1
|
Sun S, Schaffer DV. Engineered viral vectors for functional interrogation, deconvolution, and manipulation of neural circuits. Curr Opin Neurobiol 2018; 50:163-170. [PMID: 29614429 PMCID: PMC5984719 DOI: 10.1016/j.conb.2017.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/27/2017] [Accepted: 12/16/2017] [Indexed: 12/19/2022]
Abstract
Optimization of traditional replication-competent viral tracers has granted access to immediate synaptic partners of target neuronal populations, enabling the dissection of complex brain circuits into functional neural pathways. The excessive virulence of most conventional tracers, however, impedes their utility in revealing and genetically perturbing cellular function on long time scales. As a promising alternative, the natural capacity of adeno-associated viral (AAV) vectors to safely mediate persistent and robust gene expression has stimulated strong interest in adapting them for sparse neuronal labeling and physiological studies. Furthermore, increasingly refined engineering strategies have yielded novel AAV variants with enhanced target specificity, transduction, and retrograde trafficking in the CNS. These potent vectors offer new opportunities for characterizing the identity and connectivity of single neurons within immense networks and modulating their activity via robust delivery of functional genetic tools.
Collapse
Affiliation(s)
- Sabrina Sun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
2
|
Sinn PL, Hwang BY, Li N, Ortiz JLS, Shirazi E, Parekh KR, Cooney AL, Schaffer DV, McCray PB. Novel GP64 envelope variants for improved delivery to human airway epithelial cells. Gene Ther 2017; 24:674-679. [PMID: 28880020 DOI: 10.1038/gt.2017.78] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023]
Abstract
Lentiviral vectors pseudotyped with the baculovirus envelope protein GP64 transduce primary cultures of human airway epithelia (HAE) at their apical surface. Our goal in this study was to harness a directed evolution approach to develop a novel envelope glycoprotein with increased transduction properties for HAE. Using error-prone PCR, a library of GP64 mutants was generated and used to prepare a diverse pool of lentiviral virions pseudotyped with GP64 variants. The library was serially passaged on HAE and three GP64 mutations were recovered. Single-, double- and the triple-combination mutant envelope glycoproteins were compared with wild-type GP64 for their ability to transduce HAE. Our results suggest that lentiviral vectors pseudotyped with evolved GP64 transduced HAE with greater efficiency than wild-type GP64. This effect was not observed in primary cultures of porcine airway epithelial cells, suggesting that the directed evolution protocol was species specific. In summary, our studies indicate that serial passage of a GP64 mutant library yielded specific variants with improved HAE cell tropism, yielding tools with the potential to improve the success of gene therapy for airway diseases.
Collapse
Affiliation(s)
- P L Sinn
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Pappajohn Biomedical Institute and the Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, University of Iowa, Iowa City, IA, USA
| | - B-Y Hwang
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - N Li
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Pappajohn Biomedical Institute and the Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, University of Iowa, Iowa City, IA, USA
| | - J L S Ortiz
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - E Shirazi
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - K R Parekh
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - A L Cooney
- Pappajohn Biomedical Institute and the Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, University of Iowa, Iowa City, IA, USA.,Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - D V Schaffer
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - P B McCray
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Pappajohn Biomedical Institute and the Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, University of Iowa, Iowa City, IA, USA.,Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Santiago-Ortiz JL, Schaffer DV. Adeno-associated virus (AAV) vectors in cancer gene therapy. J Control Release 2016; 240:287-301. [PMID: 26796040 PMCID: PMC4940329 DOI: 10.1016/j.jconrel.2016.01.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/08/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Gene delivery vectors based on adeno-associated virus (AAV) have been utilized in a large number of gene therapy clinical trials, which have demonstrated their strong safety profile and increasingly their therapeutic efficacy for treating monogenic diseases. For cancer applications, AAV vectors have been harnessed for delivery of an extensive repertoire of transgenes to preclinical models and, more recently, clinical trials involving certain cancers. This review describes the applications of AAV vectors to cancer models and presents developments in vector engineering and payload design aimed at tailoring AAV vectors for transduction and treatment of cancer cells. We also discuss the current status of AAV clinical development in oncology and future directions for AAV in this field.
Collapse
Affiliation(s)
- Jorge L Santiago-Ortiz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
4
|
Guenther CM, Kuypers BE, Lam MT, Robinson TM, Zhao J, Suh J. Synthetic virology: engineering viruses for gene delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:548-58. [PMID: 25195922 PMCID: PMC4227300 DOI: 10.1002/wnan.1287] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 12/13/2022]
Abstract
The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or 'bionic' viruses, feature engineered components, or 'parts', that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man-made polymers or inorganic nanoparticles). Various design strategies--rational, combinatorial, and pseudo-rational--have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss-cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavors will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine.
Collapse
Affiliation(s)
| | - Brianna E. Kuypers
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, 77005
| | - Michael T. Lam
- Department of Bioengineering, Rice University, Houston, TX, 77005
| | | | - Julia Zhao
- Department of Chemistry, Rice University, Houston, TX, 77005
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, TX, 77005
| |
Collapse
|
5
|
Abstract
Clinical gene therapy has been increasingly successful owing both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among these technologies, delivery vectors based on adeno-associated viruses (AAVs) have emerged as safe and effective and, in one recent case, have led to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers.
Collapse
Affiliation(s)
- Melissa A. Kotterman
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - David V. Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
6
|
Day TP, Byrne LC, Schaffer DV, Flannery JG. Advances in AAV vector development for gene therapy in the retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:687-93. [PMID: 24664759 DOI: 10.1007/978-1-4614-3209-8_86] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Adeno-associated virus (AAV) is a small, non-pathogenic dependovirus that has shown great potential for safe and long-term expression of a genetic payload in the retina. AAV has been used to treat a growing number of animal models of inherited retinal degeneration, though drawbacks-including a limited carrying capacity, slow onset of expression, and a limited ability to transduce some retinal cell types from the vitreous-restrict the utility of AAV for treating some forms of inherited eye disease. Next generation AAV vectors are being created to address these needs, through rational design efforts such as the creation of self-complementary AAV vectors for faster onset of expression and specific mutations of surface-exposed residues to increase transduction of viral particles. Furthermore, directed evolution has been used to create, through an iterative process of selection, novel variants of AAV with newly acquired, advantageous characteristics. These novel AAV variants have been shown to improve the therapeutic potential of AAV vectors, and further improvements may be achieved through rational design, directed evolution, or a combination of these approaches, leading to broader applicability of AAV and improved treatments for inherited retinal degeneration.
Collapse
Affiliation(s)
- Timothy P Day
- Helen Wills Neuroscience Institute, The University of California Berkeley, 112 Barker Hall, 94720, Berkeley, CA, USA,
| | | | | | | |
Collapse
|
7
|
Ellis BL, Hirsch ML, Barker JC, Connelly JP, Steininger RJ, Porteus MH. A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype. Virol J 2013; 10:74. [PMID: 23497173 PMCID: PMC3607841 DOI: 10.1186/1743-422x-10-74] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 02/14/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The ability to deliver a gene of interest into a specific cell type is an essential aspect of biomedical research. Viruses can be a useful tool for this delivery, particularly in difficult to transfect cell types. Adeno-associated virus (AAV) is a useful gene transfer vector because of its ability to mediate efficient gene transduction in numerous dividing and quiescent cell types, without inducing any known pathogenicity. There are now a number of natural for that designed AAV serotypes that each has a differential ability to infect a variety of cell types. Although transduction studies have been completed, the bulk of the studies have been done in vivo, and there has never been a comprehensive study of transduction ex vivo/in vitro. METHODS Each cell type was infected with each serotype at a multiplicity of infection of 100,000 viral genomes/cell and transduction was analyzed by flow cytometry + . RESULTS We found that AAV1 and AAV6 have the greatest ability to transduce a wide range of cell types, however, for particular cell types, there are specific serotypes that provide optimal transduction. CONCLUSIONS In this work, we describe the transduction efficiency of ten different AAV serotypes in thirty-four different mammalian cell lines and primary cell types. Although these results may not be universal due to numerous factors such as, culture conditions and/ or cell growth rates and cell heterogeneity, these results provide an important and unique resource for investigators who use AAV as an ex vivo gene delivery vector or who work with cells that are difficult to transfect.
Collapse
Affiliation(s)
- Brian L Ellis
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew L Hirsch
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jenny C Barker
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jon P Connelly
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert J Steininger
- Department of Pharmacology, Green Center for Systems Biology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew H Porteus
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9148, USA
| |
Collapse
|
8
|
Judd J, Wei F, Nguyen PQ, Tartaglia LJ, Agbandje-McKenna M, Silberg JJ, Suh J. Random Insertion of mCherry Into VP3 Domain of Adeno-associated Virus Yields Fluorescent Capsids With no Loss of Infectivity. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e54. [PMID: 23629029 PMCID: PMC3511673 DOI: 10.1038/mtna.2012.46] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 12/11/2022]
Abstract
Adeno-associated virus (AAV)-derived vectors are promising gene delivery systems, and a number of design strategies have been pursued to improve their performance. For example, genetic insertion of proteins into the capsid may be used to achieve vector retargeting, reduced immunogenicity, or to track vector transport. Unfortunately, rational approaches to genetic insertion have experienced limited success due to the unpredictable context-dependent nature of protein folding and the complexity of the capsid's macroassembly. We report the construction and use of a frame-enriched DNase-based random insertion library based on AAV2 cap, called pAAV2_RaPID (Random Peptide Insertion by DNase). The fluorescent mCherry protein was inserted randomly throughout the AAV2 capsid and the library was selected for fluorescent and infectious variants. A capsid site was identified in VP3 that can tolerate the large protein insertion. In contrast to previous efforts to incorporate fluorescent proteins into the AAV2 capsid, the isolated mCherry mutant maintains native infectivity while displaying robust fluorescence. Collectively, these results demonstrate that the pAAV2_RaPID platform library can be used to create fully infectious AAV vectors carrying large functional protein domains on the capsid.Molecular Therapy - Nucleic Acids (2012) 1, e54; doi:10.1038/mtna.2012.46; published online 13 November 2012.
Collapse
Affiliation(s)
- Justin Judd
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Fang Wei
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Peter Q Nguyen
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
- Current address: Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
| | - Lawrence J Tartaglia
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Jonathan J Silberg
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, Texas, USA
| |
Collapse
|
9
|
Martin DP, Biagini P, Lefeuvre P, Golden M, Roumagnac P, Varsani A. Recombination in eukaryotic single stranded DNA viruses. Viruses 2011; 3:1699-738. [PMID: 21994803 PMCID: PMC3187698 DOI: 10.3390/v3091699] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/18/2011] [Accepted: 09/05/2011] [Indexed: 12/23/2022] Open
Abstract
Although single stranded (ss) DNA viruses that infect humans and their domesticated animals do not generally cause major diseases, the arthropod borne ssDNA viruses of plants do, and as a result seriously constrain food production in most temperate regions of the world. Besides the well known plant and animal-infecting ssDNA viruses, it has recently become apparent through metagenomic surveys of ssDNA molecules that there also exist large numbers of other diverse ssDNA viruses within almost all terrestrial and aquatic environments. The host ranges of these viruses probably span the tree of life and they are likely to be important components of global ecosystems. Various lines of evidence suggest that a pivotal evolutionary process during the generation of this global ssDNA virus diversity has probably been genetic recombination. High rates of homologous recombination, non-homologous recombination and genome component reassortment are known to occur within and between various different ssDNA virus species and we look here at the various roles that these different types of recombination may play, both in the day-to-day biology, and in the longer term evolution, of these viruses. We specifically focus on the ecological, biochemical and selective factors underlying patterns of genetic exchange detectable amongst the ssDNA viruses and discuss how these should all be considered when assessing the adaptive value of recombination during ssDNA virus evolution.
Collapse
Affiliation(s)
- Darren P. Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 4579, South Africa; E-Mail:
| | - Philippe Biagini
- UMR CNRS 6578 Anthropologie Bioculturelle, Equipe “Emergence et co-évolution virale”, Etablissement Français du Sang Alpes-Méditerranée, Université de la Méditerranée, 27 Bd. Jean Moulin, 13005 Marseille, France; E-Mail:
| | - Pierre Lefeuvre
- CIRAD, UMR 53 PVBMT CIRAD-Université de la Réunion, Pôle de Protection des Plantes, Ligne Paradis, 97410, Saint Pierre, La Réunion, France; E-Mail:
| | - Michael Golden
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 4579, South Africa; E-Mail:
| | - Philippe Roumagnac
- CIRAD, UMR BGPI, TA A-54/K, Campus International de Montferrier-Baillarguet, 34398 Montpellier, France; E-Mail:
| | - Arvind Varsani
- Electron Microscope Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; E-Mail:
- Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|