1
|
Rahman SH, Kuehle J, Reimann C, Mlambo T, Alzubi J, Maeder ML, Riedel H, Fisch P, Cantz T, Rudolph C, Mussolino C, Joung JK, Schambach A, Cathomen T. Rescue of DNA-PK Signaling and T-Cell Differentiation by Targeted Genome Editing in a prkdc Deficient iPSC Disease Model. PLoS Genet 2015; 11:e1005239. [PMID: 26000857 PMCID: PMC4441453 DOI: 10.1371/journal.pgen.1005239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/26/2015] [Indexed: 12/22/2022] Open
Abstract
In vitro disease modeling based on induced pluripotent stem cells (iPSCs) provides a powerful system to study cellular pathophysiology, especially in combination with targeted genome editing and protocols to differentiate iPSCs into affected cell types. In this study, we established zinc-finger nuclease-mediated genome editing in primary fibroblasts and iPSCs generated from a mouse model for radiosensitive severe combined immunodeficiency (RS-SCID), a rare disorder characterized by cellular sensitivity to radiation and the absence of lymphocytes due to impaired DNA-dependent protein kinase (DNA-PK) activity. Our results demonstrate that gene editing in RS-SCID fibroblasts rescued DNA-PK dependent signaling to overcome radiosensitivity. Furthermore, in vitro T-cell differentiation from iPSCs was employed to model the stage-specific T-cell maturation block induced by the disease causing mutation. Genetic correction of the RS-SCID iPSCs restored T-lymphocyte maturation, polyclonal V(D)J recombination of the T-cell receptor followed by successful beta-selection. In conclusion, we provide proof that iPSC-based in vitro T-cell differentiation is a valuable paradigm for SCID disease modeling, which can be utilized to investigate disorders of T-cell development and to validate gene therapy strategies for T-cell deficiencies. Moreover, this study emphasizes the significance of designer nucleases as a tool for generating isogenic disease models and their future role in producing autologous, genetically corrected transplants for various clinical applications. Due to the limited availability and lifespan of some primary cells, in vitro disease modeling with induced pluripotent stem cells (iPSCs) offers a valuable complementation to in vivo studies. The goal of our study was to establish an in vitro disease model for severe combined immunodeficiency (SCID), a group of inherited disorders of the immune system characterized by the lack of T-lymphocytes. To this end, we generated iPSCs from fibroblasts of a radiosensitive SCID (RS-SCID) mouse model and established a protocol to recapitulate T-lymphopoiesis from iPSCs in vitro. We used designer nucleases to edit the underlying mutation in prkdc, the gene encoding DNA-PKcs, and demonstrated that genetic correction of the disease locus rescued DNA-PK dependent signaling, restored normal radiosensitivity, and enabled T-cell maturation and polyclonal T-cell receptor recombination. We hence provide proof that the combination of two promising technology platforms, iPSCs and designer nucleases, with a protocol to generate T-cells in vitro, represents a powerful paradigm for SCID disease modeling and the evaluation of therapeutic gene editing strategies. Furthermore, our system provides a basis for further development of iPSC-derived cell products with the potential for various clinical applications, including infusions of in vitro derived autologous T-cells to stabilize patients after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Shamim H. Rahman
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Johannes Kuehle
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Christian Reimann
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Tafadzwa Mlambo
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Jamal Alzubi
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Morgan L. Maeder
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Heimo Riedel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Biochemistry and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Paul Fisch
- Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology, REBIRTH cluster of excellence, Hannover Medical School, Hannover, Germany
| | - Cornelia Rudolph
- Institute for Cellular and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - Claudio Mussolino
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - J. Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- * E-mail: (AS); (TC)
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- * E-mail: (AS); (TC)
| |
Collapse
|
2
|
Soong PL, Tiburcy M, Zimmermann WH. Cardiac differentiation of human embryonic stem cells and their assembly into engineered heart muscle. ACTA ACUST UNITED AC 2013; Chapter 23:Unit23.8. [PMID: 23129117 DOI: 10.1002/0471143030.cb2308s55] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The advent of pluripotent human embryonic stem cells has created the unique opportunity for the development of a wide variety of humanized cellular tools for basic research, as well as industrial and clinical applications. It has, however, become apparent that embryonic stem cell derivatives in classical monolayer or embryoid body culture do not resemble bona fide tissues, mainly because of their limited organotypic organization and maturation in these culture formats. This shortcoming may be addressed by tissue engineering technologies aiming at the provision of a "natural" growth environment to facilitate organotypic tissue assembly. In this unit, we provide two harmonized basic protocols for (1) cardiac differentiation of human embryonic stem cells under serum-free conditions and (2) the assembly of the stem cell-derived cardiomyocytes into engineered heart muscle. This protocol can be easily adapted to bioengineer heart muscle also from other stem cell-derived cardiomyocytes, including cardiomyocytes from human-induced pluripotent stem cells.
Collapse
Affiliation(s)
- Poh Loong Soong
- Department of Pharmacology, Heart Research Center Göttingen (HRCG), University Medical Center Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
3
|
Vajen B, Modlich U, Schienke A, Wolf S, Skawran B, Hofmann W, Büsche G, Kreipe H, Baum C, Santos-Barriopedro I, Vaquero A, Schlegelberger B, Rudolph C. Histone methyltransferaseSuv39h1deficiency preventsMyc-induced chromosomal instability in murine myeloid leukemias. Genes Chromosomes Cancer 2013; 52:423-30. [DOI: 10.1002/gcc.22040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/22/2012] [Indexed: 11/09/2022] Open
|
4
|
Delayed development of chronic lymphocytic leukemia in the absence of macrophage migration inhibitory factor. Blood 2012; 121:812-21. [PMID: 23118218 DOI: 10.1182/blood-2012-05-431452] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Survival of chronic lymphocytic leukemia (CLL) cells depends on stimuli provided by a suitable microenvironment. The factors and mechanisms providing this growth support for CLL cells are not fully understood. We found that plasma levels of macrophage migration inhibitory factor (MIF), a proinflammatory and immunoregulatory chemokine, were elevated in CLL patients. Therefore, we characterized the functional role of MIF in a CLL mouse model. For this purpose, we crossed Eμ-TCL1 mice with MIF knockout (MIF-/-) mice. The resulting TCL1+/wtMIF/ mice showed a delayed onset of leukemia, reduced splenomegaly and hepatomegaly, and a longer survival than TCL1+/wtMIFwt/wt controls. Immunohistochemical examination of the lymphoid organs showed that the numbers of macrophages were significantly reduced in the spleen and bone marrow of TCL1+/wtMIF/ mice compared with TCL1+/wtMIFwt/wt controls. Mechanistic studies in vitro revealed that the absence of MIF rendered CLL cells more susceptible to apoptosis. Accordingly, incubation with an anti-MIF antibody reduced the survival of CLL cells on a macrophage feeder layer. In addition, the migratory activity of TCL1+/wtMIF/ macrophages was decreased compared with TCL1+/wtMIFwt/wt macrophages. Taken together, our results provide evidence that MIF supports the development of CLL by enhancing the interaction of CLL cells with macrophages. KEY POINTS Targeted deletion of the gene for macrophage migration inhibitory factor (MIF) delays development of chronic lymphocytic leukemia and prolongs survival in mice. MIF recruits leukemia-associated macrophages to spleen or liver.
Collapse
|
5
|
Osiak A, Radecke F, Guhl E, Radecke S, Dannemann N, Lütge F, Glage S, Rudolph C, Cantz T, Schwarz K, Heilbronn R, Cathomen T. Selection-independent generation of gene knockout mouse embryonic stem cells using zinc-finger nucleases. PLoS One 2011; 6:e28911. [PMID: 22194948 PMCID: PMC3237556 DOI: 10.1371/journal.pone.0028911] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/17/2011] [Indexed: 12/18/2022] Open
Abstract
Gene knockout in murine embryonic stem cells (ESCs) has been an invaluable tool to study gene function in vitro or to generate animal models with altered phenotypes. Gene targeting using standard techniques, however, is rather inefficient and typically does not exceed frequencies of 10(-6). In consequence, the usage of complex positive/negative selection strategies to isolate targeted clones has been necessary. Here, we present a rapid single-step approach to generate a gene knockout in mouse ESCs using engineered zinc-finger nucleases (ZFNs). Upon transient expression of ZFNs, the target gene is cleaved by the designer nucleases and then repaired by non-homologous end-joining, an error-prone DNA repair process that introduces insertions/deletions at the break site and therefore leads to functional null mutations. To explore and quantify the potential of ZFNs to generate a gene knockout in pluripotent stem cells, we generated a mouse ESC line containing an X-chromosomally integrated EGFP marker gene. Applying optimized conditions, the EGFP locus was disrupted in up to 8% of ESCs after transfection of the ZFN expression vectors, thus obviating the need of selection markers to identify targeted cells, which may impede or complicate downstream applications. Both activity and ZFN-associated cytotoxicity was dependent on vector dose and the architecture of the nuclease domain. Importantly, teratoma formation assays of selected ESC clones confirmed that ZFN-treated ESCs maintained pluripotency. In conclusion, the described ZFN-based approach represents a fast strategy for generating gene knockouts in ESCs in a selection-independent fashion that should be easily transferrable to other pluripotent stem cells.
Collapse
Affiliation(s)
- Anna Osiak
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Institute of Virology (CBF), Charité Medical School, Berlin, Germany
| | - Frank Radecke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Eva Guhl
- Institute of Virology (CBF), Charité Medical School, Berlin, Germany
| | - Sarah Radecke
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg – Hessen, Ulm, Germany
| | - Nadine Dannemann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Fabienne Lütge
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Cornelia Rudolph
- JRG Genetic and Epigenetic Integrity, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Tobias Cantz
- JRG Stem Cell Biology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg – Hessen, Ulm, Germany
| | - Regine Heilbronn
- Institute of Virology (CBF), Charité Medical School, Berlin, Germany
| | - Toni Cathomen
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Institute of Virology (CBF), Charité Medical School, Berlin, Germany
| |
Collapse
|
6
|
Chen Q, Shi X, Rudolph C, Yu Y, Zhang D, Zhao X, Mai S, Wang G, Schlegelberger B, Shi Q. Recurrent trisomy and Robertsonian translocation of chromosome 14 in murine iPS cell lines. Chromosome Res 2011; 19:857-68. [DOI: 10.1007/s10577-011-9239-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 01/06/2023]
|
7
|
Gabriel LAR, Traboulsi EI. Genetic diagnostic methods for inherited eye diseases. Middle East Afr J Ophthalmol 2011; 18:24-9. [PMID: 21572730 PMCID: PMC3085148 DOI: 10.4103/0974-9233.75881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Accurate molecular diagnosis of genetic eye diseases has proven to be of great importance because of the prognostic and therapeutic value of an accurate ascertainment of the underlying genetic mutation. Efforts continue in diagnostic laboratories to develop strategies that allow the discovery of responsible gene/mutations in the individual patient using the least number of assays and economizing on the expenses and time involved in the process. Once the ophthalmologist has made the best possible clinical diagnosis, blood samples are obtained for genetic testing. In this paper we will review the basic laboratory methods utilized to identify the chromosomal or mutational etiology of genetic diseases that affect the eye.
Collapse
Affiliation(s)
- Luis A R Gabriel
- Department of Pediatric Ophthalmology and Strabismus and the Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, Cleveland, USA
| | | |
Collapse
|
8
|
Wu G, Liu N, Rittelmeyer I, Sharma AD, Sgodda M, Zaehres H, Bleidißel M, Greber B, Gentile L, Han DW, Rudolph C, Steinemann D, Schambach A, Ott M, Schöler HR, Cantz T. Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells. PLoS Biol 2011; 9:e1001099. [PMID: 21765802 PMCID: PMC3134447 DOI: 10.1371/journal.pbio.1001099] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 05/26/2011] [Indexed: 12/15/2022] Open
Abstract
Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH−/− mice) as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH−/−-induced pluripotent stem cells (iPS cells) as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH−/− iPS cell lines, we aggregated FAH−/−-iPS cells with tetraploid embryos and obtained entirely FAH−/−-iPS cell–derived mice that were viable and exhibited the phenotype of the founding FAH−/− mice. Then, we transduced FAH cDNA into the FAH−/−-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell–derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione). Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR)-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV)-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models. Pluripotent stem cells have unlimited self-renewing capability and the potential to differentiate into virtually all cell types of the body. Pluripotent stem cells are therefore of great interest for future cell-based therapies and are already in use today for studying diseases “in a dish” and screening for new drugs. After the seminal discovery that induced pluripotent stem cells (iPS cells) can be generated by the delivery of four transcription factors into non-pluripotent cells, a tremendous amount of enthusiasm arose about the idea that patient-derived pluripotent stem cells could be obtained and genetically corrected in order to develop customized therapies for regenerative medicine. Here, we present a mouse model of acute metabolic liver failure that fulfills such criteria. First, we demonstrated by stringent assays that disease-specific iPS cells exhibited full cellular and developmental potential and the iPS cell–derived mice reproduced the phenotypes of the founding FAH−/− mice faithfully. Then, we genetically repaired the disease-specific iPS cells by lentiviral delivery of an intact gene copy, and we investigated the impact of this additional genetic manipulation on these cells. With our analyses, we ruled out major, and even minor, chromosomal aberrations in the gene-corrected iPS cells. Most importantly, we demonstrated that the gene-corrected cells maintained their full potential and we generated viable mice that were completely derived from these repaired cells via tetraploid complementation approach, and these mice were healthy, without any signs of the metabolic liver disease.
Collapse
Affiliation(s)
- Guangming Wu
- Max-Planck-Institute for Molecular Biomedicine, Münster, Germany
| | - Na Liu
- Max-Planck-Institute for Molecular Biomedicine, Münster, Germany
- Junior Research Group Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Ina Rittelmeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, and TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Amar Deep Sharma
- Junior Research Group Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Malte Sgodda
- Junior Research Group Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Holm Zaehres
- Max-Planck-Institute for Molecular Biomedicine, Münster, Germany
| | | | - Boris Greber
- Max-Planck-Institute for Molecular Biomedicine, Münster, Germany
| | - Luca Gentile
- Max-Planck-Institute for Molecular Biomedicine, Münster, Germany
| | - Dong Wook Han
- Max-Planck-Institute for Molecular Biomedicine, Münster, Germany
- Department of Stem Cell Biology, Konkuk University, Seoul, Republic of Korea
| | - Cornelia Rudolph
- Junior Research Group Genetic & Epigenetic Integrity, Cluster of Excellence REBIRTH, Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Junior Research Group Genetic & Epigenetic Integrity, Cluster of Excellence REBIRTH, Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Junior Research Group Hematopoietic Cell Therapy, Cluster of Excellence REBIRTH, Department Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, and TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Hans R. Schöler
- Max-Planck-Institute for Molecular Biomedicine, Münster, Germany
- Junior Research Group Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
- Medical Faculty, University of Münster, Münster, Germany
| | - Tobias Cantz
- Max-Planck-Institute for Molecular Biomedicine, Münster, Germany
- Junior Research Group Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
9
|
Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H, Eggert K, Gehling UM, Rudolph C, Schlegelberger B, Cornils K, Zustin J, Spiess AN, Zander AR. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation. PLoS One 2011; 6:e14486. [PMID: 21245929 PMCID: PMC3016319 DOI: 10.1371/journal.pone.0014486] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/07/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Successful treatment of acute radiation syndromes relies on immediate supportive care. In patients with limited hematopoietic recovery potential, hematopoietic stem cell (HSC) transplantation is the only curative treatment option. Because of time consuming donor search and uncertain outcome we propose MSC treatment as an alternative treatment for severely radiation-affected individuals. METHODS AND FINDINGS Mouse mesenchymal stromal cells (mMSCs) were expanded from bone marrow, retrovirally labeled with eGFP (bulk cultures) and cloned. Bulk and five selected clonal mMSCs populations were characterized in vitro for their multilineage differentiation potential and phenotype showing no contamination with hematopoietic cells. Lethally irradiated recipients were i.v. transplanted with bulk or clonal mMSCs. We found a long-term survival of recipients with fast hematopoietic recovery after the transplantation of MSCs exclusively without support by HSCs. Quantitative PCR based chimerism analysis detected eGFP-positive donor cells in peripheral blood immediately after injection and in lungs within 24 hours. However, no donor cells in any investigated tissue remained long-term. Despite the rapidly disappearing donor cells, microarray and quantitative RT-PCR gene expression analysis in the bone marrow of MSC-transplanted animals displayed enhanced regenerative features characterized by (i) decreased proinflammatory, ECM formation and adhesion properties and (ii) boosted anti-inflammation, detoxification, cell cycle and anti-oxidative stress control as compared to HSC-transplanted animals. CONCLUSIONS Our data revealed that systemically administered MSCs provoke a protective mechanism counteracting the inflammatory events and also supporting detoxification and stress management after radiation exposure. Further our results suggest that MSCs, their release of trophic factors and their HSC-niche modulating activity rescue endogenous hematopoiesis thereby serving as fast and effective first-line treatment to combat radiation-induced hematopoietic failure.
Collapse
Affiliation(s)
- Claudia Lange
- Clinic for Stem Cell Transplantation, Department of Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nowak-Imialek M, Kues WA, Rudolph C, Schlegelberger B, Taylor U, Carnwath JW, Niemann H. Preferential Loss of Porcine Chromosomes in Reprogrammed Interspecies Cell Hybrids. Cell Reprogram 2010; 12:55-65. [DOI: 10.1089/cell.2009.0045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Monika Nowak-Imialek
- Institut of Farm Animal Genetics, Friedrich-Loeffler-Institute, Department of Biotechnology, Mariensee, 31535 Neustadt, Germany
| | - Wilfried A. Kues
- Institut of Farm Animal Genetics, Friedrich-Loeffler-Institute, Department of Biotechnology, Mariensee, 31535 Neustadt, Germany
| | - Cornelia Rudolph
- Institute of Cell and Molecular Pathology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Ulrike Taylor
- Institut of Farm Animal Genetics, Friedrich-Loeffler-Institute, Department of Biotechnology, Mariensee, 31535 Neustadt, Germany
| | - Joseph W. Carnwath
- Institut of Farm Animal Genetics, Friedrich-Loeffler-Institute, Department of Biotechnology, Mariensee, 31535 Neustadt, Germany
| | - Heiner Niemann
- Institut of Farm Animal Genetics, Friedrich-Loeffler-Institute, Department of Biotechnology, Mariensee, 31535 Neustadt, Germany
| |
Collapse
|