1
|
Lyu Z, Genereux JC. Methodologies for Measuring Protein Trafficking across Cellular Membranes. Chempluschem 2021; 86:1397-1415. [PMID: 34636167 DOI: 10.1002/cplu.202100304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Indexed: 12/11/2022]
Abstract
Nearly all proteins are synthesized in the cytosol. The majority of this proteome must be trafficked elsewhere, such as to membranes, to subcellular compartments, or outside of the cell. Proper trafficking of nascent protein is necessary for protein folding, maturation, quality control and cellular and organismal health. To better understand cellular biology, molecular and chemical technologies to properly characterize protein trafficking (and mistrafficking) have been developed and applied. Herein, we take a biochemical perspective to review technologies that enable spatial and temporal measurement of protein distribution, focusing on both the most widely adopted methodologies and exciting emerging approaches.
Collapse
Affiliation(s)
- Ziqi Lyu
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, 92521, Riverside, CA, USA
| | - Joseph C Genereux
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, 92521, Riverside, CA, USA
| |
Collapse
|
2
|
Loh LN, McCarthy EMC, Narang P, Khan NA, Ward TH. Escherichia coli K1 utilizes host macropinocytic pathways for invasion of brain microvascular endothelial cells. Traffic 2017; 18:733-746. [PMID: 28799243 DOI: 10.1111/tra.12508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 01/06/2023]
Abstract
Eukaryotic cells utilize multiple endocytic pathways for specific uptake of ligands or molecules, and these pathways are commonly hijacked by pathogens to enable host cell invasion. Escherichia coli K1, a pathogenic bacterium that causes neonatal meningitis, invades the endothelium of the blood-brain barrier, but the entry route remains unclear. Here, we demonstrate that the bacteria trigger an actin-mediated uptake route, stimulating fluid phase uptake, membrane ruffling and macropinocytosis. The route of uptake requires intact lipid rafts as shown by cholesterol depletion. Using a variety of perturbants we demonstrate that small Rho GTPases and their downstream effectors have a significant effect on bacterial invasion. Furthermore, clathrin-mediated endocytosis appears to play an indirect role in E. coli K1 uptake. The data suggest that the bacteria effect a complex interplay between the Rho GTPases to increase their chances of uptake by macropinocytosis into human brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Lip Nam Loh
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Elizabeth M C McCarthy
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Priyanka Narang
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Naveed A Khan
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, Selangor, Malaysia
| | - Theresa H Ward
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
3
|
Auner HW, Moody AM, Ward TH, Kraus M, Milan E, May P, Chaidos A, Driessen C, Cenci S, Dazzi F, Rahemtulla A, Apperley JF, Karadimitris A, Dillon N. Combined inhibition of p97 and the proteasome causes lethal disruption of the secretory apparatus in multiple myeloma cells. PLoS One 2013; 8:e74415. [PMID: 24069311 PMCID: PMC3775786 DOI: 10.1371/journal.pone.0074415] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
Inhibition of the proteasome is a widely used strategy for treating multiple myeloma that takes advantage of the heavy secretory load that multiple myeloma cells (MMCs) have to deal with. Resistance of MMCs to proteasome inhibition has been linked to incomplete disruption of proteasomal endoplasmic-reticulum (ER)-associated degradation (ERAD) and activation of non-proteasomal protein degradation pathways. The ATPase p97 (VCP/Cdc48) has key roles in mediating both ERAD and non-proteasomal protein degradation and can be targeted pharmacologically by small molecule inhibition. In this study, we compared the effects of p97 inhibition with Eeyarestatin 1 and DBeQ on the secretory apparatus of MMCs with the effects induced by the proteasome inhibitor bortezomib, and the effects caused by combined inhibition of p97 and the proteasome. We found that p97 inhibition elicits cellular responses that are different from those induced by proteasome inhibition, and that the responses differ considerably between MMC lines. Moreover, we found that dual inhibition of both p97 and the proteasome terminally disrupts ER configuration and intracellular protein metabolism in MMCs. Dual inhibition of p97 and the proteasome induced high levels of apoptosis in all of the MMC lines that we analysed, including bortezomib-adapted AMO-1 cells, and was also effective in killing primary MMCs. Only minor toxicity was observed in untransformed and non-secretory cells. Our observations highlight non-redundant roles of p97 and the proteasome in maintaining secretory homeostasis in MMCs and provide a preclinical conceptual framework for dual targeting of p97 and the proteasome as a potential new therapeutic strategy in multiple myeloma.
Collapse
Affiliation(s)
- Holger W. Auner
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
- Centre for Haematology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Anne Marie Moody
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Theresa H. Ward
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Enrico Milan
- Age Related Diseases Group, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Philippa May
- Centre for Haematology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Aristeidis Chaidos
- Centre for Haematology, Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Simone Cenci
- Age Related Diseases Group, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Francesco Dazzi
- Centre for Haematology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Amin Rahemtulla
- Centre for Haematology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Jane F. Apperley
- Centre for Haematology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Niall Dillon
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Kirk SJ, Cliff JM, Thomas JA, Ward TH. Biogenesis of secretory organelles during B cell differentiation. J Leukoc Biol 2009; 87:245-55. [PMID: 19889725 DOI: 10.1189/jlb.1208774] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The differentiation of B cells into Ig-secreting plasma cells requires the expansion of secretory organelles to cope with the increased cargo load. To evaluate the timeline of this process, we have quantitated the kinetics of secretory organelle expansion relative to Ig secretion and examined regulatory components of secretory transport following in vitro activation of human B lymphocytes. Unstimulated B cells contain minimal endomembranes. After activation, ER membrane induction appears as tightly packed spherical structures of 0.5-1 mum diameter concentrated in a juxtanuclear position. When the cells differentiate into plasmablasts, there is dramatic cell-size increase, but the ER remains concentrated close to the nucleus and only later fills the entire cell. In sharp contrast, previous studies in other cell types have found that the ER expands in synchrony with increasing cell size during interphase, by extension of ER tubules under the PM. In this study, the Golgi remains consistently as a single juxtanuclear structure but linearly expands sixfold in volume during B cell activation. Furthermore, following active cell proliferation, ER exit sites proliferate rapidly, increasing almost fourfold in number, in parallel with a sharp increase in Ig secretion. These findings demonstrate that the control of organelle biogenesis and expansion in primary human B cells are differentially regulated by cargo flux caused by Ig synthesis.
Collapse
Affiliation(s)
- Semra J Kirk
- Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | | | | | | |
Collapse
|