h, for 7 or 21 days). The hippocampus gene expression profile was studied through gene ontology and signal pathway analyses using bioinformatics. A differentially expressed transcription regulation network was also established. Real-time quantitative polymerase chain reaction (RT-PCR) was used to verify the microarray results and determine expression of the Gabra1, Fadd, Crhr2, and Cdk6 genes in the hippocampal tissues. Results Compared to the control group, 602 differentially expressed genes were detected in the hippocampus of rats subjected to stress for 7 days, while 566 differentially expressed genes were expressed in the animals experiencing stress for 21 days. The stress significantly inhibited the primary immune system functions of the hippocampus in animals subjected to stress for both 7 and 21 days. Immobilization activated the extracellular matrix receptor interaction pathway after 7 day exposure to stress and the cytokine-cytokine receptor interaction pathway. The enhanced collagen synthesis capacity of the hippocampal tissue was the core molecular event of the stress regulation network in the 7-day group, while the inhibition of hippocampal cell growth was the core molecular event in the 21-day group. For the Gabra1, Fadd, Crhr2, and Cdk6 genes, RT-PCR results were nearly in line with gene chip assay results. Conclusion During the 7-day and 21-day stress processes, the combined action of polygenic, multilevel, and multi-signal pathways leads to the disorder of the immunologic functions of the hippocampus, hippocampal apoptosis, and proliferation disequilibrium.
Collapse
Affiliation(s)
- Xiao-Hong Li
- School of Pre-clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Pre-clinical Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Jia-Xu Chen
- School of Pre-clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
- * E-mail:
| | - Guang-Xin Yue
- Institute of Basic Theory of TCM, China Academy of Chinese Medical Science, Beijing, China
| | - Yue-Yun Liu
- School of Pre-clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Zhao
- School of Pre-clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Ling Guo
- School of Pre-clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qun Liu
- School of Pre-clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - You-Ming Jiang
- School of Pre-clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ming-Hua Bai
- School of Pre-clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Abstract
Use of microarray data to generate expression profiles of genes associated with disease can aid in identification of markers of disease and potential therapeutic targets. Pathway analysis methods further extend expression profiling by creating inferred networks that provide an interpretable structure of the gene list and visualize gene interactions. This chapter describes GeneAnswers, a novel gene-concept network analysis tool available as an open source Bioconductor package. GeneAnswers creates a gene-concept network and also can be used to build protein-protein interaction networks. The package includes an example multiple myeloma cell line dataset and tutorial. Several network analysis methods are included in GeneAnswers, and the tutorial highlights the conditions under which each type of analysis is most beneficial and provides sample code.
Collapse
|
12
|
Santamaria SL, Zimmerman KL. Uses of informatics to solve real world problems in veterinary medicine. JOURNAL OF VETERINARY MEDICAL EDUCATION 2011; 38:103-109. [PMID: 22023918 DOI: 10.3138/jvme.38.2.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Veterinary informatics is the science of structuring, analyzing, and leveraging information in an effort to advance animal health, disease surveillance, research, education, and business practices. Reference and terminology standards are core components of the informatics infrastructure. This paper focuses on three current activities that use reference standards in veterinary informatics: (1) the construction of a messaging standard in a national animal health laboratory network, (2) the creation of breed and species terminology lists for livestock disease surveillance, and (3) the development of a standardized diagnoses list for small animal practices. These and other endeavors will benefit from research conducted to identify innovative and superior tools, methods, and techniques. The authors believe there are many areas requiring study and special focus in order to advance veterinary informatics, and this paper highlights some of the needs and challenges surrounding these areas.
Collapse
Affiliation(s)
- Suzanne L Santamaria
- Veterinary Medical Informatics Laboratory, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blackburg, VA 24061, USA.
| | | |
Collapse
|
13
|
Christie KR, Hong EL, Cherry JM. Functional annotations for the Saccharomyces cerevisiae genome: the knowns and the known unknowns. Trends Microbiol 2009; 17:286-94. [PMID: 19577472 PMCID: PMC3057094 DOI: 10.1016/j.tim.2009.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 04/20/2009] [Accepted: 04/24/2009] [Indexed: 11/27/2022]
Abstract
The quest to characterize each of the genes of the yeast Saccharomyces cerevisiae has propelled the development and application of novel high-throughput (HTP) experimental techniques. To handle the enormous amount of information generated by these techniques, new bioinformatics tools and resources are needed. Gene Ontology (GO) annotations curated by the Saccharomyces Genome Database (SGD) have facilitated the development of algorithms that analyze HTP data and help predict functions for poorly characterized genes in S. cerevisiae and other organisms. Here, we describe how published results are incorporated into GO annotations at SGD and why researchers can benefit from using these resources wisely to analyze their HTP data and predict gene functions.
Collapse
Affiliation(s)
- Karen R Christie
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| | | | | |
Collapse
|
14
|
Menzel R, Swain SC, Hoess S, Claus E, Menzel S, Steinberg CE, Reifferscheid G, Stürzenbaum SR. Gene expression profiling to characterize sediment toxicity--a pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genomics 2009; 10:160. [PMID: 19366437 PMCID: PMC2674462 DOI: 10.1186/1471-2164-10-160] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 04/14/2009] [Indexed: 12/20/2022] Open
Abstract
Background Traditionally, toxicity of river sediments is assessed using whole sediment tests with benthic organisms. The challenge, however, is the differentiation between multiple effects caused by complex contaminant mixtures and the unspecific toxicity endpoints such as survival, growth or reproduction. The use of gene expression profiling facilitates the identification of transcriptional changes at the molecular level that are specific to the bio-available fraction of pollutants. Results In this pilot study, we exposed the nematode Caenorhabditis elegans to three sediments of German rivers with varying (low, medium and high) levels of heavy metal and organic contamination. Beside chemical analysis, three standard bioassays were performed: reproduction of C. elegans, genotoxicity (Comet assay) and endocrine disruption (YES test). Gene expression was profiled using a whole genome DNA-microarray approach to identify overrepresented functional gene categories and derived cellular processes. Disaccharide and glycogen metabolism were found to be affected, whereas further functional pathways, such as oxidative phosphorylation, ribosome biogenesis, metabolism of xenobiotics, aging and several developmental processes were found to be differentially regulated only in response to the most contaminated sediment. Conclusion This study demonstrates how ecotoxicogenomics can identify transcriptional responses in complex mixture scenarios to distinguish different samples of river sediments.
Collapse
Affiliation(s)
- Ralph Menzel
- School of Biomedical & Health Sciences, Pharmaceutical Science Division, King's College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|