1
|
Rastegar S, Skurnik M, Niaz H, Tadjrobehkar O, Samareh A, Hosseini-Nave H, Sabouri S. Isolation, characterization, and potential application of Acinetobacter baumannii phages against extensively drug-resistant strains. Virus Genes 2024:10.1007/s11262-024-02103-5. [PMID: 39256307 DOI: 10.1007/s11262-024-02103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
One of the significant issues in treating bacterial infections is the increasing prevalence of extensively drug-resistant (XDR) strains of Acinetobacter baumannii. In the face of limited or no viable treatment options for extensively drug-resistant (XDR) bacteria, there is a renewed interest in utilizing bacteriophages as a treatment option. Three Acinetobacter phages (vB_AbaS_Ftm, vB_AbaS_Eva, and vB_AbaS_Gln) were identified from hospital sewage and analyzed for their morphology, host ranges, and their genome sequences were determined and annotated. These phages and vB_AbaS_SA1 were combined to form a phage cocktail. The antibacterial effects of this cocktail and its combinations with selected antimicrobial agents were evaluated against the XDR A. baumannii strains. The phages exhibited siphovirus morphology. Out of a total of 30 XDR A. baumannii isolates, 33% were sensitive to vB_AbaS_Ftm, 30% to vB_AbaS_Gln, and 16.66% to vB_AbaS_Eva. When these phages were combined with antibiotics, they demonstrated a synergistic effect. The genome sizes of vB_AbaS_Ftm, vB_AbaS_Eva, and vB_AbaS_Gln were 48487, 50174, and 50043 base pairs (bp), respectively, and showed high similarity. Phage cocktail, when combined with antibiotics, showed synergistic effects on extensively drug-resistant (XDR) strains of A. baumannii. However, the need for further study to fully understand the mechanisms of action and potential limitations of using these phages is highlighted.
Collapse
Affiliation(s)
- Sanaz Rastegar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hira Niaz
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Omid Tadjrobehkar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini-Nave
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran.
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, 7616913439, Iran.
| | - Salehe Sabouri
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Pacios O, Herrera-Espejo S, Armán L, Ibarguren-Quiles C, Blasco L, Bleriot I, Fernández-García L, Ortiz-Cartagena C, Paniagua M, Barrio-Pujante A, Aracil B, Cisneros JM, Pachón-Ibáñez ME, Tomás M. Mitomycin C as an Anti-Persister Strategy against Klebsiella pneumoniae: Toxicity and Synergy Studies. Antibiotics (Basel) 2024; 13:815. [PMID: 39334989 PMCID: PMC11428439 DOI: 10.3390/antibiotics13090815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The combination of several therapeutic strategies is often seen as a good way to decrease resistance rates, since bacteria can more easily overcome single-drug treatments than multi-drug ones. This strategy is especially attractive when several targets and subpopulations are affected, as it is the case of Klebsiella pneumoniae persister cells, a subpopulation of bacteria able to transiently survive antibiotic exposures. This work aims to evaluate the potential of a repurposed anticancer drug, mitomycin C, combined with the K. pneumoniae lytic phage vB_KpnM-VAC13 in vitro and its safety in an in vivo murine model against two clinical isolates of this pathogen, one of them exhibiting an imipenem-persister phenotype. At the same time, we verified the absence of toxicity of mitomycin C at the concentration using the human chondrocyte cell line T/C28a2. The viability of these human cells was checked using both cytotoxicity assays and flow cytometry.
Collapse
Affiliation(s)
- Olga Pacios
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Soraya Herrera-Espejo
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (M.P.); (J.M.C.); (M.E.P.-I.)
| | - Lucía Armán
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Clara Ibarguren-Quiles
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Lucía Blasco
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- MEPRAM, Project of Personalized Medicine against Antimicrobial Resistance, 28029 Madrid, Spain;
| | - Inés Bleriot
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Laura Fernández-García
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Concha Ortiz-Cartagena
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - María Paniagua
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (M.P.); (J.M.C.); (M.E.P.-I.)
- CIBER of Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029 Madrid, Spain
| | - Antonio Barrio-Pujante
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Belén Aracil
- MEPRAM, Project of Personalized Medicine against Antimicrobial Resistance, 28029 Madrid, Spain;
- CIBER of Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029 Madrid, Spain
- Reference Laboratory of Antimicrobial Resistance, National Center of Microbiology, Health Institute Carlos III, Majadahonda, 28222 Madrid, Spain
| | - José Miguel Cisneros
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (M.P.); (J.M.C.); (M.E.P.-I.)
- MEPRAM, Project of Personalized Medicine against Antimicrobial Resistance, 28029 Madrid, Spain;
- CIBER of Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029 Madrid, Spain
| | - María Eugenia Pachón-Ibáñez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (M.P.); (J.M.C.); (M.E.P.-I.)
- MEPRAM, Project of Personalized Medicine against Antimicrobial Resistance, 28029 Madrid, Spain;
- CIBER of Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029 Madrid, Spain
| | - María Tomás
- Translational and Multidisciplinary Microbiology Research Group (MicroTM)-Microbiology Department, Biomedical Research Institute of A Coruña (INIBIC), A Coruña Hospital (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (O.P.); (L.A.); (C.I.-Q.); (L.B.); (I.B.); (L.F.-G.); (C.O.-C.); (A.B.-P.)
- Mechanisms of Antimicrobial Resistance Study Group (GEMARA) on Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- MEPRAM, Project of Personalized Medicine against Antimicrobial Resistance, 28029 Madrid, Spain;
| |
Collapse
|
3
|
Casters Y, Bäcker LE, Broux K, Aertsen A. Phage transmission strategies: are phages farming their host? Curr Opin Microbiol 2024; 79:102481. [PMID: 38677076 DOI: 10.1016/j.mib.2024.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Extensive coevolution has led to utterly intricate interactions between phages and their bacterial hosts. While both the (short-term) intracellular molecular host-subversion mechanisms during a phage infection cycle and the (long-term) mutational arms race between phages and host cells have traditionally received a lot of attention, there has been an underestimating neglect of (mid-term) transmission strategies by which phages manage to cautiously spread throughout their host population. However, recent findings underscore that phages encode mechanisms to avoid host cell scarcity and promote coexistence with the host, giving the impression that some phages manage to 'farm' their host population to ensure access to host cells for lytic consumption. Given the tremendous impact of phages on bacterial ecology, charting and understanding the complexity of such transmission strategies is of key importance.
Collapse
Affiliation(s)
- Yorben Casters
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001, Belgium
| | - Leonard E Bäcker
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001, Belgium
| | - Kevin Broux
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001, Belgium
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001, Belgium.
| |
Collapse
|
4
|
Monecke S, Burgold-Voigt S, Braun SD, Diezel C, Liebler-Tenorio EM, Müller E, Nassar R, Reinicke M, Reissig A, Senok A, Ehricht R. Characterisation of PVL-Positive Staphylococcus argenteus from the United Arab Emirates. Antibiotics (Basel) 2024; 13:401. [PMID: 38786130 PMCID: PMC11117363 DOI: 10.3390/antibiotics13050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Staphylococcus argenteus is a recently described staphylococcal species that is related to Staphylococcus aureus but lacks the staphyloxanthin operon. It is able to acquire both resistance markers such as the SCCmec elements and mobile genetic elements carrying virulence-associated genes from S. aureus. This includes those encoding the Panton-Valentine leukocidin (PVL), which is associated mainly with severe and/or recurrent staphylococcal skin and soft tissue infections. Here, we describe the genome sequences of two PVL-positive, mecA-negative S. argenteus sequence type (ST) 2250 isolates from the United Arab Emirates in detail. The isolates were found in a dental clinic in the United Arab Emirates (UAE). Both were sequenced using Oxford Nanopore Technology (ONT). This demonstrated the presence of temperate bacteriophages in the staphylococcal genomes, including a PVL prophage. It was essentially identical to the published sequence of phiSa2wa_st78 (GenBank NC_055048), a PVL phage from an Australian S. aureus clonal complex (CC) 88 isolate. Besides the PVL prophage, one isolate carried another prophage and the second isolate carried two additional prophages, whereby the region between these two prophages was inverted. This "flipped" region comprised about 1,083,000 bp, or more than a third of the strain's genome, and it included the PVL prophage. Prophages were induced by Mitomycin C treatment and subjected to transmission electron microscopy (TEM). This yielded, in accordance to the sequencing results, one or, respectively, two distinct populations of icosahedral phages. It also showed prolate phages which presumptively might be identified as the PVL phage. This observation highlights the significance bacteriophages have as agents of horizontal gene transfer as well as the need for monitoring emerging staphylococcal strains, especially in cosmopolitan settings such as the UAE.
Collapse
Affiliation(s)
- Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sindy Burgold-Voigt
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | | | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Rania Nassar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates (A.S.)
| | - Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Annett Reissig
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates (A.S.)
- School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany (A.R.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| |
Collapse
|
5
|
Nordstrom HR, Griffith MP, Rangachar Srinivasa V, Wallace NR, Li A, Cooper VS, Shields RK, Van Tyne D. Harnessing the Diversity of Burkholderia spp. Prophages for Therapeutic Potential. Cells 2024; 13:428. [PMID: 38474392 PMCID: PMC10931425 DOI: 10.3390/cells13050428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Burkholderia spp. are often resistant to antibiotics, and infections with these organisms are difficult to treat. A potential alternative treatment for Burkholderia spp. infections is bacteriophage (phage) therapy; however, it can be difficult to locate phages that target these bacteria. Prophages incorporated into the bacterial genome have been identified within Burkholderia spp. and may represent a source of useful phages for therapy. Here, we investigate whether prophages within Burkholderia spp. clinical isolates can kill conspecific and heterospecific isolates. Thirty-two Burkholderia spp. isolates were induced for prophage release, and harvested phages were tested for lytic activity against the same 32 isolates. Temperate phages were passaged and their host ranges were determined, resulting in four unique phages of prophage origin that showed different ranges of lytic activity. We also analyzed the prophage content of 35 Burkholderia spp. clinical isolate genomes and identified several prophages present in the genomes of multiple isolates of the same species. Finally, we observed that Burkholdera cenocepacia isolates were more phage-susceptible than Burkholderia multivorans isolates. Overall, our findings suggest that prophages present within Burkholderia spp. genomes are a potentially useful starting point for the isolation and development of novel phages for use in phage therapy.
Collapse
Affiliation(s)
- Hayley R. Nordstrom
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marissa P. Griffith
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Nathan R. Wallace
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anna Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ryan K. Shields
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Nordstrom HR, Griffith MP, Srinivasa VR, Wallace NR, Li A, Cooper VS, Shields RK, Van Tyne D. Harnessing the diversity of Burkholderia spp. prophages for therapeutic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577087. [PMID: 38328162 PMCID: PMC10849711 DOI: 10.1101/2024.01.24.577087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Burkholderia spp. are often resistant to antibiotics, and infections with these organisms are difficult to treat. A potential alternative treatment for Burkholderia spp. infections is bacteriophage (phage) therapy; however, it can be difficult to locate phages that target these bacteria. Prophages incorporated into the bacterial genome have been identified within Burkholderia spp. and may represent a source of useful phages for therapy. Here we investigate whether prophages within Burkholderia spp. clinical isolates can kill conspecific and heterospecific isolates. Thirty-two Burkholderia spp. isolates were induced for prophage release, and harvested prophages were tested for lytic activity against the same 32 isolates. Lytic phages were passaged and their host ranges were determined, resulting in four unique phages of prophage origin that showed different ranges of lytic activity. We also analyzed the prophage content of 35 Burkholderia spp. clinical isolate genomes, and identified several prophages present in the genomes of multiple isolates of the same species. Finally, we observed that B. cenocepacia isolates were more phage-susceptible than Burkholderia multivorans isolates. Overall, our findings suggest that prophages present within Burkholderia spp. genomes are a potentially useful starting point for the isolation and development of novel phages for use in phage therapy.
Collapse
Affiliation(s)
- Hayley R. Nordstrom
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marissa P. Griffith
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Nathan R. Wallace
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anna Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ryan K. Shields
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Dougherty PE, Nielsen TK, Riber L, Lading HH, Forero-Junco LM, Kot W, Raaijmakers JM, Hansen LH. Widespread and largely unknown prophage activity, diversity, and function in two genera of wheat phyllosphere bacteria. THE ISME JOURNAL 2023; 17:2415-2425. [PMID: 37919394 PMCID: PMC10689766 DOI: 10.1038/s41396-023-01547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Environmental bacteria host an enormous number of prophages, but their diversity and natural functions remain largely elusive. Here, we investigate prophage activity and diversity in 63 Erwinia and Pseudomonas strains isolated from flag leaves of wheat grown in a single field. Introducing and validating Virion Induction Profiling Sequencing (VIP-Seq), we identify and quantify the activity of 120 spontaneously induced prophages, discovering that some phyllosphere bacteria produce more than 108 virions/mL in overnight cultures, with significant induction also observed in planta. Sequence analyses and plaque assays reveal E. aphidicola prophages contribute a majority of intraspecies genetic diversity and divide their bacterial hosts into antagonistic factions engaged in widespread microbial warfare, revealing the importance of prophage-mediated microdiversity. When comparing spontaneously active prophages with predicted prophages we also find insertion sequences are strongly correlated with non-active prophages. In conclusion, we discover widespread and largely unknown prophage diversity and function in phyllosphere bacteria.
Collapse
Affiliation(s)
- Peter Erdmann Dougherty
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Tue Kjærgaard Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Helen Helgå Lading
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
8
|
Sudhakari PA, Ramisetty BCM. An Eco-evolutionary Model on Surviving Lysogeny Through Grounding and Accumulation of Prophages. MICROBIAL ECOLOGY 2023; 86:3068-3081. [PMID: 37843655 DOI: 10.1007/s00248-023-02301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Temperate phages integrate into the bacterial genomes propagating along with the bacterial genomes. Multiple phage elements, representing diverse prophages, are present in most bacterial genomes. The evolutionary events and the ecological dynamics underlying the accumulation of prophage elements in bacterial genomes have yet to be understood. Here, we show that the local wastewater had 7% of lysogens (hosting mitomycin C-inducible prophages), and they showed resistance to superinfection by their corresponding lysates. Genomic analysis of four lysogens and four non-lysogens revealed the presence of multiple prophages (belonging to Myoviridae and Siphoviridae) in both lysogens and non-lysogens. For large-scale comparison, 2180 Escherichia coli genomes isolated from various sources across the globe and 523 genomes specifically isolated from diverse wastewaters were analyzed. A total of 15,279 prophages were predicted among 2180 E. coli genomes and 2802 prophages among 523 global wastewater isolates, with a mean of ~ 5 prophages per genome. These observations indicate that most putative prophages are relics of past bacteria-phage conflicts; they are "grounded" prophages that cannot excise from the bacterial genome. Prophage distribution analysis based on the sequence homology suggested the random distribution of E. coli prophages within and between E. coli clades. The independent occurrence pattern of these prophages indicates extensive horizontal transfers across the genomes. We modeled the eco-evolutionary dynamics to reconstruct the events that could have resulted in the prophage accumulation accounting for infection, superinfection immunity, and grounding. In bacteria-phage conflicts, the bacteria win by grounding the prophage, which could confer superinfection immunity.
Collapse
Affiliation(s)
- Pavithra Anantharaman Sudhakari
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, 312@ASK1, Thanjavur, India
| | - Bhaskar Chandra Mohan Ramisetty
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, 312@ASK1, Thanjavur, India.
| |
Collapse
|
9
|
Pacios O, Blasco L, Ortiz Cartagena C, Bleriot I, Fernández-García L, López M, Barrio-Pujante A, Cuenca FF, Aracil B, Oteo-Iglesias J, Tomás M. Molecular studies of phages- Klebsiella pneumoniae in mucoid environment: innovative use of mucolytic agents prior to the administration of lytic phages. Front Microbiol 2023; 14:1286046. [PMID: 37886069 PMCID: PMC10598653 DOI: 10.3389/fmicb.2023.1286046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Mucins are important glycoproteins that form a protective layer throughout the gastrointestinal and respiratory tracts. There is scientific evidence of increase in phage-resistance in the presence of mucin for some bacterial pathogens. Manipulation in mucin composition may ultimately influence the effectiveness of phage therapy. In this work, two clinical strains of K. pneumoniae (K3574 and K3325), were exposed to the lytic bacteriophage vB_KpnS-VAC35 in the presence and absence of mucin on a long-term co-evolution assay, in an attempt to mimic in vitro the exposure to mucins that bacteria and their phages face in vivo. Enumerations of the bacterial and phage counts at regular time intervals were conducted, and extraction of the genomic DNA of co-evolved bacteria to the phage, the mucin and both was performed. We determined the frequency of phage-resistant mutants in the presence and absence of mucin and including a mucolytic agent (N-acetyl L-cysteine, NAC), and sequenced them using Nanopore. We phenotypically demonstrated that the presence of mucin induces the emergence of bacterial resistance against lytic phages, effectively decreased in the presence of NAC. In addition, the genomic analysis revealed some of the genes relevant to the development of phage resistance in long-term co-evolution, with a special focus on the mucoid environment. Genes involved in the metabolism of carbohydrates were mutated in the presence of mucin. In conclusion, the use of mucolytic agents prior to the administration of lytic phages could be an interesting therapeutic option when addressing K. pneumoniae infections in environments where mucin is overproduced.
Collapse
Affiliation(s)
- Olga Pacios
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Lucía Blasco
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Concha Ortiz Cartagena
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Inés Bleriot
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Laura Fernández-García
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - María López
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Antonio Barrio-Pujante
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Felipe Fernández Cuenca
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
- Unidad Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Instituto de Biomedicina de Sevilla (Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla), Sevilla, Spain
- MePRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
| | - Belén Aracil
- MePRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
- Laboratorio de Referencia e Investigación de Resistencias a Antibióticos e Infecciones Sanitarias, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
- MePRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
- Laboratorio de Referencia e Investigación de Resistencias a Antibióticos e Infecciones Sanitarias, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Tomás
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC), Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
- MePRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
| |
Collapse
|
10
|
Burgold-Voigt S, Monecke S, Busch A, Bocklisch H, Braun SD, Diezel C, Hotzel H, Liebler-Tenorio EM, Müller E, Reinicke M, Reissig A, Ruppelt-Lorz A, Ehricht R. Characterisation of a Staphylococcus aureus Isolate Carrying Phage-Borne Enterotoxin E from a European Badger ( Meles meles). Pathogens 2023; 12:pathogens12050704. [PMID: 37242375 DOI: 10.3390/pathogens12050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Staphylococcus (S.) aureus colonizes up to 30% of all humans and can occasionally cause serious infections. It is not restricted to humans as it can also often be found in livestock and wildlife. Recent studies have shown that wildlife strains of S. aureus usually belong to other clonal complexes than human strains and that they might differ significantly with regard to the prevalence of genes encoding antimicrobial resistance properties and virulence factors. Here, we describe a strain of S. aureus isolated from a European badger (Meles meles). For molecular characterisation, DNA microarray-based technology was combined with various next-generation sequencing (NGS) methods. Bacteriophages from this isolate were induced with Mitomycin C and characterized in detail by transmission electron microscopy (TEM) and NGS. The S. aureus isolate belonged to ST425 and had a novel spa repeat sequence (t20845). It did not carry any resistance genes. The uncommon enterotoxin gene see was detected in one of its three temperate bacteriophages. It was possible to demonstrate the induction of all three prophages, although only one of them was expected to be capable of excision based on its carriage of the excisionase gene xis. All three bacteriophages belonged to the family Siphoviridae. Minor differences in size and shape of their heads were noted in TEM images. The results highlight the ability of S. aureus to colonize or infect different host species successfully, which can be attributed to a variety of virulence factors on mobile genetic elements, such as bacteriophages. As shown in the strain described herein, temperate bacteriophages not only contribute to the fitness of their staphylococcal host by transferring virulence factors, but also increase mobility among themselves by sharing genes for excision and mobilization with other prophages.
Collapse
Affiliation(s)
- Sindy Burgold-Voigt
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Stefan Monecke
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute for Medical Microbiology and Virology, Dresden University Hospital, 01307 Dresden, Germany
| | - Anne Busch
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, 07747 Jena, Germany
| | - Herbert Bocklisch
- Thuringian State Authority for Food-Safety and Consumer Protection (TLLV), 99947 Bad Langensalza, Germany
| | - Sascha D Braun
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Celia Diezel
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Bacterial Infections and Zoonoses, 07751 Jena, Germany
| | | | - Elke Müller
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Martin Reinicke
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Annett Reissig
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Antje Ruppelt-Lorz
- Institute for Medical Microbiology and Virology, Dresden University Hospital, 01307 Dresden, Germany
| | - Ralf Ehricht
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
11
|
Hulin MT, Rabiey M, Zeng Z, Vadillo Dieguez A, Bellamy S, Swift P, Mansfield JW, Jackson RW, Harrison RJ. Genomic and functional analysis of phage-mediated horizontal gene transfer in Pseudomonas syringae on the plant surface. THE NEW PHYTOLOGIST 2023; 237:959-973. [PMID: 36285389 PMCID: PMC10107160 DOI: 10.1111/nph.18573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Many strains of Pseudomonas colonise plant surfaces, including the cherry canker pathogens, Pseudomonas syringae pathovars syringae and morsprunorum. We have examined the genomic diversity of P. syringae in the cherry phyllosphere and focused on the role of prophages in transfer of genes encoding Type 3 secreted effector (T3SE) proteins contributing to the evolution of virulence. Phylogenomic analysis was carried out on epiphytic pseudomonads in the UK orchards. Significant differences in epiphytic populations occurred between regions. Nonpathogenic strains were found to contain reservoirs of T3SE genes. Members of P. syringae phylogroups 4 and 10 were identified for the first time from Prunus. Using bioinformatics, we explored the presence of the gene encoding T3SE HopAR1 within related prophage sequences in diverse P. syringae strains including cherry epiphytes and pathogens. Results indicated that horizontal gene transfer (HGT) of this effector between phylogroups may have involved phage. Prophages containing hopAR1 were demonstrated to excise, circularise and transfer the gene on the leaf surface. The phyllosphere provides a dynamic environment for prophage-mediated gene exchange and the potential for the emergence of new more virulent pathotypes. Our results suggest that genome-based epidemiological surveillance of environmental populations will allow the timely application of control measures to prevent damaging diseases.
Collapse
Affiliation(s)
- Michelle T. Hulin
- NIABLawrence Weaver RoadCambridgeCB3 0LEUK
- The Sainsbury LaboratoryNorwichNR4 7UHUK
| | - Mojgan Rabiey
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamB15 2TTUK
| | - Ziyue Zeng
- NIABLawrence Weaver RoadCambridgeCB3 0LEUK
| | | | | | - Phoebe Swift
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamB15 2TTUK
| | | | - Robert W. Jackson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamB15 2TTUK
| | - Richard J. Harrison
- NIABLawrence Weaver RoadCambridgeCB3 0LEUK
- Present address:
Plant Science GroupWageningen University and ResearchWageningen6708WBthe Netherlands
| |
Collapse
|
12
|
Blasco L, de Aledo MG, Ortiz-Cartagena C, Blériot I, Pacios O, López M, Fernández-García L, Barrio-Pujante A, Hernández-Garcia M, Cantón R, Tomás M. Study of 32 new phage tail-like bacteriocins (pyocins) from a clinical collection of Pseudomonas aeruginosa and of their potential use as typing markers and antimicrobial agents. Sci Rep 2023; 13:117. [PMID: 36596850 PMCID: PMC9810705 DOI: 10.1038/s41598-022-27341-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Phage tail-like bacteriocins (PTLBs) are large proteomic structures similar to the tail phages. These structures function in bacterial competition by making pores in the membrane of their competitors. The PTLBs identified in Pseudomonas aeruginosa are known as R-type and F-type pyocins, which have a narrow spectrum of action. Their specificity is determined by the tail fiber and is closely related to the lipopolysaccharide type of the target competitor strain. In this study, the genome sequences of 32 clinical of P. aeruginosa clinical isolates were analysed to investigate the presence of R-type and F-type pyocins, and one was detected in all strains tested. The pyocins were classified into 4 groups on the basis of the tail fiber and also the homology, phylogeny and structure of the cluster components. A relationship was established between these groups and the sequence type and serotype of the strain of origin and finally the killing spectrum of the representative pyocins was determined showing a variable range of activity between 0 and 37.5%. The findings showed that these pyocins could potentially be used for typing of P. aeruginosa clinical isolates, on the basis of their genomic sequence and cluster structure, and also as antimicrobial agents.
Collapse
Affiliation(s)
- Lucía Blasco
- grid.8073.c0000 0001 2176 8535Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC), Servicio de Microbiología, Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain ,Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Manuel González de Aledo
- grid.8073.c0000 0001 2176 8535Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC), Servicio de Microbiología, Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain ,Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Concha Ortiz-Cartagena
- grid.8073.c0000 0001 2176 8535Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC), Servicio de Microbiología, Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain ,Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Inés Blériot
- grid.8073.c0000 0001 2176 8535Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC), Servicio de Microbiología, Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain ,Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Olga Pacios
- grid.8073.c0000 0001 2176 8535Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC), Servicio de Microbiología, Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain ,Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - María López
- grid.8073.c0000 0001 2176 8535Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC), Servicio de Microbiología, Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain ,Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Laura Fernández-García
- grid.8073.c0000 0001 2176 8535Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC), Servicio de Microbiología, Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain ,Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Antonio Barrio-Pujante
- grid.8073.c0000 0001 2176 8535Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC), Servicio de Microbiología, Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain ,Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Marta Hernández-Garcia
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain ,Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain ,Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Tomás
- grid.8073.c0000 0001 2176 8535Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC), Servicio de Microbiología, Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain ,Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| |
Collapse
|
13
|
Nair A, Ghugare GS, Khairnar K. An Appraisal of Bacteriophage Isolation Techniques from Environment. MICROBIAL ECOLOGY 2022; 83:519-535. [PMID: 34136953 DOI: 10.1007/s00248-021-01782-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Researchers have recently renewed interest in bacteriophages. Being valuable models for the study of eukaryotic viruses, and more importantly, natural killers of bacteria, bacteriophages are being tapped for their potential role in multiple applications. Bacteriophages are also being increasingly sought for bacteriophage therapy due to rising antimicrobial resistance among pathogens. Reports show that there is an increasing trend in therapeutic application of natural bacteriophages, genetically engineered bacteriophages, and bacteriophage-encoded products as antimicrobial agents. In view of these applications, the isolation and characterization of bacteriophages from the environment has caught attention. In this review, various methods for isolation of bacteriophages from environmental sources like water, soil, and air are comprehensively described. The review also draws attention towards a handful on-field bacteriophage isolation techniques and the need for their further rapid development.
Collapse
Affiliation(s)
- Aparna Nair
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gaurav S Ghugare
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Krishna Khairnar
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Kim SH, Park JH. Characterization of Prophages in Leuconostoc Derived from Kimchi and Genomic Analysis of the Induced Prophage in Leuconostoc lactis. J Microbiol Biotechnol 2022; 32:333-340. [PMID: 34949750 PMCID: PMC9628853 DOI: 10.4014/jmb.2110.10046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
Abstract
Leuconostoc has been used as a principal starter in natural kimchi fermentation, but limited research has been conducted on its phages. In this study, prophage distribution and characterization in kimchi-derived Leuconostoc strains were investigated, and phage induction was performed. Except for one strain, 16 Leuconostoc strains had at least one prophage region with questionable and incomplete regions, which comprised 0.5-6.0% of the bacterial genome. Based on major capsid protein analysis, ten intact prophages and an induced incomplete prophage of Leu. lactis CBA3626 belonged to the Siphoviridae family and were similar to Lc-Nu-like, sha1-like, phiMH1-like, and TPA_asm groups. Bacterial immunology genes, such as superinfection exclusion proteins and methylase, were found on several prophages. One prophage of Leu. lactis CBA3626 was induced using mitomycin C and was confirmed as belonging to the Siphoviridae family. Homology of the induced prophage with 21 reported prophages was not high (< 4%), and 47% identity was confirmed only with TPA_asm from Siphoviridae sp. isolate ct3pk4. Therefore, it is suggested that Leuconostoc from kimchi had diverse prophages with less than 6% genome proportion and some immunological genes. Interestingly, the induced prophage was very different from the reported prophages of other Leuconostoc species.
Collapse
Affiliation(s)
- Song-Hee Kim
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea,Corresponding author J.H. Park Phone: +82-31-750-5523 Fax: +82-31-750-5283 E-mail:
| |
Collapse
|
15
|
«Development of an anti- Acinetobacter baumannii biofilm phage cocktail: Genomic Adaptation to the Host». Antimicrob Agents Chemother 2022; 66:e0192321. [PMID: 35041503 DOI: 10.1128/aac.01923-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The need for alternatives to antibiotic therapy due to the emergence of multidrug resistant bacteria (MDR), such as the nosocomial pathogen Acinetobacter baumannii, has led to the recovery of phage therapy. In addition, phages can be combined in cocktails to increase the host range. In this study, the evolutionary mechanism of adaptation was utilized in order to develop a phage adapted to A. baumannii, named phage Ab105-2phiΔCI404ad, from a mutant lytic phage, Ab105-2phiΔCI, previously developed by our group. The whole genome sequence of phage Ab105-2phiΔCI404ad was determined, showing that four genomic rearrangements events occurred in the tail morphogenesis module affecting the ORFs encoding the host receptor binding sites. As a consequence of the genomic rearrangements, 10 ORFs were lost and four new ORFs were obtained, all encoding tail proteins; two inverted regions were also derived from these events. The adaptation process increased the host range of the adapted phage by almost three folds. In addition, a depolymerase-expressing phenotype, indicated by formation of a halo, which was not observed in the ancestral phage, was obtained in 81% of the infected strains. A phage cocktail was formed by combining this phage with the A. baumannii phage vB_AbaP_B3, known to express a depolymerase. Both the individual phages and the phage cocktail showed strong antimicrobial activity against 5 clinical strains and 1 reference strain of A. baumannii tested. However, in all cases resistance to the bacterial strains was also observed. The antibiofilm activity of the individual phages and the cocktail was assayed. The phage cocktail displayed strong antibiofilm activity.
Collapse
|
16
|
Eppinger M, Almería S, Allué-Guardia A, Bagi LK, Kalalah AA, Gurtler JB, Fratamico PM. Genome Sequence Analysis and Characterization of Shiga Toxin 2 Production by Escherichia coli O157:H7 Strains Associated With a Laboratory Infection. Front Cell Infect Microbiol 2022; 12:888568. [PMID: 35770066 PMCID: PMC9234449 DOI: 10.3389/fcimb.2022.888568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
A laboratory-acquired E. coli O157:H7 infection with associated severe sequelae including hemolytic uremic syndrome occurred in an individual working in the laboratory with a mixture of nalidixic acid-resistant (NalR) O157:H7 mutant strains in a soil-biochar blend. The patient was hospitalized and treated with an intravenous combination of metronidazole and levofloxacin. The present study investigated the source of this severe laboratory acquired infection and further examined the influence of the antibiotics used during treatment on the expression and production of Shiga toxin. Genomes of two Stx2a-and eae-positive O157:H7 strains isolated from the patient's stool were sequenced along with two pairs of the wt strains and their derived NalR mutants used in the laboratory experiments. High-resolution SNP typing determined the strains' individual genetic relatedness and unambiguously identified the two laboratory-derived NalR mutant strains as the source of the researcher's life-threatening disease, rather than a conceivable ingestion of unrelated O157:H7 isolates circulating at the same time. It was further confirmed that in sublethal doses, the antibiotics increased toxin expression and production. Our results support a simultaneous co-infection with clinical strains in the laboratory, which were the causative agents of previous O157:H7 outbreaks, and further that the administration of antibiotics may have impacted the outcome of the infection.
Collapse
Affiliation(s)
- Mark Eppinger
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Sonia Almería
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States
| | - Lori K Bagi
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Anwar A Kalalah
- Department of Molecular Microbiology and Immunology (MMI), University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, United States
| | - Joshua B Gurtler
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Pina M Fratamico
- United States (US) Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, PA, United States
| |
Collapse
|
17
|
Staphylococcus aureus isolates from Eurasian Beavers (Castor fiber) carry a novel phage-borne bicomponent leukocidin related to the Panton-Valentine leukocidin. Sci Rep 2021; 11:24394. [PMID: 34937862 PMCID: PMC8695587 DOI: 10.1038/s41598-021-03823-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022] Open
Abstract
Staphylococcus aureus can be a harmless coloniser, but it can also cause severe infections in humans, livestock and wildlife. Regarding the latter, only few studies have been performed and knowledge on virulence factors is insufficient. The aim of the present study was to study S. aureus isolates from deceased wild beavers (Castor fiber). Seventeen isolates from eleven beavers, found in Germany and Austria, were investigated. Antimicrobial and biocide susceptibility tests were performed. Isolates were characterised using S. aureus-specific DNA microarrays, spa typing and whole-genome sequencing. From two isolates, prophages were induced by mitomycin C and studied by transmission electron microscopy. Four isolates belonged to clonal complex (CC) 8, CC12, and CC398. Twelve isolates belonged to CC1956 and one isolate was CC49. The CC49 and CC1956 isolates carried distinct lukF/S genes related to the Panton-Valentine leukocidin (PVL) from human isolates of S. aureus. These genes were located on related, but not identical, Siphovirus prophages. The beavers, from which those isolates originated, suffered from abscesses, purulent organ lesions and necrotising pneumonia, i.e., clinical manifestations resembling symptoms of severe PVL-associated disease in humans. It might thus be assumed that the “Beaver Leukocidin (BVL, lukF/S-BV)”-positive strains are beaver-specific pathogens, and further studies on their clinical role as well as on a possible transmissibility to other species, including humans, are warranted.
Collapse
|
18
|
Phenotypic and Genomic Comparison of Klebsiella pneumoniae Lytic Phages: vB_KpnM-VAC66 and vB_KpnM-VAC13. Viruses 2021; 14:v14010006. [PMID: 35062209 PMCID: PMC8778798 DOI: 10.3390/v14010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
Klebsiella pneumoniae is a human pathogen that worsens the prognosis of many immunocompromised patients. Here, we annotated and compared the genomes of two lytic phages that infect clinical strains of K. pneumoniae (vB_KpnM-VAC13 and vB_KpnM-VAC66) and phenotypically characterized vB_KpnM-VAC66 (time of adsorption of 12 min, burst size of 31.49 ± 0.61 PFU/infected cell, and a host range of 20.8% of the tested strains). Transmission electronic microscopy showed that vB_KpnM-VAC66 belongs to the Myoviridae family. The genomic analysis of the phage vB_KpnM-VAC66 revealed that its genome encoded 289 proteins. When compared to the genome of vB_KpnM-VAC13, they showed a nucleotide similarity of 97.56%, with a 93% of query cover, and the phylogenetic study performed with other Tevenvirinae phages showed a close common ancestor. However, there were 21 coding sequences which differed. Interestingly, the main differences were that vB_KpnM-VAC66 encoded 10 more homing endonucleases than vB_KpnM-VAC13, and that the nucleotidic and amino-acid sequences of the L-shaped tail fiber protein were highly dissimilar, leading to different three-dimensional protein predictions. Both phages differed significantly in their host range. These viruses may be useful in the development of alternative therapies to antibiotics or as a co-therapy increasing its antimicrobial potential, especially when addressing multidrug resistant (MDR) pathogens.
Collapse
|
19
|
Burgold-Voigt S, Monecke S, Simbeck A, Holzmann T, Kieninger B, Liebler-Tenorio EM, Braun SD, Collatz M, Diezel C, Müller E, Schneider-Brachert W, Ehricht R. Characterisation and Molecular Analysis of an Unusual Chimeric Methicillin Resistant Staphylococcus Aureus Strain and its Bacteriophages. Front Genet 2021; 12:723958. [PMID: 34868203 PMCID: PMC8638950 DOI: 10.3389/fgene.2021.723958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
In the context of microarray-based epidemiological typing of the clonal organism Staphylococcus aureus/MRSA, a strain was identified that did not belong to known clonal complexes. The molecular analysis by microarray-based typing yielded signals suggesting that it was a mosaic or hybrid strain of two lineages. To verify this result, the isolate was sequenced with both, short-read Illumina and long-read Nanopore technologies and analysed in detail. This supported the hypothesis that the genome of this strain, ST6610-MRSA-IVg comprised of segments originating from two different clonal complexes (CC). While the backbone of the strain’s genome, i.e., roughly 2 megabases, belongs to CC8, a continuous insert of 894 kb (approx. 30% of the genome) originated from CC140. Beside core genomic markers in the normal succession and orientation, this insert also included the mecA gene, coding for PbP2a and causing methicillin resistance, localised on an SCCmec IVg element. This particular SCCmec type was also previously observed in CC140 MRSA from African countries. A second conspicuous observation was the presence of the trimethoprim resistance gene dfrG within on a prophage that occupied an attachment site normally used by Panton-Valentine Leucocidin phages. This observation could indicate a role of large-scale chromosomal recombination in the evolution of S. aureus as well as a role of phages in the dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Sindy Burgold-Voigt
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany.,Institute for Medical Microbiology and Virology, Dresden University Hospital, Dresden, Germany
| | - Alexandra Simbeck
- Department of Surgery, Asklepios Hospital Barmbeck, Hamburg, Germany
| | - Thomas Holzmann
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Bärbel Kieninger
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Elisabeth M Liebler-Tenorio
- Friedrich-Loeffler-Institute (Federal Research Institute for Animal Health), Institute of Molecular Pathogenesis, Jena, Germany
| | - Sascha D Braun
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| | - Maximilian Collatz
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
20
|
Exploring the diversity of bacteriophage specific to Oenococcus oeni and Lactobacillus spp and their role in wine production. Appl Microbiol Biotechnol 2021; 105:8575-8592. [PMID: 34694447 DOI: 10.1007/s00253-021-11509-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
The widespread existence of bacteriophage has been of great interest to the biological research community and ongoing investigations continue to explore their diversity and role. They have also attracted attention and in-depth research in connection to fermented food processing, in particular from the dairy and wine industries. Bacteriophage, mostly oenophage, may in fact be a 'double edged sword' for winemakers: whilst they have been implicated as a causal agent of difficulties with malolactic fermentation (although not proven), they are also beginning to be considered as alternatives to using sulphur dioxide to prevent wine spoilage. Investigation and characterisation of oenophage of Oenococcus oeni, the main species used in winemaking, are still limited compared to lactococcal bacteriophage of Lactococcus lactis and Lactiplantibacillus plantarum (formally Lactobacillus plantarum), the drivers of most fermented dairy products. Interestingly, these strains are also being used or considered for use in winemaking. In this review, the genetic diversity and life cycle of phage, together with the debate on the consequent impact of phage predation in wine, and potential control strategies are discussed. KEY POINTS: • Bacteriophage detected in wine are diverse. • Many lysogenic bacteriophage are found in wine bacteria. • Phage impact on winemaking can depend on the stage of the winemaking process. • Bacteriophage as potential antimicrobial agents against spoilage organisms.
Collapse
|
21
|
Enhanced Antibacterial Activity of Repurposed Mitomycin C and Imipenem in Combination with the Lytic Phage vB_KpnM-VAC13 against Clinical Isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 2021; 65:e0090021. [PMID: 34228538 DOI: 10.1128/aac.00900-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic Gram-negative pathogen that employs different strategies (resistance and persistence) to counteract antibiotic treatments. This study aimed to search for new means of combatting imipenem-resistant and persister strains of K. pneumoniae by repurposing the anticancer drug mitomycin C as an antimicrobial agent and by combining the drug and the conventional antibiotic imipenem with the lytic phage vB_KpnM-VAC13. Several clinical K. pneumoniae isolates were characterized, and an imipenem-resistant isolate (harboring OXA-245 β-lactamase) and a persister isolate were selected for study. The mitomycin C and imipenem MICs for both isolates were determined by the broth microdilution method. Time-kill curve data were obtained by optical density at 600 nm (OD600) measurement and CFU enumeration in the presence of each drug alone and with the phage. The frequency of occurrence of mutants resistant to each drug and the combinations was also calculated, and the efficacy of the combination treatments was evaluated using an in vivo infection model (Galleria mellonella). The lytic phage vB_KpnM-VAC13 and mitomycin C had synergistic effects on imipenem-resistant and persister isolates, both in vitro and in vivo. The phage-imipenem combination successfully killed the persisters but not the imipenem-resistant isolate harboring OXA-245 β-lactamase. Interestingly, the combinations decreased the emergence of in vitro resistant mutants of both isolates. Combinations of the lytic phage vB_KpnM-VAC13 with mitomycin C and imipenem were effective against the persister K. pneumoniae isolate. The lytic phage-mitomycin C combination was also effective against imipenem-resistant K. pneumoniae strains harboring OXA-245 β-lactamase.
Collapse
|
22
|
Lauman P, Dennis JJ. Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex. Viruses 2021; 13:1331. [PMID: 34372537 PMCID: PMC8310193 DOI: 10.3390/v13071331] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023] Open
Abstract
The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy-the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy.
Collapse
Affiliation(s)
| | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| |
Collapse
|
23
|
Park WJ, Kong SJ, Park JH. Kimchi bacteriophages of lactic acid bacteria: population, characteristics, and their role in watery kimchi. Food Sci Biotechnol 2021; 30:949-957. [PMID: 34395026 PMCID: PMC8302715 DOI: 10.1007/s10068-021-00930-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022] Open
Abstract
The bacteriophages (phages) in the watery kimchis (Baek-kimchi and Dongchimi) were characterized to determine the phage ecology of lactic acid bacteria (LAB). Kimchi obtained from the Seoul markets had an average of 2.1 log phage particles/mL, corresponding to 28% of the bacterial counts on a log scale. High counts of 5.5-6.5 log particles/mL of phages were noted in the early phase of fermentation (reaching pH 4), and 2.1-3.0 log phage particles/mL were found in the later phase, with some fluctuation in numbers. The LAB hosts changed from Weissella and Leuconostoc to Lactobacillus during Dongchimi fermentation. Fifteen phages, except for those of Lactobacillus, were isolated from diverse strains in the early phase. Five Weissella phages were Podoviridae, and all 10 Leuconostoc phages were Myoviridae. Phages had narrow and different host infection spectra to strains of the same species and high acidic stability. Therefore, the mortality and diversity of LAB during natural kimchi fermentation may be related to the specific phages of the hosts. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10068-021-00930-y.
Collapse
Affiliation(s)
- Won-Jeong Park
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Se-Jin Kong
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
24
|
Blundell-Hunter G, Enright MC, Negus D, Dorman MJ, Beecham GE, Pickard DJ, Wintachai P, Voravuthikunchai SP, Thomson NR, Taylor PW. Characterisation of Bacteriophage-Encoded Depolymerases Selective for Key Klebsiella pneumoniae Capsular Exopolysaccharides. Front Cell Infect Microbiol 2021; 11:686090. [PMID: 34222050 PMCID: PMC8253255 DOI: 10.3389/fcimb.2021.686090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023] Open
Abstract
Capsular polysaccharides enable clinically important clones of Klebsiella pneumoniae to cause severe systemic infections in susceptible hosts. Phage-encoded capsule depolymerases have the potential to provide an alternative treatment paradigm in patients when multiple drug resistance has eroded the efficacy of conventional antibiotic chemotherapy. An investigation of 164 K. pneumoniae from intensive care patients in Thailand revealed a large number of distinct K types in low abundance but four (K2, K51, K1, K10) with a frequency of at least 5%. To identify depolymerases with the capacity to degrade capsules associated with these common K-types, 62 lytic phage were isolated from Thai hospital sewage water using K1, K2 and K51 isolates as hosts; phage plaques, without exception, displayed halos indicative of the presence of capsule-degrading enzymes. Phage genomes ranged in size from 41-348 kb with between 50 and 535 predicted coding sequences (CDSs). Using a custom phage protein database we were successful in applying annotation to 30 - 70% (mean = 58%) of these CDSs. The largest genomes, of so-called jumbo phage, carried multiple tRNAs as well as CRISPR repeat and spacer sequences. One of the smaller phage genomes was found to contain a putative Cas type 1E gene, indicating a history of host DNA acquisition in these obligate lytic phage. Whole-genome sequencing (WGS) indicated that some phage displayed an extended host range due to the presence of multiple depolymerase genes; in total, 42 candidate depolymerase genes were identified with up to eight in a single genome. Seven distinct virions were selected for further investigation on the basis of host range, phage morphology and WGS. Candidate genes for K1, K2 and K51 depolymerases were expressed and purified as his6-tagged soluble protein and enzymatic activity demonstrated against K. pneumoniae capsular polysaccharides by gel electrophoresis and Anton-Paar rolling ball viscometry. Depolymerases completely removed the capsule in K-type-specific fashion from K. pneumoniae cells. We conclude that broad-host range phage carry multiple enzymes, each with the capacity to degrade a single K-type, and any future use of these enzymes as therapeutic agents will require enzyme cocktails for utility against a range of K. pneumoniae infections.
Collapse
Affiliation(s)
| | - Mark C. Enright
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - David Negus
- School of Science & Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Matthew J. Dorman
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Gemma E. Beecham
- School of Pharmacy, University College London, London, United Kingdom
| | - Derek J. Pickard
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | | | | | - Nicholas R. Thomson
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Peter W. Taylor
- School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
25
|
Global overview and major challenges of host prediction methods for uncultivated phages. Curr Opin Virol 2021; 49:117-126. [PMID: 34126465 DOI: 10.1016/j.coviro.2021.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022]
Abstract
Bacterial communities play critical roles across all of Earth's biomes, affecting human health and global ecosystem functioning. They do so under strong constraints exerted by viruses, that is, bacteriophages or 'phages'. Phages can reshape bacterial communities' structure, influence long-term evolution of bacterial populations, and alter host cell metabolism during infection. Metagenomics approaches, that is, shotgun sequencing of environmental DNA or RNA, recently enabled large-scale exploration of phage genomic diversity, yielding several millions of phage genomes now to be further analyzed and characterized. One major challenge however is the lack of direct host information for these phages. Several methods and tools have been proposed to bioinformatically predict the potential host(s) of uncultivated phages based only on genome sequence information. Here we review these different approaches and highlight their distinct strengths and limitations. We also outline complementary experimental assays which are being proposed to validate and refine these bioinformatic predictions.
Collapse
|
26
|
Abstract
Oral bacteriophages (or phages), especially periodontal ones, constitute a growing area of interest, but research on oral phages is still in its infancy. Phages are bacterial viruses that may persist as intracellular parasitic deoxyribonucleic acid (DNA) or use bacterial metabolism to replicate and cause bacterial lysis. The microbiomes of saliva, oral mucosa, and dental plaque contain active phage virions, bacterial lysogens (ie, carrying dormant prophages), and bacterial strains containing short fragments of phage DNA. In excess of 2000 oral phages have been confirmed or predicted to infect species of the phyla Actinobacteria (>300 phages), Bacteroidetes (>300 phages), Firmicutes (>1000 phages), Fusobacteria (>200 phages), and Proteobacteria (>700 phages) and three additional phyla (few phages only). This article assesses the current knowledge of the diversity of the oral phage population and the mechanisms by which phages may impact the ecology of oral biofilms. The potential use of phage-based therapy to control major periodontal pathogens is also discussed.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California, USA
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Miller-Ensminger T, Garretto A, Stark N, Putonti C. Mimicking prophage induction in the body: induction in the lab with pH gradients. PeerJ 2020; 8:e9718. [PMID: 32944418 PMCID: PMC7469935 DOI: 10.7717/peerj.9718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
The majority of bacteria within the human body are lysogens, often harboring multiple bacteriophage sequences (prophages) within their genomes. While several different types of environmental stresses can trigger or induce prophages to enter into the lytic cycle, they have yet to be fully explored and understood in the human microbiota. In the laboratory, the most common induction method is the DNA damaging chemical Mitomycin C. Although pH has been listed in the literature as an induction method, it is not widely used. Here, we detail a protocol for prophage induction by culture under different pH conditions. We explored the effects of pH on prophage induction in bacterial isolates from the bladder, where the pH is well documented to vary significantly between individuals as well as between healthy individuals and individuals with urinary tract symptoms or disease. Using this protocol, we successfully induced phages from seven bladder E. coli strains. Testing conditions and stressors appropriate to the environment from which a lysogen is isolated may provide insight into community dynamics of the human microbiota.
Collapse
Affiliation(s)
| | - Andrea Garretto
- Bioinformatics Program, Loyola University of Chicago, Chicago, IL, United States of America.,Department of Microbiology & Immunology, University of Michigan-Ann Arbor, Ann Arbor, MI, United States of America
| | - Nicole Stark
- Department of Biology, Loyola University of Chicago, Chicago, IL, United States of America.,Department of Biology, Indiana University at Bloomington, Bloomington, IN, United States of America
| | - Catherine Putonti
- Bioinformatics Program, Loyola University of Chicago, Chicago, IL, United States of America.,Department of Biology, Loyola University of Chicago, Chicago, IL, United States of America.,Department of Microbiology and Immunology, Loyola University of Chicago, Maywood, IL, United States of America
| |
Collapse
|
28
|
Lennon M, Liao YT, Salvador A, Lauzon CR, Wu VCH. Bacteriophages specific to Shiga toxin-producing Escherichia coli exist in goat feces and associated environments on an organic produce farm in Northern California, USA. PLoS One 2020; 15:e0234438. [PMID: 32525945 PMCID: PMC7289414 DOI: 10.1371/journal.pone.0234438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/25/2020] [Indexed: 11/29/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STECs) contamination of produce, as a result of contact with ruminant fecal material, has been associated with serious foodborne illness. Bacteriophages (phages) that infect STECs have primarily been reported to be of cattle origin. However, they likely exist in other environments or in animals that share habitats with cattle, such as goats. To explore the presence and diversity of phages specific to STEC O157 and the top six non-O157 STECs in goat-associated environments, environmental samples consisting of feces (goat and cattle) and soil samples were collected monthly for six months from an organic produce farm. A variety of phages belonging to the Myoviridae, Siphoviridae, and Podoviridae families were isolated from all goat fecal and half of the soil samples. The most commonly isolated phages belonged to Myoviridae and were lytic against STEC O103. The isolated phages had different host ranges, but collectively, showed lytic activity against O157 and the top six non-O157 STEC strains excluding O121. Two non-O157 STECs (O174: H21 and O-antigen-negative: H18) were isolated from soil and cattle feces, respectively. Although prior studies have reported that goats shed STEC into the environment, the findings of the current study suggest that goat feces may also contain lytic STEC-specific phages. The phages of goat origin have the capacity to infect STECs implicated in causing foodborne outbreaks, making them potential candidates for biocontrol pending additional characterization steps. Further work is needed to determine if the addition of goats to the farm environment could potentially reduce the presence of STECs.
Collapse
Affiliation(s)
- Marion Lennon
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
- Department of Biological Sciences, California State University East Bay, Hayward, California, United States of America
| | - Yen-Te Liao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Carol R. Lauzon
- Department of Biological Sciences, California State University East Bay, Hayward, California, United States of America
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Miller-Ensminger T, Mormando R, Maskeri L, Shapiro JW, Wolfe AJ, Putonti C. Introducing Lu-1, a Novel Lactobacillus jensenii Phage Abundant in the Urogenital Tract. PLoS One 2020; 15:e0234159. [PMID: 32525961 PMCID: PMC7289420 DOI: 10.1371/journal.pone.0234159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/19/2020] [Indexed: 01/23/2023] Open
Abstract
Bacteriophages (phages) play a key role in shaping microbial communities, including those of the human body. Phages are abundant members of the urogenital tract, most often persisting through the lysogenic life cycle as prophages integrated within the genomes of their bacterial hosts. While numerous studies of the urogenital microbiota have focused on the most abundant bacterial member of this niche–Lactobacillus species–very little is known about Lactobacillus phages. Focusing on Lactobacillus jensenii strains from the urinary tract, we identified numerous prophages related to the previously characterized Lv-1 phage from a vaginal L. jensenii strain. Furthermore, we identified a new L. jensenii phage, Lu-1. Evidence suggests that both phages are abundant within the urogenital tract. CRISPR spacer sequences matching to Lv-1 and Lu-1 prophages were identified. While first detected in urinary isolates, the Lu-1 phage was also discovered in L. jensenii isolates from vaginal and perineal swabs, and both phages were found in metagenomic data sets. The prevalence of these phages in the isolates suggests that both phages are active members of the urogenital microbiota.
Collapse
Affiliation(s)
| | - Rita Mormando
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States of America
| | - Laura Maskeri
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States of America
| | - Jason W. Shapiro
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States of America
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States of America
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States of America
- Department of Computer Science, Loyola University Chicago, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
30
|
Bleriot I, Trastoy R, Blasco L, Fernández-Cuenca F, Ambroa A, Fernández-García L, Pacios O, Perez-Nadales E, Torre-Cisneros J, Oteo-Iglesias J, Navarro F, Miró E, Pascual A, Bou G, Martínez-Martínez L, Tomas M. Genomic analysis of 40 prophages located in the genomes of 16 carbapenemase-producing clinical strains of Klebsiella pneumoniae. Microb Genom 2020; 6:e000369. [PMID: 32375972 PMCID: PMC7371120 DOI: 10.1099/mgen.0.000369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Klebsiella pneumoniae is the clinically most important species within the genus Klebsiella and, as a result of the continuous emergence of multi-drug resistant (MDR) strains, the cause of severe nosocomial infections. The decline in the effectiveness of antibiotic treatments for infections caused by MDR bacteria has generated particular interest in the study of bacteriophages. In this study, we characterized a total of 40 temperate bacteriophages (prophages) with a genome range of 11.454-84.199 kb, predicted from 16 carbapenemase-producing clinical strains of K. pneumoniae belonging to different sequence types, previously identified by multilocus sequence typing. These prophages were grouped into the three families in the order Caudovirales (27 prophages belonging to the family Myoviridae, 10 prophages belonging to the family Siphoviridae and 3 prophages belonging to the family Podoviridae). Genomic comparison of the 40 prophage genomes led to the identification of four prophages isolated from different strains and of genome sizes of around 33.3, 36.1, 39.6 and 42.6 kb. These prophages showed sequence similarities (query cover >90 %, identity >99.9 %) with international Microbe Versus Phage (MVP) (http://mvp.medgenius.info/home) clusters 4762, 4901, 3499 and 4280, respectively. Phylogenetic analysis revealed the evolutionary proximity among the members of the four groups of the most frequently identified prophages in the bacterial genomes studied (33.3, 36.1, 39.6 and 42.6 kb), with bootstrap values of 100 %. This allowed the prophages to be classified into three clusters: A, B and C. Interestingly, these temperate bacteriophages did not infect the highest number of strains as indicated by a host-range assay, these results could be explained by the development of superinfection exclusion mechanisms. In addition, bioinformatic analysis of the 40 identified prophages revealed the presence of 2363 proteins. In total, 59.7 % of the proteins identified had a predicted function, mainly involving viral structure, transcription, replication and regulation (lysogenic/lysis). Interestingly, some proteins had putative functions associated with bacterial virulence (toxin expression and efflux pump regulators), phage defence profiles such as toxin-antitoxin modules, an anti-CRISPR/Cas9 protein, TerB protein (from terZABCDE operon) and methyltransferase proteins.
Collapse
Affiliation(s)
- Ines Bleriot
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
| | - Rocío Trastoy
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
| | - Lucia Blasco
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
| | - Felipe Fernández-Cuenca
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena. Deparment of Microbiology and Medicine, University of Seville, Seville, Spain
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
| | - Antón Ambroa
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
| | - Laura Fernández-García
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
| | - Olga Pacios
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
| | - Elena Perez-Nadales
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
- Microbiology Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Cordoba, Spain
| | - Julian Torre-Cisneros
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
- Microbiology Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Cordoba, Spain
| | - Jesús Oteo-Iglesias
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Ferran Navarro
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Microbiology Department, Sant Pau Hospital, Autonomous University of Barcelona (Bellaterra), Barcelona, Spain
| | - Elisenda Miró
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Microbiology Department, Sant Pau Hospital, Autonomous University of Barcelona (Bellaterra), Barcelona, Spain
| | - Alvaro Pascual
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena. Deparment of Microbiology and Medicine, University of Seville, Seville, Spain
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
| | - German Bou
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
| | - Luis Martínez-Martínez
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
- Microbiology Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Cordoba, Spain
| | - Maria Tomas
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
| |
Collapse
|
31
|
Piscirickettsia salmonis Cryptic Plasmids: Source of Mobile DNA and Virulence Factors. Pathogens 2019; 8:pathogens8040269. [PMID: 31795181 PMCID: PMC6963756 DOI: 10.3390/pathogens8040269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 11/16/2022] Open
Abstract
Four large cryptic plasmids were identified in the salmon pathogen Piscirickettsia salmonis reference strain LF-89. These plasmids appeared highly novel, with less than 7% nucleotidic identity to the nr plasmid database. Plasmid copy number analysis revealed that they are harbored in chromosome equivalent ratios. In addition to plasmid-related genes (plasmidial autonomous replication, partitioning, maintenance, and mobilization genes), mobile genetic elements such as transposases, integrases, and prophage sequences were also identified in P. salmonis plasmids. However, bacterial lysis was not observed upon the induction of prophages. A total of twelve putative virulence factors (VFs) were identified, in addition to two global transcriptional regulators, the widely conserved CsrA protein and the regulator Crp/Fnr. Eleven of the putative VFs were overexpressed during infection in two salmon-derived cellular infection models, supporting their role as VFs. The ubiquity of these plasmids was also confirmed by sequence similarity in the genomes of other P. salmonis strains. The ontology of P. salmonis plasmids suggests a role in bacterial fitness and adaptation to the environment as they encode proteins related to mobilization, nutrient transport and utilization, and bacterial virulence. Further functional characterization of P. salmonis plasmids may improve our knowledge regarding virulence and mobile elements in this intracellular pathogen.
Collapse
|
32
|
Cho S, Gupta SK, McMillan EA, Sharma P, Ramadan H, Jové T, Jackson CR, Frye JG. Genomic Analysis of Multidrug-Resistant Escherichia coli from Surface Water in Northeast Georgia, United States: Presence of an ST131 Epidemic Strain Containing blaCTX-M-15 on a Phage-Like Plasmid. Microb Drug Resist 2019; 26:447-455. [PMID: 31725354 DOI: 10.1089/mdr.2019.0306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Surface water is suspected of playing a role in the development and spread of antimicrobial-resistant (AR) bacteria, including human pathogens. In our previous study, 496 Escherichia coli isolates were recovered from water samples collected over a 2-year period from the Upper Oconee watershed, Athens, GA, United States, of which 34 (6.9%) were AR isolates. Of these, six isolates were selected based on their multidrug resistance (MDR) phenotypes, the presence of mobile genetic elements, and their pathogenic potential and were subjected to whole-genome sequence (WGS) analysis to enhance our understanding of environmental MDR E. coli isolates. This study is the first report on genomic characterization of MDR E. coli from environmental water in the United States through a WGS approach. The sequences of the six MDR E. coli isolates were analyzed and the locations of their AR genes were identified. One of the E. coli isolates was an ST131 epidemic strain, which also produced an extended-spectrum β-lactamase encoded by the blaCTX-M-15 gene, carried on a plasmid that is a member of a very rarely reported family of phage-like plasmids. This is the first time an in-depth sequence analysis has been done on a blaCTX-M-15- containing phage-like plasmid, the presence of which suggests a new emerging mechanism of AR gene transmission.
Collapse
Affiliation(s)
- Sohyun Cho
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Sushim K Gupta
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | | | - Poonam Sharma
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Thomas Jové
- Univ. Limoges, INSERM, CHU Limoges, RESINFIT, U1092, Limoges, France
| | - Charlene R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| |
Collapse
|
33
|
Blasco L, Ambroa A, Lopez M, Fernandez-Garcia L, Bleriot I, Trastoy R, Ramos-Vivas J, Coenye T, Fernandez-Cuenca F, Vila J, Martinez-Martinez L, Rodriguez-Baño J, Pascual A, Cisneros JM, Pachon J, Bou G, Tomas M. Combined Use of the Ab105-2φΔCI Lytic Mutant Phage and Different Antibiotics in Clinical Isolates of Multi-Resistant Acinetobacter baumannii. Microorganisms 2019; 7:microorganisms7110556. [PMID: 31726694 PMCID: PMC6921023 DOI: 10.3390/microorganisms7110556] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/21/2022] Open
Abstract
Phage therapy is an abandoned antimicrobial therapy that has been resumed in recent years. In this study, we mutated a lysogenic phage from Acinetobacter baumannii into a lytic phage (Ab105-2phiΔCI) that displayed antimicrobial activity against A. baumannii clinical strain Ab177_GEIH-2000 (isolated in the GEIH-REIPI Spanish Multicenter A. baumannii Study II 2000/2010, Umbrella Genbank Bioproject PRJNA422585, and for which meropenem and imipenem MICs of respectively, 32 µg/mL, and 16 µg/mL were obtained). We observed an in vitro synergistic antimicrobial effect (reduction of 4 log–7 log CFU/mL) between meropenem and the lytic phage in all combinations analyzed (Ab105-2phiΔCI mutant at 0.1, 1 and 10 MOI and meropenem at 1/4 and 1/8 MIC). Moreover, bacterial growth was reduced by 8 log CFU/mL for the combination of imipenem at 1/4 MIC plus lytic phage (Ab105-2phiΔCI mutant) and by 4 log CFU/mL for the combination of imipenem at 1/8 MIC plus lytic phage (Ab105-2phiΔCI mutant) at both MOI 1 and 10. These results were confirmed in an in vivo model (G. mellonella), and the combination of imipenem and mutant Ab105-2phiΔCI was most effective (p < 0.05). This approach could help to reduce the emergence of phage resistant bacteria and restore sensitivity to antibiotics used to combat multi-resistant strains of Acinetobacter baumannii.
Collapse
Affiliation(s)
- Lucia Blasco
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
| | - Anton Ambroa
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
| | - Maria Lopez
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
| | - Laura Fernandez-Garcia
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
| | - Ines Bleriot
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
| | - Rocio Trastoy
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
| | - Jose Ramos-Vivas
- Microbiology Department-Research Institute Biomedical Valdecilla (IDIVAL), Hospital Marques de Valdecilla, 39008 Santander, Spain;
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Gent, Belgium;
| | - Felipe Fernandez-Cuenca
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena/Department of Microbiology and Medicine, University of Seville/Biomedicine Institute of Seville (IBIS), 41009 Seville, Spain; (F.F.-C.); (J.R.-B.); (A.P.)
| | - Jordi Vila
- Institute of Global Health of Barcelona (ISGlobal), Hospital Clínic-Universitat de Barcelona, 170, 08036 Barcelona, Spain;
| | - Luis Martinez-Martinez
- Unit of Microbiology, University Hospital Reina Sofía, Department of Microbiology, University of Córdoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain;
| | - Jesus Rodriguez-Baño
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena/Department of Microbiology and Medicine, University of Seville/Biomedicine Institute of Seville (IBIS), 41009 Seville, Spain; (F.F.-C.); (J.R.-B.); (A.P.)
| | - Alvaro Pascual
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena/Department of Microbiology and Medicine, University of Seville/Biomedicine Institute of Seville (IBIS), 41009 Seville, Spain; (F.F.-C.); (J.R.-B.); (A.P.)
| | - Jose Miguel Cisneros
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío/Department of Microbiology and Medicine, University of Seville/Biomedicine Institute of Seville (IBIS), 41009 Seville, Spain; (J.M.C.); (J.P.)
| | - Jeronimo Pachon
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío/Department of Microbiology and Medicine, University of Seville/Biomedicine Institute of Seville (IBIS), 41009 Seville, Spain; (J.M.C.); (J.P.)
| | - German Bou
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
| | - Maria Tomas
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15495 A Coruña, Spain; (L.B.); (A.A.); (M.L.); (L.F.-G.); (I.B.); (R.T.); (G.B.)
- Correspondence: ; Tel.: +34-981-176-399; Fax: +34-981-178-273
| |
Collapse
|
34
|
Hyman P. Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. Pharmaceuticals (Basel) 2019; 12:E35. [PMID: 30862020 PMCID: PMC6469166 DOI: 10.3390/ph12010035] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 01/21/2023] Open
Abstract
For a bacteriophage to be useful for phage therapy it must be both isolated from the environment and shown to have certain characteristics beyond just killing strains of the target bacterial pathogen. These include desirable characteristics such as a relatively broad host range and a lack of other characteristics such as carrying toxin genes and the ability to form a lysogen. While phages are commonly isolated first and subsequently characterized, it is possible to alter isolation procedures to bias the isolation toward phages with desirable characteristics. Some of these variations are regularly used by some groups while others have only been shown in a few publications. In this review I will describe (1) isolation procedures and variations that are designed to isolate phages with broader host ranges, (2) characterization procedures used to show that a phage may have utility in phage therapy, including some of the limits of such characterization, and (3) results of a survey and discussion with phage researchers in industry and academia on the practice of characterization of phages.
Collapse
Affiliation(s)
- Paul Hyman
- Department of Biology/Toxicology, Ashland University, 401 College Ave., Ashland, OH 44805, USA.
| |
Collapse
|
35
|
Alexeeva S, Guerra Martínez JA, Spus M, Smid EJ. Spontaneously induced prophages are abundant in a naturally evolved bacterial starter culture and deliver competitive advantage to the host. BMC Microbiol 2018; 18:120. [PMID: 30249194 PMCID: PMC6154921 DOI: 10.1186/s12866-018-1229-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/09/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In complex microbial ecosystems such as the marine environment, the gastrointestinal tract, but also in mixed culture fermentations, bacteriophages are frequently found to be a part of the microbial community. Moreover, prophages or prophage-like elements are frequently identified in sequenced bacterial genomes. The mixed undefined starter cultures represent an ecosystem which is shaped by long term evolution under relatively defined environmental conditions and provides an interesting model to study co-evolution of phages and their hosts as well as the impact of diversity on microbial community stability. RESULTS In the present study we investigated the presence, identity and behaviour of prophages in lactococci being part of a complex cheese starter culture. Genome analysis of representative strains of the 7 genetic lineages of Lactococcus lactis constituting the culture indicated the presence of prophages in all strains. Exposure of potential lysogens to mitomycin C confirmed the release of ~ 1010·ml- 1 phage particles from all tested strains. Furthermore, phages were also released in substantial amounts due to spontaneous induction: more than 108·ml- 1 phage particles were present in cultures under non-inducing conditions. This observation suggests continuous release of phage particles by the lactococci. The released bacteriophages exhibited an unusual morphology. For most strains tested, tailless icosahedral phage heads were found. The competitive advantage of lysogens compared to their cured derivatives and their high abundance in the culture suggests that the released tailless bacteriophages play an important role in the ecosystem. CONCLUSIONS The results of this study indicate that chromosomal genetic elements are active participants in the stable complex microbial community of the starter culture. We show that prophages are abundant in such a community, are produced continuously in large amounts and, despite the huge metabolic burden imposed on the cells by phage particle production, provide a selective advantage to the host.
Collapse
Affiliation(s)
- Svetlana Alexeeva
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | - Maciej Spus
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Eddy J. Smid
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
36
|
Characterization and induction of prophages in human gut-associated Bifidobacterium hosts. Sci Rep 2018; 8:12772. [PMID: 30143740 PMCID: PMC6109161 DOI: 10.1038/s41598-018-31181-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/09/2018] [Indexed: 01/20/2023] Open
Abstract
In the current report, we describe the identification of three genetically distinct groups of prophages integrated into three different chromosomal sites of human gut-associated Bifidobacterium breve and Bifidobacterium longum strains. These bifidobacterial prophages are distantly related to temperate actinobacteriophages of several hosts. Some prophages, integrated within the dnaJ2 gene, are competent for induction, excision, replication, assembly and lysis, suggesting that they are fully functional and can generate infectious particles, even though permissive hosts have not yet been identified. Interestingly, several of these phages harbor a putative phase variation shufflon (the Rin system) that generates variation of the tail-associated receptor binding protein (RBP). Unlike the analogous coliphage-associated shufflon Min, or simpler Cin and Gin inversion systems, Rin is predicted to use a tyrosine recombinase to promote inversion, the first reported phage-encoded tyrosine-family DNA invertase. The identification of bifidobacterial prophages with RBP diversification systems that are competent for assembly and lysis, yet fail to propagate lytically under laboratory conditions, suggests dynamic evolution of bifidobacteria and their phages in the human gut.
Collapse
|
37
|
Górski A, Międzybrodzki R, Łobocka M, Głowacka-Rutkowska A, Bednarek A, Borysowski J, Jończyk-Matysiak E, Łusiak-Szelachowska M, Weber-Dąbrowska B, Bagińska N, Letkiewicz S, Dąbrowska K, Scheres J. Phage Therapy: What Have We Learned? Viruses 2018; 10:E288. [PMID: 29843391 PMCID: PMC6024844 DOI: 10.3390/v10060288] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/11/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
In this article we explain how current events in the field of phage therapy may positively influence its future development. We discuss the shift in position of the authorities, academia, media, non-governmental organizations, regulatory agencies, patients, and doctors which could enable further advances in the research and application of the therapy. In addition, we discuss methods to obtain optimal phage preparations and suggest the potential of novel applications of phage therapy extending beyond its anti-bacterial action.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| | - Aleksandra Głowacka-Rutkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
| | - Agnieszka Bednarek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Medical Sciences Institute, Katowice School of Economics, Harcerzy Września Street 3, 40-659 Katowice, Poland.
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Research and Development Center, Regional Specialized Hospital, Kamieńskiego 73a, 51-124 Wrocław, Poland.
| | - Jacques Scheres
- National Institute of Public Health NIZP, Chocimska Street 24, 00-971 Warsaw, Poland.
| |
Collapse
|
38
|
Zhou W, Liu L, Feng Y, Zong Z. A P7 Phage-Like Plasmid Carrying mcr-1 in an ST15 Klebsiella pneumoniae Clinical Isolate. Front Microbiol 2018; 9:11. [PMID: 29403463 PMCID: PMC5786510 DOI: 10.3389/fmicb.2018.00011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/05/2018] [Indexed: 02/05/2023] Open
Abstract
A Klebsiella pneumoniae clinical strain, named SCKP83, was isolated and found to be resistant to colistin thanks to the presence plasmid-borne colistin resistant gene mcr-1. The strain was subjected to whole genome sequencing and conjugation experiments. The subsequent analysis indicated that the strain belongs to ST15 and the capsular type K41. In SCKP83, mcr-1 was carried by a 97.4-kb non-self-transmissible plasmid, a 90.9-kb region of which was predicted as an intact phage. This phage was 47.79% GC content, encoded 105 proteins and contained three tRNAs. mcr-1 was located downstream of two copies of the insertion sequence ISApl1 (one complete and one truncated) and was inserted in the ant1 gene, which encodes a putative antirepressor for antagonizing C1 repression, in this phage. The phage is highly similar to phage P7 (77% coverage and 98% identity) from Escherichia coli. Several similar mcr-1-carrying plasmids have been found in E. coli at various locations in China, suggesting that these phage-like plasmids have circulated in China. The findings in this study suggest that the P7 phage-like plasmids are not restricted to E. coli and may represent new vehicles to mediate the inter-species spread of mcr-1.
Collapse
Affiliation(s)
- Weilong Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Lu Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.,Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.,Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Sharipova MR, Balaban NP, Mardanova AM, Toymentseva AA, Baranova DS. Effect of nucleases on bacteria infected with bacteriophages. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Isolation, Characterization, and Bioinformatic Analyses of Lytic Salmonella Enteritidis Phages and Tests of Their Antibacterial Activity in Food. Curr Microbiol 2016; 74:175-183. [DOI: 10.1007/s00284-016-1169-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/21/2016] [Indexed: 11/27/2022]
|
41
|
Characterization of prophages containing "evolved" Dit/Tal modules in the genome of Lactobacillus casei BL23. Appl Microbiol Biotechnol 2016; 100:9201-9215. [PMID: 27448399 DOI: 10.1007/s00253-016-7727-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/26/2016] [Accepted: 07/02/2016] [Indexed: 12/21/2022]
Abstract
Lactic acid bacteria (LAB) have many applications in food and industrial fermentations. Prophage induction and generation of new virulent phages is a risk for the dairy industry. We identified three complete prophages (PLE1, PLE2, and PLE3) in the genome of the well-studied probiotic strain Lactobacillus casei BL23. All of them have mosaic architectures with homologous sequences to Streptococcus, Lactococcus, Lactobacillus, and Listeria phages or strains. Using a combination of quantitative real-time PCR, genomics, and proteomics, we showed that PLE2 and PLE3 can be induced-but with different kinetics-in the presence of mitomycin C, although PLE1 remains as a prophage. A structural analysis of the distal tail (Dit) and tail associated lysin (Tal) baseplate proteins of these prophages and other L. casei/paracasei phages and prophages provides evidence that carbohydrate-binding modules (CBM) located within these "evolved" proteins may replace receptor binding proteins (RBPs) present in other well-studied LAB phages. The detailed study of prophage induction in this prototype strain in combination with characterization of the proteins involved in host recognition will facilitate the design of new strategies for avoiding phage propagation in the dairy industry.
Collapse
|
42
|
Listeria monocytogenes σH Contributes to Expression of Competence Genes and Intracellular Growth. J Bacteriol 2016; 198:1207-17. [PMID: 26833412 DOI: 10.1128/jb.00718-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The alternative sigma factor σ(H)has two functions in Gram-positive bacteria: it regulates sporulation and the development of genetic competence. Listeria monocytogenes is a nonsporulating species in which competence has not yet been detected. Nevertheless, the main competence regulators and a series of orthologous genes that form the competence machinery are present in its genome; some of the competence genes play a role in optimal phagosomal escape. In this study, strains overexpressing σ(H) and strains with a σ(H) deletion were used to elucidate the contribution of σ(H) to the expression of the competence machinery genes inL. monocytogenes Gene expression analysis showed that σ(H) is, indeed, involved in comG and come regulation. Unexpectedly, we observed a unique regulation scheme in which σ(H) and the transcription factor ComK were involved. Population-level analysis showed that even with the overexpression of both factors, only a fraction of the cells expressed the competence machinery genes. Although we could not detect competence, σ(H) was crucial for phagosomal escape, which implies that this alternative sigma factor has specifically evolved to regulate the L. monocytogenes intracellular life cycle. IMPORTANCE Listeria monocytogenes can be an intracellular pathogen capable of causing serious infections in humans and animal species. Recently, the competence machinery genes were described as being necessary for optimal phagosomal escape, in which the transcription factor ComK plays an important role. On the other hand, our previous phylogenetic analysis suggested that the alternative sigma factor σ(H) might play a role in the regulation of competence genes. The present study shows that some of the competence genes belong to the σ(H) regulon and, importantly, that σ(H) is essential for intracellular growth, implying a unique physiological role of σ(H) among Firmicutes.
Collapse
|
43
|
Abstract
Bacteriophage play many varied roles in microbial ecology and evolution. This chapter collates a vast body of knowledge and expertise on Yersinia pestis phages, including the history of their isolation and classical methods for their isolation and identification. The genomic diversity of Y. pestis phage and bacteriophage islands in the Y. pestis genome are also discussed because all phage research represents a branch of genetics. In addition, our knowledge of the receptors that are recognized by Y. pestis phage, advances in phage therapy for Y. pestis infections, the application of phage in the detection of Y. pestis, and clustered regularly interspaced short palindromic repeats (CRISPRs) sequences of Y. pestis from prophage DNA are all reviewed here.
Collapse
|
44
|
Phage adsorption and lytic propagation in Lactobacillus plantarum: could host cell starvation affect them? BMC Microbiol 2015; 15:273. [PMID: 26627203 PMCID: PMC4667525 DOI: 10.1186/s12866-015-0607-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/26/2015] [Indexed: 12/03/2022] Open
Abstract
Background Bacteriophages constitute a great threat to the activity of lactic acid bacteria used in industrial processes. Several factors can influence the infection cycle of bacteriophages. That is the case of the physiological state of host cells, which could produce inhibition or delay of the phage infection process. In the present work, the influence of Lactobacillus plantarum host cell starvation on phage B1 adsorption and propagation was investigated. Result First, cell growth kinetics of L. plantarum ATCC 8014 were determined in MRS, limiting carbon (S-N), limiting nitrogen (S-C) and limiting carbon/nitrogen (S) broth. L. plantarum ATCC 8014 strain showed reduced growth rate under starvation conditions in comparison to the one obtained in MRS broth. Adsorption efficiencies of > 99 % were observed on the starved L. plantarum ATCC 8014 cells. Finally, the influence of cell starvation conditions in phage propagation was investigated through one-step growth curves. In this regard, production of phage progeny was studied when phage infection began before or after cell starvation. When bacterial cells were starved after phage infection, phage B1 was able to propagate in L. plantarum ATCC 8014 strain in a medium devoid of carbon source (S-N) but not when nitrogen (S-C broth) or nitrogen/carbon (S broth) sources were removed. However, addition of nitrogen and carbon/nitrogen compounds to starved infected cells caused the restoration of phage production. When bacterial cells were starved before phage infection, phage B1 propagated in either nitrogen or nitrogen/carbon starved cells only when the favorable conditions of culture (MRS) were used as a propagation medium. Regarding carbon starved cells, phage propagation in either MRS or S-N broth was evidenced. Conclusions These results demonstrated that phage B1 could propagate in host cells even in unfavorable culture conditions, becoming a hazardous source of phages that could disseminate to industrial environments.
Collapse
|
45
|
Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis. Appl Environ Microbiol 2014; 80:7107-21. [PMID: 25217012 DOI: 10.1128/aem.02771-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage J-1 was isolated in 1965 from an abnormal fermentation of Yakult using Lactobacillus casei strain Shirota, and a related phage, PL-1, was subsequently recovered from a strain resistant to J-1. Complete genome sequencing shows that J-1 and PL-1 are almost identical, but PL-1 has a deletion of 1.9 kbp relative to J-1, resulting in the loss of four predicted gene products involved in immunity regulation. The structural proteins were identified by mass spectrometry analysis. Similarly to phage A2, two capsid proteins are generated by a translational frameshift and undergo proteolytic processing. The structure of gene product 16 (gp16), a putative tail protein, was modeled based on the crystal structure of baseplate distal tail proteins (Dit) that form the baseplate hub in other Siphoviridae. However, two regions of the C terminus of gp16 could not be modeled using this template. The first region accounts for the differences between J-1 and PL-1 gp16 and showed sequence similarity to carbohydrate-binding modules (CBMs). J-1 and PL-1 GFP-gp16 fusions bind specifically to Lactobacillus casei/paracasei cells, and the addition of l-rhamnose inhibits binding. J-1 gp16 exhibited a higher affinity than PL-1 gp16 for cell walls of L. casei ATCC 27139 in phage adsorption inhibition assays, in agreement with differential adsorption kinetics observed for both phages in this strain. The data presented here provide insights into how Lactobacillus phages interact with their hosts at the first steps of infection.
Collapse
|
46
|
Doria F, Napoli C, Costantini A, Berta G, Saiz JC, Garcia-Moruno E. Development of a new method for detection and identification of Oenococcus oeni bacteriophages based on endolysin gene sequence and randomly amplified polymorphic DNA. Appl Environ Microbiol 2013; 79:4799-805. [PMID: 23728816 PMCID: PMC3754713 DOI: 10.1128/aem.01307-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/29/2013] [Indexed: 11/20/2022] Open
Abstract
Malolactic fermentation (MLF) is a biochemical transformation conducted by lactic acid bacteria (LAB) that occurs in wine at the end of alcoholic fermentation. Oenococcus oeni is the main species responsible for MLF in most wines. As in other fermented foods, where bacteriophages represent a potential risk for the fermentative process, O. oeni bacteriophages have been reported to be a possible cause of unsuccessful MLF in wine. Thus, preparation of commercial starters that take into account the different sensitivities of O. oeni strains to different phages would be advisable. However, currently, no methods have been described to identify phages infecting O. oeni. In this study, two factors are addressed: detection and typing of bacteriophages. First, a simple PCR method was devised targeting a conserved region of the endolysin (lys) gene to detect temperate O. oeni bacteriophages. For this purpose, 37 O. oeni strains isolated from Italian wines during different phases of the vinification process were analyzed by PCR for the presence of the lys gene, and 25 strains gave a band of the expected size (1,160 bp). This is the first method to be developed that allows identification of lysogenic O. oeni strains without the need for time-consuming phage bacterial-lysis induction methods. Moreover, a phylogenetic analysis was conducted to type bacteriophages. After the treatment of bacteria with UV light, lysis was obtained for 15 strains, and the 15 phage DNAs isolated were subjected to two randomly amplified polymorphic DNA (RAPD)-PCRs. By combining the RAPD profiles and lys sequences, 12 different O. oeni phages were clearly distinguished.
Collapse
Affiliation(s)
- Francesca Doria
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (Centro di Ricerca per l'Enologia), Asti, Italy
| | - Chiara Napoli
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (Centro di Ricerca per l'Enologia), Asti, Italy
| | - Antonella Costantini
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (Centro di Ricerca per l'Enologia), Asti, Italy
| | - Graziella Berta
- Dipartimento di Scienze e Innovazione Tecnologica dell'Università del Piemonte Orientale, Alessandria, Italy
| | - Juan-Carlos Saiz
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Emilia Garcia-Moruno
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (Centro di Ricerca per l'Enologia), Asti, Italy
| |
Collapse
|
47
|
|