1
|
Gopinath T, Weber D, Wang S, Larsen E, Veglia G. Solid-State NMR of Membrane Proteins in Lipid Bilayers: To Spin or Not To Spin? Acc Chem Res 2021; 54:1430-1439. [PMID: 33655754 PMCID: PMC11457538 DOI: 10.1021/acs.accounts.0c00670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Membrane proteins mediate a plethora of cellular functions and represent important targets for drug development. Unlike soluble proteins, membrane proteins require native-like environments to fold correctly and be active. Therefore, modern structural biology techniques have aimed to determine the structure and dynamics of these membrane proteins at physiological temperature and in liquid crystalline lipid bilayers. With the flourishing of new NMR methodologies and improvements in sample preparations, magic angle spinning (MAS) and oriented sample solid-state NMR (OS-ssNMR) spectroscopy of membrane proteins is experiencing a new renaissance. Born as antagonistic approaches, these techniques nowadays offer complementary information on the structural topology and dynamics of membrane proteins reconstituted in lipid membranes. By spinning biosolid samples at the magic angle (θ = 54.7°), MAS NMR experiments remove the intrinsic anisotropy of the NMR interactions, increasing spectral resolution. Internuclear spin interactions (spin exchange) are reintroduced by RF pulses, providing distances and torsion angles to determine secondary, tertiary, and quaternary structures of membrane proteins. OS-ssNMR, on the other hand, directly detects anisotropic NMR parameters such as dipolar couplings (DC) and anisotropic chemical shifts (CS), providing orientational constraints to determine the architecture (i.e., topology) of membrane proteins relative to the lipid membrane. Defining the orientation of membrane proteins and their interactions with lipid membranes is of paramount importance since lipid-protein interactions can shape membrane protein conformations and ultimately define their functional states.In this Account, we report selected studies from our group integrating MAS and OS-ssNMR techniques to give a comprehensive view of the biological processes occurring at cellular membranes. We focus on the main experiments for both techniques, with an emphasis on new implementation to increase both sensitivity and spectral resolution. We also describe how the structural constraints derived from both isotropic and anisotropic NMR parameters are integrated into dynamic structural modeling using replica-averaged orientational-restrained molecular dynamics simulations (RAOR-MD). We showcase small membrane proteins that are involved in Ca2+ transport and regulate cardiac and skeletal muscle contractility: phospholamban (PLN, 6 kDa), sarcolipin (SLN, 4 kDa), and DWORF (4 kDa). We summarize our results for the structures of these polypeptides free and in complex with the sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA, 110 kDa). Additionally, we illustrate the progress toward the determination of the structural topology of a six transmembrane protein associated with succinate and acetate transport (SatP, hexamer 120 kDa). From these examples, the integrated MAS and OS-ssNMR approach, in combination with modern computational methods, emerges as a way to overcome the challenges posed by studying large membrane protein systems.
Collapse
|
2
|
Affiliation(s)
- Rob Kaptein
- Bijvoet Centre, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | | |
Collapse
|
3
|
Protein structure validation and identification from unassigned residual dipolar coupling data using 2D-PDPA. Molecules 2013; 18:10162-88. [PMID: 23973992 PMCID: PMC4090686 DOI: 10.3390/molecules180910162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 11/22/2022] Open
Abstract
More than 90% of protein structures submitted to the PDB each year are homologous to some previously characterized protein structure. The extensive resources that are required for structural characterization of proteins can be justified for the 10% of the novel structures, but not for the remaining 90%. This report presents the 2D-PDPA method, which utilizes unassigned residual dipolar coupling in order to address the economics of structure determination of routine proteins by reducing the data acquisition and processing time. 2D-PDPA has been demonstrated to successfully identify the correct structure of an array of proteins that range from 46 to 445 residues in size from a library of 619 decoy structures by using unassigned simulated RDC data. When using experimental data, 2D-PDPA successfully identified the correct NMR structures from the same library of decoy structures. In addition, the most homologous X-ray structure was also identified as the second best structural candidate. Finally, success of 2D-PDPA in identifying and evaluating the most appropriate structure from a set of computationally predicted structures in the case of a previously uncharacterized protein Pf2048.1 has been demonstrated. This protein exhibits less than 20% sequence identity to any protein with known structure and therefore presents a compelling and practical application of our proposed work.
Collapse
|
4
|
Ward ME, Shi L, Lake E, Krishnamurthy S, Hutchins H, Brown LS, Ladizhansky V. Proton-detected solid-state NMR reveals intramembrane polar networks in a seven-helical transmembrane protein proteorhodopsin. J Am Chem Soc 2011; 133:17434-43. [PMID: 21919530 DOI: 10.1021/ja207137h] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We used high-resolution proton-detected multidimensional NMR to study the solvent-exposed parts of a seven-helical integral membrane proton pump, proteorhodopsin (PR). PR samples were prepared by growing the apoprotein on fully deuterated medium and reintroducing protons to solvent-accessible sites through exchange with protonated buffer. This preparation leads to NMR spectra with proton resolution down to ca. 0.2 ppm at fast spinning (28 kHz) in a protein back-exchanged at a level of 40%. Novel three-dimensional proton-detected chemical shift correlation spectroscopy allowed for the identification and resonance assignment of the solvent-exposed parts of the protein. Most of the observed residues are located at the membrane interface, but there are notable exceptions, particularly in helix G, where most of the residues are susceptible to H/D exchange. This helix contains Schiff base-forming Lys231, and many conserved polar residues in the extracellular half, such as Asn220, Tyr223, Asn224, Asp227, and Asn230. We proposed earlier that high mobility of the F-G loop may transiently expose a hydrophilic cavity in the extracellular half of the protein, similar to the one found in xanthorhodopsin. Solvent accessibility of helix G is in line with this hypothesis, implying that such a cavity may be a part of the proton-conducting pathway lined by this helix.
Collapse
Affiliation(s)
- Meaghan E Ward
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
5
|
Jin S, Zhou F, Katirai F, Li PL. Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 2011; 15:1043-83. [PMID: 21294649 PMCID: PMC3135227 DOI: 10.1089/ars.2010.3619] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases.
Collapse
Affiliation(s)
- Si Jin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | |
Collapse
|
6
|
Hu J, Qin H, Gao FP, Cross TA. A systematic assessment of mature MBP in membrane protein production: overexpression, membrane targeting and purification. Protein Expr Purif 2011; 80:34-40. [PMID: 21689756 DOI: 10.1016/j.pep.2011.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 01/17/2023]
Abstract
Obtaining enough membrane protein in native or native-like status is still a challenge in membrane protein structure biology. Maltose binding protein (MBP) has been widely used as a fusion partner in improving membrane protein production. In the present work, a systematic assessment on the application of mature MBP (mMBP) for membrane protein overexpression and purification was performed on 42 membrane proteins, most of which showed no or poor expression level in membrane fraction fused with an N-terminal Histag. It was found that most of the small membrane proteins were overexpressed in the native membrane of Escherichia coli when using mMBP. In addition, the proteolysis of the fusions were performed on the membrane without solubilization with detergents, leading to the development of an efficient protocol to directly purify the target membrane proteins from the membrane fraction through a one-step affinity chromatography. Our results indicated that mMBP is an excellent fusion partner for overexpression, membrane targeting and purification of small membrane proteins. The present expression and purification method may be a good solution for the large scale preparation of small membrane proteins in structural and functional studies.
Collapse
Affiliation(s)
- Jian Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32310, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Membrane-active peptides or protein segments play an important role in many biological processes at the cellular interface to the environment. They are involved, e.g., in cellular fusion or host defense, where they can cause not only merging but also the destabilization of cell membranes. Many factors determine how these typically amphipathic peptides interact with the lipid bilayer. For example, the peptide orientation in the membrane determines which parts of the peptide are exposed to the hydrophobic bilayer interior or to the polar lipid/water interface. As another example, oligomerization is required for many activities such as pore formation. Peptides have been often classified according to a single characteristic mode of interaction with the bilayer, but over the years a more versatile picture has emerged. It appears that any single peptide can adopt several different alignments and/or oligomeric states in response to changes in the environment. For instance, many antimicrobial peptides adopt a surface-parallel alignment at low concentration, but they tilt obliquely into or even fully insert transmembrane into the bilayer above a critical peptide-to-lipid ratio, often in the form of oligomeric pores. Similar changes in peptide orientation or oligomeric state have been observed as a function of, e.g., temperature, lipid composition, pH, or induced by a synergistic partner peptide. Such transitions between peptide states can be regarded as the result of a re-adjustment in the balance between peptide-peptide and peptide-lipid interactions, as the environment conditions are changed. Though often studied in model membrane systems, such rich variety of peptide states is even more likely to occur in native biomembranes with their diverse compositions and physicochemical properties. The ability to undergo transitions between different states thus plays a fundamental role for the biological activities of membrane-active peptides.
Collapse
Affiliation(s)
- Stephan L Grage
- Karlsruhe Institute of Technology, Institute for Biological Interfaces (IBG-2), Institute of Organic Chemistry, Karlsruhe, Germany
| | | | | |
Collapse
|
8
|
Blois TM, Bowie JU. G-protein-coupled receptor structures were not built in a day. Protein Sci 2009; 18:1335-42. [PMID: 19536805 DOI: 10.1002/pro.165] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Among the most exciting recent developments in structural biology is the structure determination of G-protein-coupled receptors (GPCRs), which comprise the largest class of membrane proteins in mammalian cells and have enormous importance for disease and drug development. The GPCR structures are perhaps the most visible examples of a nascent revolution in membrane protein structure determination. Like other major milestones in science, however, such as the sequencing of the human genome, these achievements were built on a hidden foundation of technological developments. Here, we describe some of the methods that are fueling the membrane protein structure revolution and have enabled the determination of the current GPCR structures, along with new techniques that may lead to future structures.
Collapse
Affiliation(s)
- Tracy M Blois
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA
| | | |
Collapse
|
9
|
Page RC, Lee S, Moore JD, Opella SJ, Cross TA. Backbone structure of a small helical integral membrane protein: A unique structural characterization. Protein Sci 2009; 18:134-46. [PMID: 19177358 DOI: 10.1002/pro.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The structural characterization of small integral membrane proteins pose a significant challenge for structural biology because of the multitude of molecular interactions between the protein and its heterogeneous environment. Here, the three-dimensional backbone structure of Rv1761c from Mycobacterium tuberculosis has been characterized using solution NMR spectroscopy and dodecylphosphocholine (DPC) micelles as a membrane mimetic environment. This 127 residue single transmembrane helix protein has a significant (10 kDa) C-terminal extramembranous domain. Five hundred and ninety distance, backbone dihedral, and orientational restraints were employed resulting in a 1.16 A rmsd backbone structure with a transmembrane domain defined at 0.40 A. The structure determination approach utilized residual dipolar coupling orientation data from partially aligned samples, long-range paramagnetic relaxation enhancement derived distances, and dihedral restraints from chemical shift indices to determine the global fold. This structural model of Rv1761c displays some influences by the membrane mimetic illustrating that the structure of these membrane proteins is dictated by a combination of the amino acid sequence and the protein's environment. These results demonstrate both the efficacy of the structural approach and the necessity to consider the biophysical properties of membrane mimetics when interpreting structural data of integral membrane proteins and, in particular, small integral membrane proteins.
Collapse
Affiliation(s)
- Richard C Page
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | | | | | | | | |
Collapse
|
10
|
Shi L, Traaseth NJ, Verardi R, Cembran A, Gao J, Veglia G. A refinement protocol to determine structure, topology, and depth of insertion of membrane proteins using hybrid solution and solid-state NMR restraints. JOURNAL OF BIOMOLECULAR NMR 2009; 44:195-205. [PMID: 19597943 PMCID: PMC2824793 DOI: 10.1007/s10858-009-9328-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 05/15/2009] [Indexed: 05/11/2023]
Abstract
To fully describe the fold space and ultimately the biological function of membrane proteins, it is necessary to determine the specific interactions of the protein with the membrane. This property of membrane proteins that we refer to as structural topology cannot be resolved using X-ray crystallography or solution NMR alone. In this article, we incorporate into XPLOR-NIH a hybrid objective function for membrane protein structure determination that utilizes solution and solid-state NMR restraints, simultaneously defining structure, topology, and depth of insertion. Distance and angular restraints obtained from solution NMR of membrane proteins solubilized in detergent micelles are combined with backbone orientational restraints (chemical shift anisotropy and dipolar couplings) derived from solid-state NMR in aligned lipid bilayers. In addition, a supplementary knowledge-based potential, E (z) (insertion depth potential), is used to ensure the correct positioning of secondary structural elements with respect to a virtual membrane. The hybrid objective function is minimized using a simulated annealing protocol implemented into XPLOR-NIH software for general use.
Collapse
Affiliation(s)
- Lei Shi
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nathaniel J. Traaseth
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Raffaello Verardi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Alessandro Cembran
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiali Gao
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA. Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Shi L, Cembran A, Gao J, Veglia G. Tilt and azimuthal angles of a transmembrane peptide: a comparison between molecular dynamics calculations and solid-state NMR data of sarcolipin in lipid membranes. Biophys J 2009; 96:3648-62. [PMID: 19413970 DOI: 10.1016/j.bpj.2009.02.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 02/03/2009] [Accepted: 02/12/2009] [Indexed: 02/04/2023] Open
Abstract
We report molecular dynamics simulations in the explicit membrane environment of a small membrane-embedded protein, sarcolipin, which regulates the sarcoplasmic reticulum Ca-ATPase activity in both cardiac and skeletal muscle. In its monomeric form, we found that sarcolipin adopts a helical conformation, with a computed average tilt angle of 28 +/- 6 degrees and azymuthal angles of 66 +/- 22 degrees, in reasonable accord with angles determined experimentally (23 +/- 2 degrees and 50 +/- 4 degrees, respectively) using solid-state NMR with separated-local-field experiments. The effects of time and spatial averaging on both (15)N chemical shift anisotropy and (1)H/(15)N dipolar couplings have been analyzed using short-time averages of fast amide out-of-plane motions and following principal component dynamic trajectories. We found that it is possible to reproduce the regular oscillatory patterns observed for the anisotropic NMR parameters (i.e., PISA wheels) employing average amide vectors. This work highlights the role of molecular dynamics simulations as a tool for the analysis and interpretation of solid-state NMR data.
Collapse
Affiliation(s)
- Lei Shi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
12
|
Mukhopadhyay R, Miao X, Shealy P, Valafar H. Efficient and accurate estimation of relative order tensors from lambda-maps. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 198:236-247. [PMID: 19345125 PMCID: PMC4071621 DOI: 10.1016/j.jmr.2009.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/17/2009] [Accepted: 02/27/2009] [Indexed: 05/25/2023]
Abstract
The rapid increase in the availability of RDC data from multiple alignment media in recent years has necessitated the development of more sophisticated analyses that extract the RDC data's full information content. This article presents an analysis of the distribution of RDCs from two media (2D-RDC data), using the information obtained from a lambda-map. This article also introduces an efficient algorithm, which leverages these findings to extract the order tensors for each alignment medium using unassigned RDC data in the absence of any structural information. The results of applying this 2D-RDC analysis method to synthetic and experimental data are reported in this article. The relative order tensor estimates obtained from the 2D-RDC analysis are compared to order tensors obtained from the program REDCAT after using assignment and structural information. The final comparisons indicate that the relative order tensors estimated from the unassigned 2D-RDC method very closely match the results from methods that require assignment and structural information. The presented method is successful even in cases with small datasets. The results of analyzing experimental RDC data for the protein 1P7E are presented to demonstrate the potential of the presented work in accurately estimating the principal order parameters from RDC data that incompletely sample the RDC space. In addition to the new algorithm, a discussion of the uniqueness of the solutions is presented; no more than two clusters of distinct solutions have been shown to satisfy each lambda-map.
Collapse
|
13
|
Tiburu EK, Tyukhtenko S, Deshmukh L, Vinogradova O, Janero DR, Makriyannis A. Structural biology of human cannabinoid receptor-2 helix 6 in membrane-mimetic environments. Biochem Biophys Res Commun 2009; 384:243-8. [PMID: 19397896 DOI: 10.1016/j.bbrc.2009.04.099] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 04/19/2009] [Indexed: 10/20/2022]
Abstract
We detail the structure and dynamics of a synthetic peptide corresponding to transmembrane helix 6 (TMH6) of human cannabinoid receptor-2 (hCB2) in biomembrane-mimetic environments. The peptide's NMR structural biology is characterized by two alpha-helical domains bridged by a flexible, nonhelical hinge region containing a highly-conserved CWFP motif with an environmentally sensitive, Pro-based conformational switch. Buried within the peptide's flexible region, W(258) may hydrogen-bond with L(255) to help stabilize the Pro-kinked hCB2 TMH6 structure and position C(257) advantageously for interaction with agonist ligands. These characteristics of hCB2 TMH6 are potential structural features of ligand-induced hCB2 activation in vivo.
Collapse
Affiliation(s)
- Elvis K Tiburu
- Center for Drug Discovery and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115-5000, USA
| | | | | | | | | | | |
Collapse
|
14
|
Miao X, Mukhopadhyay R, Valafar H. Estimation of relative order tensors, and reconstruction of vectors in space using unassigned RDC data and its application. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 194:202-11. [PMID: 18692422 PMCID: PMC2669903 DOI: 10.1016/j.jmr.2008.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/27/2008] [Accepted: 07/02/2008] [Indexed: 05/11/2023]
Abstract
Advances in NMR instrumentation and pulse sequence design have resulted in easier acquisition of Residual Dipolar Coupling (RDC) data. However, computational and theoretical analysis of this type of data has continued to challenge the international community of investigators because of their complexity and rich information content. Contemporary use of RDC data has required a-priori assignment, which significantly increases the overall cost of structural analysis. This article introduces a novel algorithm that utilizes unassigned RDC data acquired from multiple alignment media (nD-RDC, n3) for simultaneous extraction of the relative order tensor matrices and reconstruction of the interacting vectors in space. Estimation of the relative order tensors and reconstruction of the interacting vectors can be invaluable in a number of endeavors. An example application has been presented where the reconstructed vectors have been used to quantify the fitness of a template protein structure to the unknown protein structure. This work has other important direct applications such as verification of the novelty of an unknown protein and validation of the accuracy of an available protein structure model in drug design. More importantly, the presented work has the potential to bridge the gap between experimental and computational methods of structure determination.
Collapse
Affiliation(s)
- Xijiang Miao
- Computer Science and Engineering, Swearingen Engineering Center, University of South Carolina, Columbia, SC 29308, USA
| | | | | |
Collapse
|