2
|
Wang J, Wang C, Li L, Yang L, Wang S, Ning X, Gao S, Ren L, Chaulagain A, Tang J, Wang T. Alternative splicing: An important regulatory mechanism in colorectal carcinoma. Mol Carcinog 2021; 60:279-293. [PMID: 33629774 DOI: 10.1002/mc.23291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/17/2022]
Abstract
Alternative splicing (AS) is a process that produces various mRNA splicing isoforms via different splicing patterns of mRNA precursors (pre-mRNAs). AS is the primary mechanism for increasing the types and quantities of proteins to improve biodiversity and influence multiple biological processes, including chromatin modification, signal transduction, and protein expression. It has been reported that AS is involved in the tumorigenesis and development of colorectal carcinoma (CRC). In this review, we delineate the concept, types, regulatory processes, and technical advances of AS and focus on the role of AS in CRC initiation, progression, treatment, and prognosis. This summary of the current knowledge about AS will contribute to our understanding of CRC initiation and development. This study will help in the discovery of novel biomarkers and therapeutic targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Jianyi Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Chuhan Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lirui Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuoshuo Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xuelian Ning
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lili Ren
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Anita Chaulagain
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Cantacessi C, Jex AR, Hall RS, Young ND, Campbell BE, Joachim A, Nolan MJ, Abubucker S, Sternberg PW, Ranganathan S, Mitreva M, Gasser RB. A practical, bioinformatic workflow system for large data sets generated by next-generation sequencing. Nucleic Acids Res 2010; 38:e171. [PMID: 20682560 PMCID: PMC2943614 DOI: 10.1093/nar/gkq667] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/11/2010] [Accepted: 07/15/2010] [Indexed: 11/14/2022] Open
Abstract
Transcriptomics (at the level of single cells, tissues and/or whole organisms) underpins many fields of biomedical science, from understanding the basic cellular function in model organisms, to the elucidation of the biological events that govern the development and progression of human diseases, and the exploration of the mechanisms of survival, drug-resistance and virulence of pathogens. Next-generation sequencing (NGS) technologies are contributing to a massive expansion of transcriptomics in all fields and are reducing the cost, time and performance barriers presented by conventional approaches. However, bioinformatic tools for the analysis of the sequence data sets produced by these technologies can be daunting to researchers with limited or no expertise in bioinformatics. Here, we constructed a semi-automated, bioinformatic workflow system, and critically evaluated it for the analysis and annotation of large-scale sequence data sets generated by NGS. We demonstrated its utility for the exploration of differences in the transcriptomes among various stages and both sexes of an economically important parasitic worm (Oesophagostomum dentatum) as well as the prediction and prioritization of essential molecules (including GTPases, protein kinases and phosphatases) as novel drug target candidates. This workflow system provides a practical tool for the assembly, annotation and analysis of NGS data sets, also to researchers with a limited bioinformatic expertise. The custom-written Perl, Python and Unix shell computer scripts used can be readily modified or adapted to suit many different applications. This system is now utilized routinely for the analysis of data sets from pathogens of major socio-economic importance and can, in principle, be applied to transcriptomics data sets from any organism.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Aaron R. Jex
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ross S. Hall
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Neil D. Young
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Bronwyn E. Campbell
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Anja Joachim
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Matthew J. Nolan
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Sahar Abubucker
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Paul W. Sternberg
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Shoba Ranganathan
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Makedonka Mitreva
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Robin B. Gasser
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|