1
|
Zhao Y, Zhang X, Li Y, Li Y, Zhang H, Song Z, Xu J, Guo Y. A natural xanthone suppresses lung cancer growth and metastasis by targeting STAT3 and FAK signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154118. [PMID: 35576741 DOI: 10.1016/j.phymed.2022.154118] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nonsmall-cell lung cancer (NSCLC) is one of the most common malignant tumors, and the current drugs have not achieved ideal therapeutic effects. The abnormal activation of STAT3 and FAK signal transduction in tumor cells is highly correlated with their proliferation and migration ability. Therefore, bioactive compounds that can inhibit STAT3 and FAK activation have the potential to become agents to treat NSCLC. PURPOSE This study aims to discover new antitumor compounds from Garcinia xipshuanbannaensis and investigate the molecular mechanism by which they inhibit lung cancer proliferation and metastasis in vivo and in vitro, all of which may lead to obtainment of a potential antitumor agent. METHODS Xipsxanthone H was obtained by various chromatography methods (including silica gel, medium pressure liquid chromatography (MPLC), and preparative high-performance liquid chromatography (HPLC)). 1D and 2D nuclear magnetic resonance (NMR) spectra were used to analyze the structure. Cell viability and wound healing assays were employed to detect changes in the proliferation and migration of cancer cells. Cell cycle and apoptosis were analyzed by flow cytometry. The protein expression of STAT3 and FAK signaling pathways affected by xipsxanthone H was determined by Western blotting. The zebrafish model was used to evaluate the in vivo effects of xipshantone H on tumor proliferation and metastasis. Molecular docking was utilized to explore the interaction between xipsxanthone H and STAT3. Cellular thermal shift assays (CETSAs) were employed to explore the possible target of xipsxanthone H. RESULTS The novel compound xipsxanthone H was purified and characterized from G. xipshuanbannaensis. Xipsxanthone H exhibited strong anti-proliferation activity in a variety of tumor cell lines. In addition to inducing reactive oxygen species (ROS) production and arresting the cell cycle, mechanistic studies demonstrated that xipsxanthone H suppressed STAT3 and FAK phosphorylation and regulated the downstream protein expression of the STAT3 and FAK signaling pathways. The in vivo studies using the zebrafish model revealed that xipsxanthone H inhibited tumor proliferation, metastasis, and angiogenesis. CONCLUSIONS A new xanthone was obtained from G. xipshuanbannaensis, and this compound had the property of inhibiting tumor proliferation and metastasis by targeting STAT3 and FAK signaling pathways in NSCLC. These findings suggested that xipsxanthone H might be a potential candidate agent for NSCLC treatment.
Collapse
Affiliation(s)
- Yinan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xuke Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yeling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Han Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
2
|
Coordination of two kinesin superfamily motor proteins, KIF3A and KIF13A, is essential for pericellular matrix degradation by membrane-type 1 matrix metalloproteinase (MT1-MMP) in cancer cells. Matrix Biol 2022; 107:1-23. [PMID: 35122963 PMCID: PMC9355896 DOI: 10.1016/j.matbio.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022]
Abstract
MT1-MMP promotes cancer invasion by degrading barrier ECM at the leading edge, and its localization is carried out by direct vesicle transport of MT1-MMP containing vesicles along the microtubule. We identified KIF3A, KIF13A, and KIF9 as kinesins involved in MT1-MMP-containing vesicle trafficking in HT1080 cells. KIF3A and KIF13A transport MT1-MMP-containing vesicles from the trans-Golgi to the endosomes. KIF13A alone then transports the vesicles from endosomes to the plasma membrane for extracellular matrix degradation.
MT1-MMP plays a crucial role in promoting the cellular invasion of cancer cells by degrading the extracellular matrix to create a path for migration. During this process, its localization at the leading edge of migrating cells is critical, and it is achieved by targeted transport of MT1-MMP-containing vesicles along microtubules by kinesin superfamily motor proteins (KIFs). Here we identified three KIFs involved in MT1-MMP vesicle transport: KIF3A, KIF13A, and KIF9. Knockdown of KIF3A and KIF13A effectively inhibited MT1-MMP-dependent collagen degradation and invasion, while knockdown of KIF9 increased collagen degradation and invasion. Our data suggest that KIF3A/KIF13A dependent MT1-MMP vesicles transport takes over upon KIF9 knockdown. Live-cell imaging analyses have indicated that KIF3A and KIF13A coordinate to transport the same MT1-MMP-containing vesicles from the trans-Golgi to the endosomes, and KIF13A alone transports the vesicle from the endosome to the plasma membrane. Taken together, we have identified a unique interplay between three KIFs to regulate leading edge localization of MT1-MMP and MT1-MMP-dependent cancer cell invasion.
Collapse
|
3
|
Søgaard PP, Ito N, Sato N, Fujita Y, Matter K, Itoh Y. Epithelial polarization in 3D matrix requires DDR1 signaling to regulate actomyosin contractility. Life Sci Alliance 2019; 2:2/1/e201800276. [PMID: 30760555 PMCID: PMC6374992 DOI: 10.26508/lsa.201800276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 01/19/2023] Open
Abstract
For epithelial cells to establish epithelial polarity in a 3D matrix, signaling of a collagen receptor tyrosine kinase, DDR1, plays a crucial role. DDR1 signaling controls actomyosin contractility at the cell–cell junction through suppression of ROCK activity. Epithelial cells form sheets and tubules in various epithelial organs and establish apicobasal polarity and asymmetric vesicle transport to provide functionality in these structures. However, the molecular mechanisms that allow epithelial cells to establish polarity are not clearly understood. Here, we present evidence that the kinase activity of the receptor tyrosine kinase for collagen, discoidin domain receptor 1 (DDR1), is required for efficient establishment of epithelial polarity, proper asymmetric protein secretion, and execution of morphogenic programs. Lack of DDR1 protein or inhibition of DDR1 kinase activity disturbed tubulogenesis, cystogenesis, and the establishment of epithelial polarity and caused defects in the polarized localization of membrane-type 1 matrix metalloproteinase (MT1-MMP), GP135, primary cilia, laminin, and the Golgi apparatus. Disturbed epithelial polarity and cystogenesis upon DDR1 inhibition was caused by excess ROCK (rho-associated, coiled-coil-containing protein kinase)-driven actomyosin contractility, and pharmacological inhibition of ROCK was sufficient to correct these defects. Our data indicate that a DDR1-ROCK signaling axis is essential for the efficient establishment of epithelial polarity.
Collapse
Affiliation(s)
| | - Noriko Ito
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Nanami Sato
- Institute for Genetic Medicine, Division of Molecular Oncology, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Fujita
- Institute for Genetic Medicine, Division of Molecular Oncology, Hokkaido University, Sapporo, Japan
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Cuffaro D, Nuti E, Gifford V, Ito N, Camodeca C, Tuccinardi T, Nencetti S, Orlandini E, Itoh Y, Rossello A. Design, synthesis and biological evaluation of bifunctional inhibitors of membrane type 1 matrix metalloproteinase (MT1-MMP). Bioorg Med Chem 2019; 27:196-207. [PMID: 30522899 DOI: 10.1016/j.bmc.2018.11.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 11/20/2022]
Abstract
Collagen degradation and proMMP-2 activation are major functions of MT1-MMP to promote cancer cell invasion. Since both processes require MT1-MMP homodimerization on the cell surface, herein we propose that the use of bifunctional inhibitors of this enzyme could represent an innovative approach to efficiently reduce tumor growth. A small series of symmetrical dimers derived from previously described monomeric arylsulfonamide hydroxamates was synthesized and tested in vitro on isolated MMPs. A nanomolar MT1-MMP inhibitor, compound 6, was identified and then submitted to cell-based assays on HT1080 fibrosarcoma cells. Dimer 6 reduced MT1-MMP-dependent proMMP-2 activation, collagen degradation and collagen invasion in a dose-dependent manner with better results even compared to its monomeric analogue 4. This preliminary study suggests that dimeric MT1-MMP inhibitors might be further developed and exploited as an alternative tool to reduce cancer cell invasion.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Valentina Gifford
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Noriko Ito
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Caterina Camodeca
- Department of Pharmacy, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
| | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Armando Rossello
- Department of Pharmacy, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|
5
|
Sp N, Kang DY, Kim DH, Park JH, Lee HG, Kim HJ, Darvin P, Park YM, Yang YM. Nobiletin Inhibits CD36-Dependent Tumor Angiogenesis, Migration, Invasion, and Sphere Formation Through the Cd36/Stat3/Nf-Κb Signaling Axis. Nutrients 2018; 10:nu10060772. [PMID: 29914089 PMCID: PMC6024609 DOI: 10.3390/nu10060772] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023] Open
Abstract
Targeted cancer therapy with natural compounds is more effective than nontargeted therapy. Nobiletin is a flavonoid derived from citrus peel that has anticancer activity. Cluster of differentiation 36 (CD36) is a member of the class B scavenger receptor family that is involved in importing fatty acids into cells. CD36 plays a role in tumor angiogenesis by binding to its ligand, thrombospondin-1 (TSP-1), and then interacting with transforming growth factor beta 1 (TGFβ1). CD36 is implicated in tumor metastasis through its roles in fatty acid metabolism. This study investigated the molecular mechanisms underlying nobiletin's anticancer activity by characterizing its interactions with CD36 as the target molecule. We hypothesize that the anti-angiogenic activity of nobiletin involving its regulation of CD36 via signal transducer and activator of transcription 3 (STAT3) rather than through TSP-1. Gene analysis identified a Gamma interferon activation site (GAS) element in the CD36 gene promoter that acts as a STAT3 binding site, an interaction that was confirmed by ChIP assay. STAT3 interacts with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), suggesting that nobiletin also acts through the CD36/ (STAT3)/NF-κB signaling axis. Nobiletin inhibited CD36-dependent breast cancer cell migration and invasion as well as CD36-mediated tumor sphere formation. Taken together, these results suggest that nobiletin inhibits cancer stem cells in multiple ways.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Doh Hoon Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Jong Hwan Park
- Inha University College of Medicine, 27 Inhang-Ro, Jung Gu, Incheon 400-103, Korea.
| | - Hyo Gun Lee
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Gyeongsangnam 50463, Korea.
| | - Hye Jee Kim
- King's College London GKT School of Medical Education, London SE1 1UL, UK.
| | - Pramod Darvin
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 5825 Doha, Qatar.
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea.
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
6
|
Malik VA, Di Benedetto B. The Blood-Brain Barrier and the EphR/Ephrin System: Perspectives on a Link Between Neurovascular and Neuropsychiatric Disorders. Front Mol Neurosci 2018; 11:127. [PMID: 29706868 PMCID: PMC5906525 DOI: 10.3389/fnmol.2018.00127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/29/2018] [Indexed: 01/06/2023] Open
Abstract
Interactions among endothelial cells (EC) forming blood vessels and their surrounding cell types are essential to establish the blood-brain barrier (BBB), an integral part of the neurovascular unit (NVU). Research on the NVU has recently seen a renaissance to especially understand the neurobiology of vascular and brain pathologies and their frequently occurring comorbidities. Diverse signaling molecules activated in the near proximity of blood vessels trigger paracellular pathways which regulate the formation and stabilization of tight junctions (TJ) between EC and thereby influence BBB permeability. Among regulatory molecules, the erythropoietin-producing-hepatocellular carcinoma receptors (EphR) and their Eph receptor-interacting signals (ephrins) play a pivotal role in EC differentiation, angiogenesis and BBB integrity. Multiple EphR-ligand interactions between EC and other cell types influence different aspects of angiogenesis and BBB formation. Such interactions additionally control BBB sealing properties and thus the penetration of substances into the brain parenchyma. Thus, they play critical roles in the healthy brain and during the pathogenesis of brain disorders. In this mini-review article, we aim at integrating the constantly growing literature about the functional roles of the EphR/ephrin system for the development of the vascular system and the BBB and in the pathogenesis of neurovascular and neuropsychiatric disorders. We suggest the hypothesis that a disrupted EphR/ephrin signaling at the BBB might represent an underappreciated molecular hub of disease comorbidity. Finally, we propose the possibility that the EphR/ephrin system bears the potential of becoming a novel target for the development of alternative therapeutic treatments, focusing on such comorbidities.
Collapse
Affiliation(s)
- Victoria A Malik
- RG Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Barbara Di Benedetto
- RG Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Wang Y, Song J, Marquez-Lago TT, Leier A, Li C, Lithgow T, Webb GI, Shen HB. Knowledge-transfer learning for prediction of matrix metalloprotease substrate-cleavage sites. Sci Rep 2017; 7:5755. [PMID: 28720874 PMCID: PMC5515926 DOI: 10.1038/s41598-017-06219-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/08/2017] [Indexed: 11/24/2022] Open
Abstract
Matrix Metalloproteases (MMPs) are an important family of proteases that play crucial roles in key cellular and disease processes. Therefore, MMPs constitute important targets for drug design, development and delivery. Advanced proteomic technologies have identified type-specific target substrates; however, the complete repertoire of MMP substrates remains uncharacterized. Indeed, computational prediction of substrate-cleavage sites associated with MMPs is a challenging problem. This holds especially true when considering MMPs with few experimentally verified cleavage sites, such as for MMP-2, -3, -7, and -8. To fill this gap, we propose a new knowledge-transfer computational framework which effectively utilizes the hidden shared knowledge from some MMP types to enhance predictions of other, distinct target substrate-cleavage sites. Our computational framework uses support vector machines combined with transfer machine learning and feature selection. To demonstrate the value of the model, we extracted a variety of substrate sequence-derived features and compared the performance of our method using both 5-fold cross-validation and independent tests. The results show that our transfer-learning-based method provides a robust performance, which is at least comparable to traditional feature-selection methods for prediction of MMP-2, -3, -7, -8, -9 and -12 substrate-cleavage sites on independent tests. The results also demonstrate that our proposed computational framework provides a useful alternative for the characterization of sequence-level determinants of MMP-substrate specificity.
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jiangning Song
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, 3800, Australia
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Monash University, Melbourne, VIC, 3800, Australia
| | - Tatiana T Marquez-Lago
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - André Leier
- Informatics Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Chen Li
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Geoffrey I Webb
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China.
| |
Collapse
|
8
|
Sp N, Kang DY, Joung YH, Park JH, Kim WS, Lee HK, Song KD, Park YM, Yang YM. Nobiletin Inhibits Angiogenesis by Regulating Src/FAK/STAT3-Mediated Signaling through PXN in ER⁺ Breast Cancer Cells. Int J Mol Sci 2017; 18:ijms18050935. [PMID: 28468300 PMCID: PMC5454848 DOI: 10.3390/ijms18050935] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 02/08/2023] Open
Abstract
Tumor angiogenesis is one of the major hallmarks of tumor progression. Nobiletin is a natural flavonoid isolated from citrus peel that has anti-angiogenic activity. Steroid receptor coactivator (Src) is an intracellular tyrosine kinase so that focal adhesion kinase (FAK) binds to Src to play a role in tumor angiogenesis. Signal transducer and activator of transcription 3 (STAT3) is a marker for tumor angiogenesis which interacts with Src. Paxillin (PXN) acts as a downstream target for both FAK and STAT3. The main goal of this study was to assess inhibition of tumor angiogenesis by nobiletin in estrogen receptor positive (ER+) breast cancer cells via Src, FAK, and STAT3-mediated signaling through PXN. Treatment with nobiletin in MCF-7 and T47D breast cancer cells inhibited angiogenesis markers, based on western blotting and RT-PCR. Validation of in vitro angiogenesis in the human umbilical vein endothelial cells (HUVEC) endothelial cell line proved the anti-angiogenic activity of nobiletin. Electrophoretic mobility shift assay and the ChIP assay showed that nobiletin inhibits STAT3/DNA binding activity and STAT3 binding to a novel binding site of the PXN gene promoter. We also investigated the migration and invasive ability of nobiletin in ER+ cells. Nobiletin inhibited tumor angiogenesis by regulating Src, FAK, and STAT3 signaling through PXN in ER+ breast cancer cells.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Youn Hee Joung
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Jong Hwan Park
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Wan Seop Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea.
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea.
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea.
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
9
|
Majkowska I, Shitomi Y, Ito N, Gray NS, Itoh Y. Discoidin domain receptor 2 mediates collagen-induced activation of membrane-type 1 matrix metalloproteinase in human fibroblasts. J Biol Chem 2017; 292:6633-6643. [PMID: 28270508 PMCID: PMC5399112 DOI: 10.1074/jbc.m116.770057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/22/2017] [Indexed: 02/05/2023] Open
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-bound MMP that is highly expressed in cells with invading capacity, including fibroblasts and invasive cancer cells. However, pathways of MT1-MMP up-regulation are not clearly understood. A potential physiological stimulus for MT1-MMP expression is fibrillar collagen, and it has been shown that it up-regulates both MT1-MMP gene and functions in various cell types. However, the mechanisms of collagen-mediated MT1-MMP activation and its physiological relevance are not known. In this study, we identified discoidin domain receptor 2 (DDR2) as a crucial receptor that mediates this process in human fibroblasts. Knocking down DDR2, but not the β1 integrin subunit, a common subunit for all collagen-binding integrins, inhibited the collagen-induced MT1-MMP-dependent activation of pro-MMP-2 and up-regulation of MT1-MMP at the gene and protein levels. Interestingly, DDR2 knockdown or pharmacological inhibition of DDR2 also inhibited the MT1-MMP-dependent cellular degradation of collagen film, suggesting that cell-surface collagen degradation by MT1-MMP involves DDR2-mediated collagen signaling. This DDR2-mediated mechanism is only present in non-transformed mesenchymal cells as collagen-induced MT1-MMP activation in HT1080 fibrosarcoma cells and MT1-MMP function in MDA-MB231 breast cancer cells were not affected by DDR kinase inhibition. DDR2 activation was found to be noticeably more effective when cells were stimulated by collagen without the non-helical telopeptide region compared with intact collagen fibrils. Furthermore, DDR2-dependent MT1-MMP activation by cartilage was found to be more efficient when the tissue was partially damaged. These data suggest that DDR2 is a microenvironment sensor that regulates fibroblast migration in a collagen-rich environment.
Collapse
Affiliation(s)
- Iwona Majkowska
- From the Kennedy Institute of Rheumatology, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom and
| | - Yasuyuki Shitomi
- From the Kennedy Institute of Rheumatology, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom and
| | - Noriko Ito
- From the Kennedy Institute of Rheumatology, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom and
| | - Nathanael S Gray
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215
| | - Yoshifumi Itoh
- From the Kennedy Institute of Rheumatology, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom and
| |
Collapse
|
10
|
Abstract
Proteases regulate a myriad of cell functions, both in normal and disease states. In addition to protein turnover, they regulate a range of signaling processes, including those mediated by Eph receptors and their ephrin ligands. A variety of proteases is reported to directly cleave Ephs and/or ephrins under different conditions, to promote receptor and/or ligand shedding, and regulate receptor/ligand internalisation and signaling. They also cleave other adhesion proteins in response to Eph-ephrin interactions, to indirectly facilitate Eph-mediated functions. Proteases thus contribute to Eph/ephrin mediated changes in cell-cell and cell-matrix interactions, in cell morphology and in cell migration and invasion, in a manner which appears to be tightly regulated by, and co-ordinated with, Eph signaling. This review summarizes the current literature describing the function and regulation of protease activities during Eph/ephrin-mediated cell signaling.
Collapse
Affiliation(s)
- Lakmali Atapattu
- a Department of Biochemistry and Molecular Biology ; Monash University , Victoria ; Australia
| | | | | |
Collapse
|
11
|
Vu LT, Jain G, Veres BD, Rajagopalan P. Cell migration on planar and three-dimensional matrices: a hydrogel-based perspective. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:67-74. [PMID: 25011932 DOI: 10.1089/ten.teb.2013.0782] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The migration of cells is a complex process that is dependent on the properties of the surrounding environment. In vivo, the extracellular environment is complex with a wide range of physical features, topographies, and protein compositions. There have been a number of approaches to design substrates that can recapitulate the complex architecture in vivo. Two-dimensional (2D) substrates have been widely used to study the effect of material properties on cell migration. However, such substrates do not capture the intricate structure of the extracellular environment. Recent advances in hydrogel assembly and patterning techniques have enabled the design of new three-dimensional (3D) scaffolds and microenvironments. Investigations conducted on these matrices provide growing evidence that several established migratory trends obtained from studies on 2D substrates could be significantly different when conducted in a 3D environment. Since cell migration is closely linked to a wide range of physiological functions, there is a critical need to examine migratory trends on 3D matrices. In this review, our goal is to highlight recent experimental studies on cell migration within engineered 3D hydrogel environments and how they differ from planar substrates. We provide a detailed examination of the changes in cellular characteristics such as morphology, speed, directionality, and protein expression in 3D hydrogel environments. This growing field of research will have a significant impact on tissue engineering, regenerative medicine, and in the design of biomaterials.
Collapse
Affiliation(s)
- Lucas T Vu
- 1 Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia
| | | | | | | |
Collapse
|
12
|
Woskowicz AM, Weaver SA, Shitomi Y, Ito N, Itoh Y. MT-LOOP-dependent localization of membrane type I matrix metalloproteinase (MT1-MMP) to the cell adhesion complexes promotes cancer cell invasion. J Biol Chem 2013; 288:35126-37. [PMID: 24165131 DOI: 10.1074/jbc.m113.496067] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Localization of membrane type I matrix metalloproteinase (MT1-MMP) to the leading edge is thought to be a crucial step during cancer cell invasion. However, its mechanisms and functional impact on cellular invasion have not been clearly defined. In this report, we have identified the MT-LOOP, a loop region in the catalytic domain of MT1-MMP ((163)PYAYIREG(170)), as an essential region for MT1-MMP to promote cellular invasion. Deletion of the MT-LOOP effectively inhibited functions of MT1-MMP on the cell surface, including proMMP-2 activation, degradation of gelatin and collagen films, and cellular invasion into a collagen matrix. This is not due to loss of the catalytic function of MT1-MMP but due to inefficient localization of the enzyme to β1-integrin-rich cell adhesion complexes at the plasma membrane. We also found that an antibody that specifically recognizes the MT-LOOP region of MT1-MMP (LOOPAb) inhibited MT1-MMP functions, fully mimicking the phenotype of the MT-LOOP deletion mutant. We therefore propose that the MT-LOOP region is an interface for molecular interactions that mediate enzyme localization to cell adhesion complexes and regulate MT1-MMP functions. Our findings have revealed a novel mechanism regulating MT1-MMP during cellular invasion and have identified the MT-LOOP as a potential exosite target region to develop selective MT1-MMP inhibitors.
Collapse
Affiliation(s)
- Anna M Woskowicz
- From the Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Nogalski MT, Chan GCT, Stevenson EV, Collins-McMillen DK, Yurochko AD. A quantitative evaluation of cell migration by the phagokinetic track motility assay. J Vis Exp 2012:e4165. [PMID: 23242175 DOI: 10.3791/4165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cellular motility is an important biological process for both unicellular and multicellular organisms. It is essential for movement of unicellular organisms towards a source of nutrients or away from unsuitable conditions, as well as in multicellular organisms for tissue development, immune surveillance and wound healing, just to mention a few roles(1,2,3). Deregulation of this process can lead to serious neurological, cardiovascular and immunological diseases, as well as exacerbated tumor formation and spread(4,5). Molecularly, actin polymerization and receptor recycling have been shown to play important roles in creating cellular extensions (lamellipodia), that drive the forward movement of the cell(6,7,8). However, many biological questions about cell migration remain unanswered. The central role for cellular motility in human health and disease underlines the importance of understanding the specific mechanisms involved in this process and makes accurate methods for evaluating cell motility particularly important. Microscopes are usually used to visualize the movement of cells. However, cells move rather slowly, making the quantitative measurement of cell migration a resource-consuming process requiring expensive cameras and software to create quantitative time-lapsed movies of motile cells. Therefore, the ability to perform a quantitative measurement of cell migration that is cost-effective, non-laborious, and that utilizes common laboratory equipment is a great need for many researchers. The phagokinetic track motility assay utilizes the ability of a moving cell to clear gold particles from its path to create a measurable track on a colloidal gold-coated glass coverslip(9,10). With the use of freely available software, multiple tracks can be evaluated for each treatment to accomplish statistical requirements. The assay can be utilized to assess motility of many cell types, such as cancer cells(11,12), fibroblasts(9), neutrophils(13), skeletal muscle cells(14), keratinocytes(15), trophoblasts(16), endothelial cells(17), and monocytes(10,18-22). The protocol involves the creation of slides coated with gold nanoparticles (Au°) that are generated by a reduction of chloroauric acid (Au(3+)) by sodium citrate. This method was developed by Turkevich et al. in 1951(23) and then improved in the 1970s by Frens et al.(24,25). As a result of this chemical reduction step, gold particles (10-20 nm in diameter) precipitate from the reaction mixture and can be applied to glass coverslips, which are then ready for use in cellular migration analyses(9,26,27). In general, the phagokinetic track motility assay is a quick, quantitative and easy measure of cellular motility. In addition, it can be utilized as a simple high-throughput assay, for use with cell types that are not amenable to time-lapsed imaging, as well as other uses depending on the needs of the researcher. Together, the ability to quantitatively measure cellular motility of multiple cell types without the need for expensive microscopes and software, along with the use of common laboratory equipment and chemicals, make the phagokinetic track motility assay a solid choice for scientists with an interest in understanding cellular motility.
Collapse
Affiliation(s)
- Maciej T Nogalski
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center
| | | | | | | | | |
Collapse
|
14
|
Murphy N, Lynch MA. Activation of the P2X₇ receptor induces migration of glial cells by inducing cathepsin B degradation of tissue inhibitor of metalloproteinase 1. J Neurochem 2012; 123:761-70. [PMID: 23017058 DOI: 10.1111/jnc.12031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/16/2012] [Accepted: 09/19/2012] [Indexed: 12/23/2022]
Abstract
The P2X(7) receptor is an ion-gated channel, which is activated by high extracellular concentrations of adenosine triphosphate (ATP). Activation of P2X(7) receptors has been shown to induce neuroinflammatory changes associated with several neurological conditions. The matrix metalloproteinases (MMPs) are a family of endopeptidases that have several functions including degradation of the extracellular matrix, cell migration and modulation of bioactive molecules. The actions of MMPs are prevented by a family of protease inhibitors called tissue inhibitors of metalloproteinases (TIMPs). In this study, we show that ATP-treated glial cultures from neonatal C57BL/6 mice release and increase MMP-9 activity, which is coupled with a decrease in release of TIMP-1 and an increase in activated cathepsin B within the extracellular space. This process occurs independently of NLRP3-inflammasome formation. Treatment with a P2X(7) receptor antagonist prevents ATP-induced MMP-9 activity, inhibition of active cathepsin B release and allows for TIMP-1 to be released from the cell. We have shown that cathepsin B degrades TIMP-1, and inhibition of cathepsin B allows for release of TIMP-1 and inhibits MMP-9 activity. We also present data that indicate that ATP or cell damage induces glial cell migration, which is inhibited by P2X(7) antagonism, depletion of MMP-9 or inhibition of cathepsin B.
Collapse
Affiliation(s)
- Niamh Murphy
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | | |
Collapse
|
15
|
Dimerization of MT1-MMP during cellular invasion detected by fluorescence resonance energy transfer. Biochem J 2011; 440:319-26. [DOI: 10.1042/bj20110424] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Homodimerization of the membrane-bound collagenase MT1-MMP [membrane-type 1 MMP (matrix metalloproteinase)] is crucial for its collagenolytic activity. However, it is not clear whether this dimerization is regulated during cellular invasion into three-dimensional collagen matrices. To address this question, we established a fluorescence resonance energy transfer system to detect MT1-MMP dimerization and analysed the process in cells invading through three-dimensional collagen. Our data indicate that dimerization occurs dynamically and constantly at the leading edge of migrating cells, but not the trailing edge. We found that polarized dimerization was not due to ECM (extracellular matrix) attachment, but was rather controlled by reorganization of the actin cytoskeleton by the small GTPases, Cdc42 (cell division cycle 42) and Rac1. Our data indicate that cell-surface collagenolytic activity is regulated co-ordinately with cell migration events to enable penetration of the matrix physical barrier.
Collapse
|