1
|
Eltemur D, Robatscher P, Oberhuber M, Ceccon A. Improved Detection and Quantification of Cyclopropane Fatty Acids via Homonuclear Decoupling Double Irradiation NMR Methods. ACS OMEGA 2023; 8:41835-41843. [PMID: 37970028 PMCID: PMC10634279 DOI: 10.1021/acsomega.3c06538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
Over the years, NMR spectroscopy has become a powerful analytical tool for the identification and quantification of a variety of natural compounds in a broad range of food matrices. Furthermore, NMR can be useful for characterizing food matrices in terms of quality and authenticity, also allowing for the identification of counterfeits. Although NMR requires minimal sample preparation, this technique suffers from low intrinsic sensitivity relative to complementary techniques; thus, the detection of adulterants or markers for authenticity at low concentrations remains challenging. Here, we present a strategy to overcome this limitation by the introduction of a simple band-selective homonuclear decoupling sequence that consists of double irradiation on 1H during NMR signal acquisition. The utility of the proposed method is tested on dihydrosterculic acid (DHSA), one of the cyclopropane fatty acids (CPFAs) shown to be a powerful molecular marker for authentication of milk products. A quantitative description of how the proposed NMR scheme allows sensitivity enhancement yet accurate quantification of DHSA is provided.
Collapse
Affiliation(s)
- Dilek Eltemur
- Laimburg
Research Centre, Laimburg
6 - Pfatten (Vadena), Auer (Ora), BZ 39040, Italy
- Faculty
of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, Bozen-Bolzano 39100, Italy
| | - Peter Robatscher
- Laimburg
Research Centre, Laimburg
6 - Pfatten (Vadena), Auer (Ora), BZ 39040, Italy
| | - Michael Oberhuber
- Laimburg
Research Centre, Laimburg
6 - Pfatten (Vadena), Auer (Ora), BZ 39040, Italy
| | - Alberto Ceccon
- Laimburg
Research Centre, Laimburg
6 - Pfatten (Vadena), Auer (Ora), BZ 39040, Italy
| |
Collapse
|
2
|
Mishra S, Kumarasamy M. Microfluidics engineering towards personalized oncology-a review. IN VITRO MODELS 2023; 2:69-81. [PMID: 39871996 PMCID: PMC11756504 DOI: 10.1007/s44164-023-00054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 01/29/2025]
Abstract
Identifying and monitoring the presence of cancer metastasis and highlighting inter-and intratumoral heterogeneity is a central tenet of targeted precision oncology medicine (POM). This process of relocation of cancer cells is often referred to as the missing link between a tumor and metastasis. In recent years, microfluidic technologies have been developed to isolate a plethora of different biomarkers, such as circulating tumor cells (CTCs), tumor-derived vesicles (exosomes), or cell/free nucleic acids and proteins directly from patients' blood samples. With the advent of microfluidic developments, minimally invasive and quantitative assessment of different tumors is becoming a reality. This short review article will touch briefly on how microfluidics at early-stage achievements can be combined or developed with the active vs passive microfluidic technologies, depending on whether they utilize external fields and forces (active) or just microchannel geometry and inherent fluid forces (passive) from the market to precision oncology research and our future prospectives in terms of the emergence of ultralow cost and rapid prototyping of microfluidics in precision oncology.
Collapse
Affiliation(s)
- Sushmita Mishra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPERHajipur) Export Promotion Industrial Park (EPIP), Industrial Area, Vaishali, 844102 Bihar India
| | - Murali Kumarasamy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPERHajipur) Export Promotion Industrial Park (EPIP), Industrial Area, Vaishali, 844102 Bihar India
| |
Collapse
|
3
|
Bastawrous M, Ghosh Biswas R, Soong R, Jouda M, MacKinnon N, Mager D, Korvink JG, Simpson AJ. Lenz Lenses in a Cryoprobe: Boosting NMR Sensitivity Toward Environmental Monitoring of Mass-Limited Samples. Anal Chem 2023; 95:1327-1334. [PMID: 36576271 DOI: 10.1021/acs.analchem.2c04203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is commonly employed in a wide range of metabolomic research. Unfortunately, due to its relatively low sensitivity, smaller samples become challenging to study by NMR. Cryoprobes can be used to increase sensitivity by cooling the coil and preamplifier, offering sensitivity improvements of ∼3 to 4x. Alternatively, microcoils can be used to increase mass sensitivity by improving sample filling and proximity, along with decreased electrical resistance. Unfortunately, combining the two approaches is not just technically challenging, but as the coil decreases, so does its thermal fingerprint, reducing the advantage of cryogenic cooling. Here, an alternative solution is proposed in the form of a Lenz lens inside a cryoprobe. Rather than replacing the detection coil, Lenz lenses allow the B1 field from a larger coil to be refocused onto a much smaller sample area. In turn, the stronger B1 field at the sample provides strong coupling to the cryocoil, improving the signal. By combining a 530 I.D. Lenz lens with a cryoprobe, sensitivity was further improved by 2.8x and 3.5x for 1H and 13C, respectively, over the cryoprobe alone for small samples. Additionally, the broadband nature of the Lenz lenses allowed multiple nuclei to be studied and heteronuclear two-dimensional (2D) NMR approaches to be employed. The sensitivity improvements and 2D capabilities are demonstrated on 430 nL of hemolymph and eight eggs (∼350 μm O.D.) from the model organismDaphnia magna. In summary, combining Lenz lenses with cryoprobes offers a relatively simple approach to boost sensitivity for tiny samples while retaining cryoprobe advantages.
Collapse
Affiliation(s)
- Monica Bastawrous
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Rajshree Ghosh Biswas
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Mazin Jouda
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Neil MacKinnon
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
4
|
Hashi K, Shinagawa H, Ohki S, Mogami Y, Fujito T, Shimizu T, Tansho M, Goto A. Enhancing Radio-frequency Pulses Using a Field Shielding Device in a Solid-state NMR Sample Tube. CHEM LETT 2022. [DOI: 10.1246/cl.220049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kenjiro Hashi
- National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Hideyuki Shinagawa
- National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Shinobu Ohki
- National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Yuuki Mogami
- National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Teruaki Fujito
- National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Tadashi Shimizu
- National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Masataka Tansho
- National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Atsushi Goto
- National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| |
Collapse
|
5
|
Inverse or direct detect experiments and probes: Which are “best” for in-vivo NMR research of 13C enriched organisms? Anal Chim Acta 2020; 1138:168-180. [DOI: 10.1016/j.aca.2020.09.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 01/09/2023]
|
6
|
Honrao C, Ma X, Kulkarni S, Joshi V, Malamas M, Zvonok A, Wood J, Kautz RA, Strand D, Guo JJ, Makriyannis A. Metabolic Profiling of a CB2 Agonist, AM9338, Using LC-MS and Microcoil-NMR: Identification of a Novel Dihydroxy Adamantyl Metabolite. Front Pharmacol 2020; 11:575691. [PMID: 33101030 PMCID: PMC7556269 DOI: 10.3389/fphar.2020.575691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Adamantyl groups are key structural subunit commonly used in many marketed drugs targeting diseases ranging from viral infections to neurological disorders. The metabolic disposition of adamantyl compounds has been mostly studied using LC-MS based approaches. However, metabolite quantities isolated from biological preparations are often insufficient for unambiguous structural characterization by NMR. In this work, we utilized microcoil NMR in conjunction with LC-MS to characterize liver microsomal metabolites of an adamantyl based CB2 agonist AM9338, 1-(3-(1H-1,2,3-triazol-1-yl) propyl)-N-(adamantan-1-yl)-1H-indazole-3-carboxamide, a candidate compound for potential multiple sclerosis treatment. We have identified a total of 9 oxidative metabolites of AM9338 whereas mono- or di-hydroxylation of the adamantyl moiety is the primary metabolic pathway. While it is generally believed that the tertiary adamantyl carbons are the preferred sites of CYP450 oxidation, both the mono- and di-hydroxyl metabolites of AM9338 show that the primary oxidative sites are located on the secondary adamantyl carbons. To our knowledge this di-hydroxylated metabolite is a novel adamantyl metabolite that has not been reported before. Further, the stereochemistry of both mono- and di-hydroxyl adamantyl metabolites has been determined using NOE correlations. Furthermore, docking of AM9338 into the CYP3A4 metabolic enzyme corroborates with our experimental findings, and the modelling results also provide a possible mechanism for the unusual susceptibility of adamantyl secondary carbons to metabolic oxidations. The novel dihydroxylated AM9338 metabolite identified in this study, along with the previously known adamantyl metabolites, gives a more complete picture of the metabolic disposition for adamantyl compounds.
Collapse
Affiliation(s)
- Chandrashekhar Honrao
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Xiaoyu Ma
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Shashank Kulkarni
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Vinit Joshi
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Michael Malamas
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | | | - JodiAnne Wood
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Roger A. Kautz
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
| | - David Strand
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
- Protasis Corporation, Seabrook, NH, United States
| | - Jason J. Guo
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
- *Correspondence: Jason J. Guo, ; Alexandros Makriyannis,
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
- MAK Scientific LLC, Burlington, MA, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
- *Correspondence: Jason J. Guo, ; Alexandros Makriyannis,
| |
Collapse
|
7
|
Zech SG, Carr M, Mohemmad QK, Narasimhan NI, Murray C, Rozamus LW, Dalgarno DC. Identification of novel rapamycin derivatives as low-level impurities in active pharmaceutical ingredients. J Antibiot (Tokyo) 2011; 64:649-54. [PMID: 21792211 DOI: 10.1038/ja.2011.61] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe the identification of novel rapamycin derivatives present as low-level impurities in active pharmaceutical ingredients using an integrated, multidisciplinary approach. Rapamycin, a fermentation-derived natural product is itself used clinically and provides the starting material for several rapamycin analog drugs, typically used in oncology. LC-MS proved a sensitive means to analyze impurity profiles in batches of rapamycin. MS fragmentation was used to gain structural insight into these impurities, usually fermentation by-products, structurally very similar to rapamycin. In cases where MS fragmentation was unable to provide unambiguous structural identification, the impurities were isolated and purified using orthogonal HPLC methods. Using the higher mass sensitivity of small-volume NMR microprobes, submilligram amounts of isolated impurities were sufficient for further characterization by multidimensional NMR spectroscopy. Full assignment of the (1)H and (13)C NMR signals revealed the structure of these impurities at an atomic level. This systematic workflow enabled the identification of several novel rapamycin congeners from active pharmaceutical ingredient without the need for large-scale isolation of impurities. For illustration, two novel rapamycin derivatives are described in this study: 12-ethyl-rapamycin and 33-ethyl-rapamycin, which exemplify previously unreported modifications on the carbon skeleton of the rapamycin macrocycle. The methodologies described here can be of wide use for identification of closely related structures found; for example as fermentation by-products, metabolites or degradants of natural product-based drugs.
Collapse
|
8
|
Gossert AD, Henry C, Blommers MJJ, Jahnke W, Fernández C. Time efficient detection of protein-ligand interactions with the polarization optimized PO-WaterLOGSY NMR experiment. JOURNAL OF BIOMOLECULAR NMR 2009; 43:211-217. [PMID: 19205897 DOI: 10.1007/s10858-009-9303-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/16/2009] [Indexed: 05/27/2023]
Abstract
The identification of compounds that bind to a protein of interest is of central importance in contemporary drug research. For screening of compound libraries, NMR techniques are widely used, in particular the Water-Ligand Observed via Gradient SpectroscopY (WaterLOGSY) experiment. Here we present an optimized experiment, the polarization optimized WaterLOGSY (PO-WaterLOGSY). Based on a water flip-back strategy in conjunction with model calculations and numerical simulations, the PO-WaterLOGSY is optimized for water polarization recovery. Compared to a standard setup with the conventional WaterLOGSY, time consuming relaxation delays have been considerably shortened and can even be omitted through this approach. Furthermore, the robustness of the pulse sequence in an industrial setup was increased by the use of hard pulse trains for selective water excitation and water suppression. The PO-WaterLOGSY thus yields increased time efficiency by factor of 3-5 when compared with previously published schemes. These time savings have a substantial impact in drug discovery, since significantly larger compound libraries can be tested in screening campaigns.
Collapse
Affiliation(s)
- Alvar D Gossert
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002, Basel, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Kahmann J, Winkler D, Hesterkamp T. The impact of physical based methods screening and their delivery of better quality hits. DRUG DISCOVERY TODAY. TECHNOLOGIES 2008; 5:e1-e34. [PMID: 24125502 DOI: 10.1016/j.ddtec.2008.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|