1
|
Calmodulin and Its Interactive Proteins Participate in Regulating the Explosive Growth of Alexandrium pacificum (Dinoflagellate). Int J Mol Sci 2021; 23:ijms23010145. [PMID: 35008568 PMCID: PMC8745774 DOI: 10.3390/ijms23010145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Alexandrium pacificum is a typical dinoflagellate that can cause harmful algal blooms, resulting in negative impacts on ecology and human health. The calcium (Ca2+) signal transduction pathway plays an important role in cell proliferation. Calmodulin (CaM) and CaM-related proteins are the main cellular Ca2+ sensors, and can act as an intermediate in the Ca2+ signal transduction pathway. In this study, the proteins that interacted with CaM of A. pacificum were screened by two-dimensional electrophoresis analysis and far western blots under different growth conditions including lag phase and high phosphorus and manganese induced log phase (HPM). The interactive proteins were then identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Four proteins were identified, including Ca2+/CaM-dependent protein kinase, serine/threonine kinase, annexin, and inositol-3-phosphate synthase, which all showed high expression levels under HPM. The gene expression levels encoding these four proteins were also up-regulated under HPM, as revealed by quantitative polymerase chain reaction, suggesting that the identified proteins participate in the Ca2+ transport channel and cell cycle regulation to promote cell division. A network of proteins interacting with CaM and their target proteins involved in the regulation of cell proliferation was raised, which provided new insights into the mechanisms behind the explosive growth of A. pacificum.
Collapse
|
2
|
Xiao W, Liu Z, Luo W, Gao Y, Chang L, Li Y, Xu P. Specific and Unbiased Detection of Polyubiquitination via a Sensitive Non-Antibody Approach. Anal Chem 2019; 92:1074-1080. [DOI: 10.1021/acs.analchem.9b04092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weidi Xiao
- National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing 102206, People’s Republic of China
| | - Zijuan Liu
- National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing 102206, People’s Republic of China
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People’s Republic of China
| | - Weijia Luo
- National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing 102206, People’s Republic of China
| | - Yuan Gao
- National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing 102206, People’s Republic of China
| | - Lei Chang
- National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing 102206, People’s Republic of China
| | - Yanchang Li
- National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing 102206, People’s Republic of China
| | - Ping Xu
- National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing 102206, People’s Republic of China
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People’s Republic of China
- Second Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou 510120, People’s Republic of China
- Guizhou University School of Medicine, Guiyang 550025, People’s Republic of China
| |
Collapse
|
3
|
Manole E, E. Bastian A, D. Popescu I, Constantin C, Mihai S, F. Gaina G, Codrici E, T. Neagu M. Immunoassay Techniques Highlighting Biomarkers in Immunogenetic Diseases. Immunogenetics 2019. [DOI: 10.5772/intechopen.75951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Sreeja JS, Nellikka RK, John R, Sivakumar KC, Sreekumar E, Sengupta S. Binding of alpha-fodrin to gamma-tubulin accounts for its role in the inhibition of microtubule nucleation. FEBS Lett 2019; 593:1154-1165. [PMID: 31062342 DOI: 10.1002/1873-3468.13425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 11/10/2022]
Abstract
Non-erythroid spectrin or fodrin is present as part of the γ-tubulin ring complex (γ-TuRC) in brain tissue and brain derived cells. Here, we show that fodrin, which is otherwise known for providing structural support to the cell membrane, interacts directly with γ-tubulin within the γ-TuRC through a GRIP2-like motif. Turbidometric analysis of microtubule polymerization with nucleation-potent γ-TuRC isolated from HEK-293 cells that lack fodrin and the γ-TuRC from goat brain that contains fodrin shows inefficiency of the latter to promote nucleation. The involvement of fodrin was confirmed by the reduction in the microtubule polymerization efficiency of HEK-293 derived γ-TuRCs upon addition of purified brain fodrin. Thus, the interaction of fodrin with gamma-tubulin is responsible for its inhibitory effect on γ-tubulin mediated microtubule nucleation.
Collapse
Affiliation(s)
- Jamuna S Sreeja
- Cancer Research Programme, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | | | - Rince John
- Cancer Research Programme, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | | | - Easwaran Sreekumar
- Viral Disease Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Suparna Sengupta
- Cancer Research Programme, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
5
|
Deng X, Dai P, Yu M, Chen L, Zhu C, You X, Li L, Zeng Y. Cyclophilin A is the potential receptor of the Mycoplasma genitalium adhesion protein. Int J Med Microbiol 2018; 308:405-412. [DOI: 10.1016/j.ijmm.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/16/2018] [Accepted: 03/05/2018] [Indexed: 11/29/2022] Open
|
6
|
Miller MB, Yan Y, Machida K, Kiraly DD, Levy AD, Wu YI, Lam TT, Abbott T, Koleske AJ, Eipper BA, Mains RE. Brain Region and Isoform-Specific Phosphorylation Alters Kalirin SH2 Domain Interaction Sites and Calpain Sensitivity. ACS Chem Neurosci 2017; 8:1554-1569. [PMID: 28418645 DOI: 10.1021/acschemneuro.7b00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Kalirin7 (Kal7), a postsynaptic Rho GDP/GTP exchange factor (RhoGEF), plays a crucial role in long-term potentiation and in the effects of cocaine on behavior and spine morphology. The KALRN gene has been linked to schizophrenia and other disorders of synaptic function. Mass spectrometry was used to quantify phosphorylation at 26 sites in Kal7 from individual adult rat nucleus accumbens and prefrontal cortex before and after exposure to acute or chronic cocaine. Region- and isoform-specific phosphorylation was observed along with region-specific effects of cocaine on Kal7 phosphorylation. Evaluation of the functional significance of multisite phosphorylation in a complex protein like Kalirin is difficult. With the identification of five tyrosine phosphorylation (pY) sites, a panel of 71 SH2 domains was screened, identifying subsets that interacted with multiple pY sites in Kal7. In addition to this type of reversible interaction, endoproteolytic cleavage by calpain plays an essential role in long-term potentiation. Calpain cleaved Kal7 at two sites, separating the N-terminal domain, which affects spine length, and the PDZ binding motif from the GEF domain. Mutations preventing phosphorylation did not affect calpain sensitivity or GEF activity; phosphomimetic mutations at specific sites altered protein stability, increased calpain sensitivity, and reduced GEF activity.
Collapse
Affiliation(s)
| | | | | | - Drew D. Kiraly
- Department
of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Swetha M, Ramaiah KVA. Insulin treatment promotes tyrosine phosphorylation of PKR and inhibits polyIC induced PKR threonine phosphorylation. Arch Biochem Biophys 2015; 585:98-108. [PMID: 26321373 DOI: 10.1016/j.abb.2015.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/18/2015] [Accepted: 07/20/2015] [Indexed: 12/17/2022]
Abstract
Tyrosine phosphorylation of insulin receptor beta (IRβ) in insulin treated HepG2 cells is inversely correlated to ser(51) phosphorylation in the alpha-subunit of eukaryotic initiation factor 2 (eIF2α) that regulates protein synthesis. Insulin stimulates interaction between IRβ and PKR, double stranded RNA-dependent protein kinase, also known as EIF2AK2, and phosphorylation of tyrosine residues in PKR, as analyzed by immunoprecipitation and pull down assays using anti-IRβ and anti-phosphotyrosine antibodies, recombinant IRβ and immunopurified PKR. Further polyIC or synthetic double stranded RNA-induced threonine phosphorylation or activation of immunopurified and cellular PKR is suppressed in the presence of insulin treated purified IRβ and cell extracts. Acute, but not chronic, insulin treatment enhances tyrosine phosphorylation of IRβ, its interaction with PKR and tyrosine phosphorylation of PKR. In contrast, lipopolysaccharide that stimulates threonine phosphorylation of PKR and eIF2α phosphorylation and AG 1024, an inhibitor of the tyrosine kinase activity of IRβ, reduces PKR association with the receptor, IRβ in HepG2 cells. These findings therefore may suggest that tyrosine phosphorylated PKR plays a role in the regulation of insulin induced protein synthesis and in maintaining insulin sensitivity, whereas, suppression of polyIC-mediated threonine phosphorylation of PKR by insulin compromises its ability to fight against virus infection in host cells.
Collapse
Affiliation(s)
- Medchalmi Swetha
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana, India
| | - Kolluru V A Ramaiah
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana, India.
| |
Collapse
|
8
|
Thompson CM, Bloom LR, Ogiue-Ikeda M, Machida K. SH2-PLA: a sensitive in-solution approach for quantification of modular domain binding by proximity ligation and real-time PCR. BMC Biotechnol 2015; 15:60. [PMID: 26112401 PMCID: PMC4482279 DOI: 10.1186/s12896-015-0169-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a great interest in studying phosphotyrosine dependent protein-protein interactions in tyrosine kinase pathways that play a critical role in many aspects of cellular function. We previously established SH2 profiling, a phosphoproteomic approach based on membrane binding assays that utilizes purified Src Homology 2 (SH2) domains as a molecular tool to profile the global tyrosine phosphorylation state of cells. However, in order to use this method to investigate SH2 binding sites on a specific target in cell lysate, additional procedures such as pull-down or immunoprecipitation which consume large amounts of sample are required. RESULTS We have developed PLA-SH2, an alternative in-solution modular domain binding assay that takes advantage of Proximity Ligation Assay and real-time PCR. The SH2-PLA assay utilizes oligonucleotide-conjugated anti-GST and anti-EGFR antibodies recognizing a GST-SH2 probe and cellular EGFR, respectively. If the GST-SH2 and EGFR are in close proximity as a result of SH2-phosphotyrosine interactions, the two oligonucleotides are brought within a suitable distance for ligation to occur, allowing for efficient complex amplification via real-time PCR. The assay detected signal across at least 3 orders of magnitude of lysate input with a linear range spanning 1-2 orders and a low femtomole limit of detection for EGFR phosphotyrosine. SH2 binding kinetics determined by PLA-SH2 showed good agreement with established far-Western analyses for A431 and Cos1 cells stimulated with EGF at various times and doses. Further, we showed that PLA-SH2 can survey lung cancer tissues using 1 μl lysate without requiring phospho-enrichment. CONCLUSIONS We showed for the first time that interactions between SH2 domain probes and EGFR in cell lysate can be determined in a microliter-scale assay using SH2-PLA. The obvious benefit of this method is that the low sample requirement allows detection of SH2 binding in samples which are difficult to analyze using traditional protein interaction assays. This feature along with short assay runtime makes this method a useful platform for the development of high throughput assays to determine modular domain-ligand interactions which could have wide-ranging applications in both basic and translational cancer research.
Collapse
Affiliation(s)
- Christopher M Thompson
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| | - Lee R Bloom
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| | - Mari Ogiue-Ikeda
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| |
Collapse
|
9
|
Shi L, Pigeonneau N, Ventroux M, Derouiche A, Bidnenko V, Mijakovic I, Noirot-Gros MF. Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk. Front Microbiol 2014; 5:538. [PMID: 25374563 PMCID: PMC4205851 DOI: 10.3389/fmicb.2014.00538] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/26/2014] [Indexed: 01/28/2023] Open
Abstract
Signal transduction in eukaryotes is generally transmitted through phosphorylation cascades that involve a complex interplay of transmembrane receptors, protein kinases, phosphatases and their targets. Our previous work indicated that bacterial protein-tyrosine kinases and phosphatases may exhibit similar properties, since they act on many different substrates. To capture the complexity of this phosphorylation-based network, we performed a comprehensive interactome study focused on the protein-tyrosine kinases and phosphatases in the model bacterium Bacillus subtilis. The resulting network identified many potential new substrates of kinases and phosphatases, some of which were experimentally validated. Our study highlighted the role of tyrosine and serine/threonine kinases and phosphatases in DNA metabolism, transcriptional control and cell division. This interaction network reveals significant crosstalk among different classes of kinases. We found that tyrosine kinases can bind to several modulators, transmembrane or cytosolic, consistent with a branching of signaling pathways. Most particularly, we found that the division site regulator MinD can form a complex with the tyrosine kinase PtkA and modulate its activity in vitro. In vivo, it acts as a scaffold protein which anchors the kinase at the cell pole. This network highlighted a role of tyrosine phosphorylation in the spatial regulation of the Z-ring during cytokinesis.
Collapse
Affiliation(s)
- Lei Shi
- Institut National de la Recherche Agronomique, UMR1319 Micalis Jouy-en-Josas, France ; Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Nathalie Pigeonneau
- Institut National de la Recherche Agronomique, UMR1319 Micalis Jouy-en-Josas, France
| | - Magali Ventroux
- Institut National de la Recherche Agronomique, UMR1319 Micalis Jouy-en-Josas, France
| | - Abderahmane Derouiche
- Institut National de la Recherche Agronomique, UMR1319 Micalis Jouy-en-Josas, France ; Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Vladimir Bidnenko
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Ivan Mijakovic
- Institut National de la Recherche Agronomique, UMR1319 Micalis Jouy-en-Josas, France ; Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | | |
Collapse
|
10
|
Schweigel H, Geiger J, Beck F, Buhs S, Gerull H, Walter U, Sickmann A, Nollau P. Deciphering of ADP-induced, phosphotyrosine-dependent signaling networks in human platelets by Src-homology 2 region (SH2)-profiling. Proteomics 2013; 13:1016-27. [PMID: 23322602 DOI: 10.1002/pmic.201200353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/12/2012] [Accepted: 11/06/2012] [Indexed: 01/05/2023]
Abstract
Tyrosine phosphorylation plays a central role in signal transduction controlling many important biological processes. In platelets, the activity of several signaling proteins is controlled by tyrosine phosphorylation ensuring proper platelet activation and aggregation essential for regulation of the delicate balance between bleeding and hemostasis. Here, we applied Src-homology 2 region (SH2)-profiling for deciphering of the phosphotyrosine state of human platelets activated by adenosine diphosphate (ADP). Applying a panel of 31 SH2-domains, rapid and complex regulation of the phosphotyrosine state of platelets was observed after ADP stimulation. Specific inhibition of platelet P2Y receptors by synthetic drugs revealed a major role for the P2Y1 receptor in tyrosine phosphorylation. Concomitant activation of protein kinase A (PKA) abolished ADP-induced tyrosine phosphorylation in a time and concentration-dependent manner. Given the fact that PKA activity is negatively regulated by the P2Y12 receptor, our data provide evidence for a novel link of synergistic control of the state of tyrosine phosphorylation by both P2Y receptors. By SH2 domain pull down and MS/MS analysis, we identified distinct tyrosine phosphorylation sites in cell adhesion molecules, intracellular adapter proteins and phosphatases suggesting a major, functional role of tyrosine phosphorylation of theses candidate proteins in ADP-dependent signaling in human platelets.
Collapse
Affiliation(s)
- Hardy Schweigel
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Petit FM, Serres C, Bourgeon F, Pineau C, Auer J. Identification of sperm head proteins involved in zona pellucida binding. Hum Reprod 2013; 28:852-65. [DOI: 10.1093/humrep/des452] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
12
|
Ngounou Wetie AG, Sokolowska I, Woods AG, Roy U, Loo JA, Darie CC. Investigation of stable and transient protein-protein interactions: Past, present, and future. Proteomics 2013. [PMID: 23193082 DOI: 10.1002/pmic.201200328] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This article presents an overview of the literature and a review of recent advances in the analysis of stable and transient protein-protein interactions (PPIs) with a focus on their function within cells, organs, and organisms. The significance of PTMs within the PPIs is also discussed. We focus on methods to study PPIs and methods of detecting PPIs, with particular emphasis on electrophoresis-based and MS-based investigation of PPIs, including specific examples. The validation of PPIs is emphasized and the limitations of the current methods for studying stable and transient PPIs are discussed. Perspectives regarding PPIs, with focus on bioinformatics and transient PPIs are also provided.
Collapse
Affiliation(s)
- Armand G Ngounou Wetie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA
| | | | | | | | | | | |
Collapse
|
13
|
Wilson KJ, Qadota H, Mains PE, Benian GM. UNC-89 (obscurin) binds to MEL-26, a BTB-domain protein, and affects the function of MEI-1 (katanin) in striated muscle of Caenorhabditis elegans. Mol Biol Cell 2012; 23:2623-34. [PMID: 22621901 PMCID: PMC3395652 DOI: 10.1091/mbc.e12-01-0055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/09/2012] [Accepted: 05/17/2012] [Indexed: 11/11/2022] Open
Abstract
The ubiquitin proteasome system is involved in degradation of old or damaged sarcomeric proteins. Most E3 ubiquitin ligases are associated with cullins, which function as scaffolds for assembly of the protein degradation machinery. Cullin 3 uses an adaptor to link to substrates; in Caenorhabditis elegans, one of these adaptors is the BTB-domain protein MEL-26 (maternal effect lethal). Here we show that MEL-26 interacts with the giant sarcomeric protein UNC-89 (obscurin). MEL-26 and UNC-89 partially colocalize at sarcomeric M-lines. Loss of function or gain of function of mel-26 results in disorganization of myosin thick filaments similar to that found in unc-89 mutants. It had been reported that in early C. elegans embryos, a target of the CUL-3/MEL-26 ubiquitylation complex is the microtubule-severing enzyme katanin (MEI-1). Loss of function or gain of function of mei-1 also results in disorganization of thick filaments similar to unc-89 mutants. Genetic data indicate that at least some of the mel-26 loss-of-function phenotype in muscle can be attributed to increased microtubule-severing activity of MEI-1. The level of MEI-1 protein is reduced in an unc-89 mutant, suggesting that the normal role of UNC-89 is to inhibit the CUL-3/MEL-26 complex toward MEI-1.
Collapse
Affiliation(s)
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Paul E. Mains
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Guy M. Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
14
|
Splice-mediated motif switching regulates disabled-1 phosphorylation and SH2 domain interactions. Mol Cell Biol 2012; 32:2794-808. [PMID: 22586277 DOI: 10.1128/mcb.00570-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disabled-1 (Dab1) plays a key role in reelin-mediated neuronal migration during brain development. Tyrosine phosphorylation of Dab1 at two YQXI and two YXVP motifs recruits multiple SH2 domains, resulting in activation of a wide range of signaling cascades. However, the molecular mechanisms underlying the coordinated regulation of Dab1 downstream effectors remain poorly understood. Here, we show that alternative splicing results in inclusion of different combinations of YQXI and YXVP motifs in Dab1 isoforms during development. Dab1 variants with partial or complete loss of YQXI motifs are preferentially expressed at early developmental stages, whereas the commonly studied Dab1 is predominantly expressed at late developmental stages. Expression of Dab1 variants in 293T and Neuro2a cells reveals reduced levels or absence of tyrosine phosphorylation in variants that have lost one or both YQXI motifs. We further demonstrate that Dab1 variants differ in their abilities to activate Src and recruit distinct SH2 domains involved in specific downstream signaling pathways. We propose that coordinated expression of specific Dab1 isoforms in different populations of cells in the developing brain contributes to precise neuronal migration by modulating the activity of subsets of Dab1 downstream effectors.
Collapse
|
15
|
Jadwin JA, Ogiue-Ikeda M, Machida K. The application of modular protein domains in proteomics. FEBS Lett 2012; 586:2586-96. [PMID: 22710164 DOI: 10.1016/j.febslet.2012.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 11/19/2022]
Abstract
The ability of modular protein domains to independently fold and bind short peptide ligands both in vivo and in vitro has allowed a significant number of protein-protein interaction studies to take advantage of them as affinity and detection reagents. Here, we refer to modular domain based proteomics as "domainomics" to draw attention to the potential of using domains and their motifs as tools in proteomics. In this review we describe core concepts of domainomics, established and emerging technologies, and recent studies by functional category. Accumulation of domain-motif binding data should ultimately provide the foundation for domain-specific interactomes, which will likely reveal the underlying substructure of protein networks as well as the selectivity and plasticity of signal transduction.
Collapse
Affiliation(s)
- Joshua A Jadwin
- Department of Genetics and Developmental Biology, Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | | | | |
Collapse
|
16
|
Perrakis A, Musacchio A, Cusack S, Petosa C. Investigating a macromolecular complex: the toolkit of methods. J Struct Biol 2011; 175:106-12. [PMID: 21620973 DOI: 10.1016/j.jsb.2011.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 02/08/2023]
Abstract
Structural biologists studying macromolecular complexes spend considerable effort doing strictly "non-structural" work: investigating the physiological relevance and biochemical properties of a complex, preparing homogeneous samples for structural analysis, and experimentally validating structure-based hypotheses regarding function or mechanism. Familiarity with the diverse perspectives and techniques available for studying complexes helps in the critical assessment of non-structural data, expedites the pre-structural characterization of a complex and facilitates the investigation of function. Here we survey the approaches and techniques used to study macromolecular complexes from various viewpoints, including genetics, cell and molecular biology, biochemistry/biophysics, structural biology, and systems biology/bioinformatics. The aim of this overview is to heighten awareness of the diversity of perspectives and experimental tools available for investigating complexes and of their usefulness for the structural biologist.
Collapse
Affiliation(s)
- Anastassis Perrakis
- Department of Biochemistry, NKI, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
17
|
Machida K, Eschrich S, Li J, Bai Y, Koomen J, Mayer BJ, Haura EB. Characterizing tyrosine phosphorylation signaling in lung cancer using SH2 profiling. PLoS One 2010; 5:e13470. [PMID: 20976048 PMCID: PMC2957407 DOI: 10.1371/journal.pone.0013470] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/23/2010] [Indexed: 11/18/2022] Open
Abstract
Background Tyrosine kinases drive the proliferation and survival of many human cancers. Thus profiling the global state of tyrosine phosphorylation of a tumor is likely to provide a wealth of information that can be used to classify tumors for prognosis and prediction. However, the comprehensive analysis of tyrosine phosphorylation of large numbers of human cancer specimens is technically challenging using current methods. Methodology/Principal Findings We used a phosphoproteomic method termed SH2 profiling to characterize the global state of phosphotyrosine (pTyr) signaling in human lung cancer cell lines. This method quantifies the phosphorylated binding sites for SH2 domains, which are used by cells to respond to changes in pTyr during signaling. Cells could be grouped based on SH2 binding patterns, with some clusters correlated with EGF receptor (EGFR) or K-RAS mutation status. Binding of specific SH2 domains, most prominently RAS pathway activators Grb2 and ShcA, correlated with EGFR mutation and sensitivity to the EGFR inhibitor erlotinib. SH2 binding patterns also reflected MET activation and could identify cells driven by multiple kinases. The pTyr responses of cells treated with kinase inhibitors provided evidence of distinct mechanisms of inhibition. Conclusions/Significance This study illustrates the potential of modular protein domains and their proteomic binding profiles as powerful molecular diagnostic tools for tumor classification and biomarker identification.
Collapse
Affiliation(s)
- Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Steven Eschrich
- Departments of Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Jiannong Li
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - John Koomen
- Deparment of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Bruce J. Mayer
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail: (BJM); (EBH)
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail: (BJM); (EBH)
| |
Collapse
|
18
|
Dubielecka PM, Machida K, Xiong X, Hossain S, Ogiue-Ikeda M, Carrera AC, Mayer BJ, Kotula L. Abi1/Hssh3bp1 pY213 links Abl kinase signaling to p85 regulatory subunit of PI-3 kinase in regulation of macropinocytosis in LNCaP cells. FEBS Lett 2010; 584:3279-86. [PMID: 20598684 DOI: 10.1016/j.febslet.2010.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/09/2010] [Accepted: 06/13/2010] [Indexed: 12/25/2022]
Abstract
Macropinocytosis is regulated by Abl kinase via an unknown mechanism. We previously demonstrated that Abl kinase activity is, itself, regulated by Abi1 subsequent to Abl kinase phosphorylation of Abi1 tyrosine 213 (pY213) [1]. Here we show that blocking phosphorylation of Y213 abrogated the ability of Abl to regulate macropinocytosis, implicating Abi1 pY213 as a key regulator of macropinocytosis. Results from screening the human SH2 domain library and mapping the interaction site between Abi1 and the p85 regulatory domain of PI-3 kinase, coupled with data from cells transfected with loss-of-function p85 mutants, support the hypothesis that macropinocytosis is regulated by interactions between Abi1 pY213 and the C-terminal SH2 domain of p85-thereby linking Abl kinase signaling to p85-dependent regulation of macropinocytosis.
Collapse
|