1
|
Mendes I, Vale N. How Can the Microbiome Induce Carcinogenesis and Modulate Drug Resistance in Cancer Therapy? Int J Mol Sci 2023; 24:11855. [PMID: 37511612 PMCID: PMC10380870 DOI: 10.3390/ijms241411855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Over the years, cancer has been affecting the lives of many people globally and it has become one of the most studied diseases. Despite the efforts to understand the cell mechanisms behind this complex disease, not every patient seems to respond to targeted therapies or immunotherapies. Drug resistance in cancer is one of the limiting factors contributing to unsuccessful therapies; therefore, understanding how cancer cells acquire this resistance is essential to help cure individuals affected by cancer. Recently, the altered microbiome was observed to be an important hallmark of cancer and therefore it represents a promising topic of cancer research. Our review aims to provide a global perspective of some cancer hallmarks, for instance how genetic and epigenetic modifications may be caused by an altered human microbiome. We also provide information on how an altered human microbiome can lead to cancer development as well as how the microbiome can influence drug resistance and ultimately targeted therapies. This may be useful to develop alternatives for cancer treatment, i.e., future personalized medicine that can help in cases where traditional cancer treatment is unsuccessful.
Collapse
Affiliation(s)
- Inês Mendes
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Edifício de Geociências, 5000-801 Vila Real, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
2
|
Verma M, Agarwal N, Verma M, Kumar V. Epigenetics and animal models: applications in cancer control and treatment. Anim Biotechnol 2020. [DOI: 10.1016/b978-0-12-811710-1.00004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Xu M, Zhu J, Liu S, Wang C, Shi Q, Kuang Y, Fang X, Hu X. FOXD3, frequently methylated in colorectal cancer, acts as a tumor suppressor and induces tumor cell apoptosis under ER stress via p53. Carcinogenesis 2019; 41:1253-1262. [PMID: 31784734 DOI: 10.1093/carcin/bgz198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/25/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023] Open
Abstract
Abstract
Forkhead box D3 (FOXD3), an important member of the forkhead box transcription factor family, has many biological functions. However, the role and signaling pathways of FOXD3 in colorectal cancer (CRC) are still unclear. We examined FOXD3 expression and methylation in normal colon mucosa, CRC cell lines and primary tumors by reverse transcription–polymerase chain reaction, methylation-specific PCR and bisulfite genomic sequencing. We also evaluated its tumor-suppressive function by examining its modulation of apoptosis under endoplasmic reticulum (ER) stress in CRC cells. The FOXD3 target signal pathway was identified by western blotting, immunofluorescence and chromatin immunoprecipitation. We found that FOXD3 was frequently methylated and silenced in CRC cell lines and was downregulated in CRC tissues compared with paired adjacent non-tumor tissues. Meanwhile, low FOXD3 protein expression was significantly correlated with poor histopathological grading, lymph node metastasis and poor prognosis of patients, indicating its potential as a tumor marker that may be of potential value as a therapeutic target for CRC. Moreover, restoration of FOXD3 expression inhibited the proliferation and migration of tumor cells. FOXD3 also increased mitochondrial apoptosis through the unfolded protein response under ER stress. Furthermore, we found that FOXD3 could bind directly to the promoter of p53 and enhance its expression. Knockdown of p53 impaired the effect of apoptosis induced by FOXD3. In conclusion, we showed for the first time that FOXD3, which is frequently methylated in CRC, acted as a tumor suppressor inducing tumor cell apoptosis under ER stress via p53.
Collapse
Affiliation(s)
- Ming Xu
- Department of General Surgery and Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Zhu
- Department of Oncology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuiping Liu
- Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chan Wang
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qinglan Shi
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yeye Kuang
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiao Fang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotong Hu
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Farhana L, Banerjee HN, Verma M, Majumdar APN. Role of Microbiome in Carcinogenesis Process and Epigenetic Regulation of Colorectal Cancer. Methods Mol Biol 2018; 1856:35-55. [PMID: 30178245 DOI: 10.1007/978-1-4939-8751-1_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Epigenetic changes during the development of colorectal cancer (CRC) play a significant role. Along with factors such as diet, lifestyle, and genetics, oncogenic infection, bacteria alone or whole microbiome, has been associated with this tumor type. How gut microbiome contributes to CRC pathogenesis in the host is not fully understood. Most of the epigenetic studies in CRC have been conducted in populations infected with Helicobacter pylori. In the current review, we summarize how the gut microbiota contributes in colon carcinogenesis and the potential role of epigenetic mechanism in gene regulation. We discuss microbiota-mediated initiation and progression of colon tumorigenesis and have also touched upon the role of microbial metabolites as an initiator or an inhibitor for procarcinogenic or antioncogenic activities. The hypothesis of gut microbiota associated CRC revealed the dynamic and complexity of microbial interaction in initiating the development of CRC. In the multifaceted processes of colonic carcinogenesis, gradual alteration of microbiota along with their microenvironment and the potential oncopathogenic microbes mediated modulation of cancer therapy and other factors involved in microbiome dysbiosis leading to the CRC have also been discussed. This review provides a comprehensive summary of the mechanisms of CRC development, the role of microbiome or single bacterial infection in regulating the processes of carcinogenesis, and the intervention by novel therapeutics. Epigenetic mechanism involved in CRC is also discussed.
Collapse
Affiliation(s)
- Lulu Farhana
- Veterans Affairs Medical Center, Research Service, Detroit, MI, USA
- Department of Internal Medicine, Wayne State University, Detroit, MI, USA
| | | | - Mukesh Verma
- Epidemiology and Genomics Research Program, National Cancer Institute, Rockville, MD, USA
| | - Adhip P N Majumdar
- Veterans Affairs Medical Center, Research Service, Detroit, MI, USA.
- Department of Internal Medicine, Wayne State University, Detroit, MI, USA.
- Karmanos Cancer Institute, Wayne State University-School of Medicine, Detroit, MI, USA.
| |
Collapse
|
5
|
Verma M. The Role of Epigenomics in the Study of Cancer Biomarkers and in the Development of Diagnostic Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 867:59-80. [PMID: 26530360 DOI: 10.1007/978-94-017-7215-0_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetics plays a key role in cancer development. Genetics alone cannot explain sporadic cancer and cancer development in individuals with no family history or a weak family history of cancer. Epigenetics provides a mechanism to explain the development of cancer in such situations. Alterations in epigenetic profiling may provide important insights into the etiology and natural history of cancer. Because several epigenetic changes occur before histopathological changes, they can serve as biomarkers for cancer diagnosis and risk assessment. Many cancers may remain asymptomatic until relatively late stages; in managing the disease, efforts should be focused on early detection, accurate prediction of disease progression, and frequent monitoring. This chapter describes epigenetic biomarkers as they are expressed during cancer development and their potential use in cancer diagnosis and prognosis. Based on epigenomic information, biomarkers have been identified that may serve as diagnostic tools; some such biomarkers also may be useful in identifying individuals who will respond to therapy and survive longer. The importance of analytical and clinical validation of biomarkers is discussed, along with challenges and opportunities in this field.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Suite# 4E102. 9609 Medical Center Drive, MSC 9763, Bethesda, MD, 20892-9726, USA.
| |
Collapse
|
6
|
Abstract
Liver cancer (hepatocellular carcinoma or HCC) is a major cancer worldwide. Research in this field is needed to identify biomarkers that can be used for early detection of the disease as well as new approaches to its treatment. Epigenetic biomarkers provide an opportunity to understand liver cancer etiology and evaluate novel epigenetic inhibitors for treatment. Traditionally, liver cirrhosis, proteomic biomarkers, and the presence of hepatitis viruses have been used for the detection and diagnosis of liver cancer. Promising results from microRNA (miRNA) profiling and hypermethylation of selected genes have raised hopes of identifying new biomarkers. Some of these epigenetic biomarkers may be useful in risk assessment and for screening populations to identify who is likely to develop cancer. Challenges and opportunities in the field are discussed in this chapter.
Collapse
|
7
|
Abstract
Scientists have long considered genetics to be the key mechanism that alters gene expression because of exposure to the environment and toxic substances (toxicants). Recently, epigenetic mechanisms have emerged as an alternative explanation for alterations in gene expression resulting from such exposure. The fact that certain toxic substances that contribute to tumor development do not induce mutations probably results from underlying epigenetic mechanisms. The field of toxicoepigenomics emerged from the combination of epigenetics and classical toxicology. High-throughput technologies now enable evaluation of altered epigenomic profiling in response to toxins and environmental pollutants. Furthermore, differences in the epigenomic backgrounds of individuals may explain why, although whole populations are exposed to toxicants, only a few people in a population develop cancer. Metals in the environment and toxic substances not only alter DNA methylation patterns and histone modifications but also affect enzymes involved in posttranslational modifications of proteins and epigenetic regulation, and thereby contribute to carcinogenesis. This article describes different toxic substances and environmental pollutants that alter epigenetic profiling and discusses how this information can be used in screening populations at high risk of developing cancer. Research opportunities and challengers in the field also are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods and Technologies Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health (NIH), 9609 Medical Center Drive, Room 4E102, Rockville, MD, 20850, USA,
| |
Collapse
|
8
|
Verma M, Rogers S, Divi RL, Schully SD, Nelson S, Su LJ, Ross S, Pilch S, Winn DM, Khoury MJ. Epigenetic research in cancer epidemiology: trends, opportunities, and challenges. Cancer Epidemiol Biomarkers Prev 2014; 23:223-33. [PMID: 24326628 PMCID: PMC3925982 DOI: 10.1158/1055-9965.epi-13-0573] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetics is emerging as an important field in cancer epidemiology that promises to provide insights into gene regulation and facilitate cancer control throughout the cancer care continuum. Increasingly, investigators are incorporating epigenetic analysis into the studies of etiology and outcomes. To understand current progress and trends in the inclusion of epigenetics in cancer epidemiology, we evaluated the published literature and the National Cancer Institute (NCI)-supported research grant awards in this field to identify trends in epigenetics research. We present a summary of the epidemiologic studies in NCI's grant portfolio (from January 2005 through December 2012) and in the scientific literature published during the same period, irrespective of support from the NCI. Blood cells and tumor tissue were the most commonly used biospecimens in these studies, although buccal cells, cervical cells, sputum, and stool samples were also used. DNA methylation profiling was the focus of the majority of studies, but several studies also measured microRNA profiles. We illustrate here the current status of epidemiologic studies that are evaluating epigenetic changes in large populations. The incorporation of epigenomic assessments in cancer epidemiology studies has and is likely to continue to provide important insights into the field of cancer research.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Scott Rogers
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Rao L. Divi
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Sheri D. Schully
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Stefanie Nelson
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - L. Joseph Su
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Sharon Ross
- Division of Cancer Prevention, NCI, NIH, Bethesda, MD
| | - Susan Pilch
- Office of the Director, Information Resources and Services Branch, NIH, Bethesda, MD
| | - Deborah M. Winn
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Muin J. Khoury
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
- Office of Public Health Genomics, Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
9
|
Verma M, Khoury MJ, Ioannidis JPA. Opportunities and challenges for selected emerging technologies in cancer epidemiology: mitochondrial, epigenomic, metabolomic, and telomerase profiling. Cancer Epidemiol Biomarkers Prev 2013; 22:189-200. [PMID: 23242141 PMCID: PMC3565041 DOI: 10.1158/1055-9965.epi-12-1263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress has been made in the last decade in new methods for biologic measurements using sophisticated technologies that go beyond the established genome, proteome, and gene expression platforms. These methods and technologies create opportunities to enhance cancer epidemiologic studies. In this article, we describe several emerging technologies and evaluate their potential in epidemiologic studies. We review the background, assays, methods, and challenges and offer examples of the use of mitochondrial DNA and copy number assessments, epigenomic profiling (including methylation, histone modification, miRNAs, and chromatin condensation), metabolite profiling (metabolomics), and telomere measurements. We map the volume of literature referring to each one of these measurement tools and the extent to which efforts have been made at knowledge integration (e.g., systematic reviews and meta-analyses). We also clarify strengths and weaknesses of the existing platforms and the range of type of samples that can be tested with each of them. These measurement tools can be used in identifying at-risk populations and providing novel markers of survival and treatment response. Rigorous analytic and validation standards, transparent availability of massive data, and integration in large-scale evidence are essential in fulfilling the potential of these technologies.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
10
|
Epigenomic diversity of colorectal cancer. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
Verma M. Cancer control and prevention by nutrition and epigenetic approaches. Antioxid Redox Signal 2012; 17:355-64. [PMID: 22047027 PMCID: PMC3357077 DOI: 10.1089/ars.2011.4388] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Epigenetics involves alterations in gene expression without changing the nucleotide sequence. Because some epigenetic changes can be reversed chemically, epigenetics has tremendous implications for disease intervention and treatment. RECENT ADVANCES After epigenetic components in cancer were characterized, genes and pathways are being characterized in other diseases such as diabetes, obesity, and neurological disorders. Observational, experimental, and clinical studies in different diseases have shown that nutrients influence epigenetic regulation. Nutrients such as folic acid that supply methyl groups have been shown to have a protective effect in colon cancer. CRITICAL ISSUES Identifying steps during epigenetic regulation and developing intervention and treatment agents are the critical issues in the field. FUTURE DIRECTIONS Following completion and validation of key observational studies in nutritional epigenetics, strategies can be developed for cancer control and treatment.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genetics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA.
| |
Collapse
|
12
|
Abstract
Epigenetics is an emerging science that can help to explain carcinogenesis. The possibility that carcinogenesis may originate in a stem cell process was proposed recently. Stem cells are generated and contribute to tumor formation during the process of tumor development. This chapter focuses on the role of epigenetics and genetics in stem cell formation, different theories about the origin of cancer stem cells (CSCs), and epigenetic mechanisms that occur in solid CSCs. Potential applications of knowledge gained through this field and future prospects for cancer treatment also are discussed.
Collapse
Affiliation(s)
- Alok Mishra
- Ambedkar Center for Biomedical Research (ACBR), Delhi University, Delhi, India
| | | |
Collapse
|
13
|
Abstract
Biochemical, epigenetic, genetic, and imaging biomarkers are used to identify people at high risk for developing cancer. In cancer epidemiology, epigenetic biomarkers offer advantages over other types of biomarkers because they are expressed against a person's genetic background and environmental exposure, and because epigenetic events occur early in cancer development. This chapter describes epigenetic biomarkers that are being used to study the epidemiology of different types of cancer. Because epigenetic alterations can be reversed by chemicals and activate gene expression, epigenetic biomarkers potentially have numerous clinical applications in cancer intervention and treatment and significant implications in public health. This review discusses cancer biomarkers, the characteristics of an ideal biomarker for cancer, and technologies for biomarker detection.
Collapse
|
14
|
Abstract
Accumulation of genetic and epigenetic alterations transforms normal colonic epithelial cells to adenocarcinoma cells. Genetic alterations include mutations in tumor suppressor genes and oncogenes, whereas epigenetic mechanisms are defined as heritable alterations in gene expression that is independent of changes in the primary DNA sequence. Role of epigenetic mechanisms in development and maintenance of organ- and tissue-specific gene expression is now realized. Disturbances in epigenetic landscape can lead to malignant cellular makeover, and these heritable changes are maintained through various cycles of cell division that renders cells to have discrete identity with similar genetic information. Epigenetic alterations in colorectal cancer (CRC) that transform colonic epithelial cells into adenocarcinoma cells include aberrant DNA methylation, chromatin modifications, and noncoding RNAs, especially microRNA expression. CpG island DNA methylation and aberrant methylation of genes drive the initiation and progression of CRC. Histone modifications impinge on chromatin structure and gene expression and thus play an important role in gene silencing in CRC. DNA hypermethylation also leads to downregulation and inappropriate expression of certain microRNAs that act like tumor suppressor genes. Determining the causes and roles of epigenetic instability in CRC pathogenesis will lead to effective prevention and therapeutic strategies for patients with CRC. Epigenetic drugs that underscore the reversible nature of epigenetic events have led the possibility of epigenetic therapy as a treatment option in CRC.
Collapse
Affiliation(s)
- Sharad Khare
- Hines Veterans Affairs Medical Center, Hines, IL, USA.
| | | |
Collapse
|
15
|
Liu D, Zhou P, Zhang L, Wu G, Zheng Y, He F. Differential expression of Oct4 in HPV-positive and HPV-negative cervical cancer cells is not regulated by DNA methyltransferase 3A. Tumour Biol 2011; 32:941-50. [PMID: 21674242 DOI: 10.1007/s13277-011-0196-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 05/24/2011] [Indexed: 11/28/2022] Open
Abstract
The colony-forming ability of cervical cancer is affected by many factors. Oct4, an important transcription factor, is highly expressed in several tumors and promotes the colony-forming ability of cancer cells. Thus, it is considered a potential target for the treatment of cancer. However, we know little about the expression level of Oct4 and its epigenetic regulatory mechanism in cervical cancer cells. In this study, we are the first to observe that human papillomavirus (HPV)-positive cervical cancer cell lines (HeLa, Caski) have a stronger colony-forming ability than HPV-negative cervical cancer cell lines (C-33A). Moreover, the expression level of Oct4 in both HeLa and Caski cells was also higher than that in C-33A cells. We then confirmed that there was a negative correlation between the expression of Oct4 and DNMT3A in these three types of cervical cancer cells, whereas DNA methyltransferase 1 and 3B had no differences among the cell lines. However, after DNA methylation in both key regulatory regions of the Oct4 gene and the genomic levels were analyzed, we found that DNA methyltransferase 3A could neither regulate the expression of Oct4 nor affect the whole level of genomic DNA methylation. These results suggest three points: (1) Oct4 might be treated as a new target for the treatment of cervical cancer, (2) we could not inhibit the expression of Oct4 by DNA demethylation, and (3) HPV virus might initiate cervical carcinogenesis by upregulation of Oct4 expression.
Collapse
Affiliation(s)
- Dongbo Liu
- Department of Biochemistry and Molecular Biology, Third Military Medical University, 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
After the completion of the human genome, a need was identified by scientists to look for a functional map of the human genome. Epigenomics provided functional characteristics of genes identified in the genome. Epigenetics is the alteration in gene expression (function) without changing the nucleotide sequence. Both activation and inactivation of cancer-associated genes can occur by epigenetic mechanisms. The major players in epigenetic mechanisms of gene regulation are DNA methylation, histone deacetylation, chromatin remodeling, small noncoding RNA expression and gene imprinting. In the last few years, epigenetic mechanisms have been studied in a number of tumor types and epigenetic markers have been identified that are suitable for cancer detection, diagnosis, follow-up of treatment and screening high-risk populations. One interesting aspect of epigenetics is the reactivation of genes by successful reversion of some epigenetic changes using chemicals. The reversibility of epigenetic aberrations has made them attractive targets for cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases, leading to the reactivation of silenced genes. In this article, we have described the current status of this powerful science and discussed the challenges in the clinical fields where epigenetic approaches in cancer are applied.
Collapse
Affiliation(s)
- Hirendra Nath Banerjee
- Department of Biology, Campus Box 930, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA.
| | | |
Collapse
|
17
|
Schully SD, Benedicto CB, Gillanders EM, Wang SS, Khoury MJ. Translational research in cancer genetics: the road less traveled. Public Health Genomics 2009; 14:1-8. [PMID: 20051673 PMCID: PMC3025883 DOI: 10.1159/000272897] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 12/22/2022] Open
Abstract
Gene discoveries in cancer have the potential for clinical and public health applications. To take advantage of such discoveries, a translational research agenda is needed to take discoveries from the bench to population health impact. To assess the current status of translational research in cancer genetics, we analyzed the extramural grant portfolio of the National Cancer Institute (NCI) from Fiscal Year 2007, as well as the cancer genetic research articles published in 2007. We classified both funded grants and publications as follows: T0 as discovery research; T1 as research to develop a candidate health application (e.g., test or therapy); T2 as research that evaluates a candidate application and develops evidence-based recommendations; T3 as research that assesses how to integrate an evidence-based recommendation into cancer care and prevention; and T4 as research that assesses health outcomes and population impact. We found that 1.8% of the grant portfolio and 0.6% of the published literature was T2 research or beyond. In addition to discovery research in cancer genetics, a translational research infrastructure is urgently needed to methodically evaluate and translate gene discoveries for cancer care and prevention.
Collapse
Affiliation(s)
- S D Schully
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|