1
|
Weissig V. From Olive Oil Emulsions to COVID-19 Vaccines: Liposomes Came First. Methods Mol Biol 2023; 2622:1-19. [PMID: 36781746 DOI: 10.1007/978-1-0716-2954-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
It has been a long journey from Pliny the Elder (23-79 AD) to the FDA approval of the first injectable nanomedicine in 1997. A journey powered by intellectual curiosity, which began with sprinkling olive oil on seawater and culminated in playing around with smears of egg lecithin on microscopic slides. This brief review highlights how a few pairs of gifted hands attached to highly motivated brains have turned a curious discovery made under a microscopic lens into novel nanotherapeutics including liposome-based anti-cancer drugs and potent liposomal vaccines given to millions.
Collapse
Affiliation(s)
- Volkmar Weissig
- Midwestern University College of Pharmacy Glendale, Department of Pharmaceutical Sciences, Glendale, AZ, USA.
| |
Collapse
|
2
|
Tomsen-Melero J, Merlo-Mas J, Carreño A, Sala S, Córdoba A, Veciana J, González-Mira E, Ventosa N. Liposomal formulations for treating lysosomal storage disorders. Adv Drug Deliv Rev 2022; 190:114531. [PMID: 36089182 DOI: 10.1016/j.addr.2022.114531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/13/2022] [Accepted: 09/04/2022] [Indexed: 01/24/2023]
Abstract
Lysosomal storage disorders (LSD) are a group of rare life-threatening diseases caused by a lysosomal dysfunction, usually due to the lack of a single enzyme required for the metabolism of macromolecules, which leads to a lysosomal accumulation of specific substrates, resulting in severe disease manifestations and early death. There is currently no definitive cure for LSD, and despite the approval of certain therapies, their effectiveness is limited. Therefore, an appropriate nanocarrier could help improve the efficacy of some of these therapies. Liposomes show excellent properties as drug carriers, because they can entrap active therapeutic compounds offering protection, biocompatibility, and selectivity. Here, we discuss the potential of liposomes for LSD treatment and conduct a detailed analysis of promising liposomal formulations still in the preclinical development stage from various perspectives, including treatment strategy, manufacturing, characterization, and future directions for implementing liposomal formulations for LSD.
Collapse
Affiliation(s)
- Judit Tomsen-Melero
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | - Aida Carreño
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Santi Sala
- Nanomol Technologies SL, 08193 Cerdanyola del Vallès, Spain
| | - Alba Córdoba
- Nanomol Technologies SL, 08193 Cerdanyola del Vallès, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Elisabet González-Mira
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Nora Ventosa
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
3
|
Ommen P, Hansen L, Hansen BK, Vu-Quang H, Kjems J, Meyer RL. Aptamer-Targeted Drug Delivery for Staphylococcus aureus Biofilm. Front Cell Infect Microbiol 2022; 12:814340. [PMID: 35573794 PMCID: PMC9104115 DOI: 10.3389/fcimb.2022.814340] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Treatment of Staphylococcus aureus biofilm infections using conventional antibiotic therapy is challenging as only doses that are sublethal to the biofilm can be administered safely to patients. A potential solution to this challenge is targeted drug delivery. In this study, we tailored an aptamer-targeted liposomal drug delivery system for accumulation and delivery of antibiotics locally in S. aureus biofilm. In our search for a suitable targeting ligand, we identified six DNA aptamers that bound to S. aureus cells in biofilms, and we demonstrated that one of these aptamers could facilitate accumulation of liposomes around S. aureus cells inside the biofilm. Aptamer-targeted liposomes encapsulating a combination of vancomycin and rifampicin were able to eradicate S. aureus biofilm upon 24 h of treatment in vitro. Our results point to that aptamer-targeted drug delivery of antibiotics is a potential new strategy for treatment of S. aureus biofilm infections.
Collapse
Affiliation(s)
- Pernille Ommen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark
| | - Line Hansen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark
| | - Bente K. Hansen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark
| | - Hieu Vu-Quang
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | - Rikke L. Meyer
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
4
|
Plenagl N, Seitz BS, Duse L, Pinnapireddy SR, Jedelska J, Brüßler J, Bakowsky U. Hypericin inclusion complexes encapsulated in liposomes for antimicrobial photodynamic therapy. Int J Pharm 2019; 570:118666. [PMID: 31494239 DOI: 10.1016/j.ijpharm.2019.118666] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
The naturally occurring anthraquinone derivative hypericin is a highly potent photosensitiser. Several in vitro studies show high phototoxicity of the pigment towards gram-positive bacteria. Nevertheless, the highly lipophilic nature and poor bioavailability prevent its application in daily clinical practice thus leading to a limited therapeutic value of hypericin. Liposomal encapsulation could help overcome these limitations and would make hypericin available for daily clinical practice. The use of liposomes as carriers for hypericin in antimicrobial photodynamic therapy (aPDT) is quite new. The aim of this work was to improve the photodynamic efficiency of the previously mentioned carriers by entrapping hypericin in the aqueous compartment of the liposomes. Therefore, a water-soluble inclusion complex of hypericin and (2-hydroxypropyl)-beta-cyclodextrin (Hyp-HPβCD) was prepared. After encapsulation of the inclusion complex into DSPC and DSPC/DPPC/DSPE-PEG liposomes with the dehydration-rehydration vesicle (DRV) method, the formulations were physicochemical characterised. The photodynamic efficiency towards the gram-positive model strain Staphylococcus saprophyticus subsp. bovis. was tested on planktonic cells as well as on biofilms. DSPC liposomes achieved a 4.1log reduction and the DSPC/DPPC/DSPE-PEG liposomes a 2.6log reduction in growth of planktonic bacteria, while Hyp-HPβCD showed total eradication. Even bacterial cells growing in a biofilm could be treated effectively in vitro.
Collapse
Affiliation(s)
- Nikola Plenagl
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Benjamin Sebastian Seitz
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Jarmila Jedelska
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany.
| |
Collapse
|
5
|
Vögeling H, Plenagl N, Seitz BS, Duse L, Pinnapireddy SR, Dayyoub E, Jedelska J, Brüßler J, Bakowsky U. Synergistic effects of ultrasound and photodynamic therapy leading to biofilm eradication on polyurethane catheter surfaces modified with hypericin nanoformulations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109749. [PMID: 31349520 DOI: 10.1016/j.msec.2019.109749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
Catheter related infections are causing one third of all blood stream infections. The mortality of those infections is very high and the gold standard for catheter related blood stream infections (CR-BSI) is still the removal of the catheter and systemic antibiotic therapy. There already exist some approaches to prevent the biofilm formation on catheter material, which are far from ideal. A new strategy to prevent bacterial colonization on catheter surfaces is the application of photodynamic therapy (PDT). Therefor the surface has to be modified with substances that can be activated by light, leading to the production of cell toxic reactive oxygen species (ROS). Only small concentrations of the so called photosensitizer (PS) are necessary, avoiding side effects in human therapy. Furthermore, there is no resistance development in PDT. In this study polyurethane (PUR) surfaces were coated with hypericin nanoformulations, leading to 4.3 log10 reduction in bacterial growth in vitro. The effect could be enhanced by the application of ultrasound. The combination of PDT with ultrasound therapy led to a synergistic effect resulting in a 6.8 log10 reduction of viable counts. This minimal invasive method requires only an optical fibre inserted in the catheter lumen and an ultrasound device. Thus the implementation in daily clinical practice is very simple.
Collapse
Affiliation(s)
- Hendrik Vögeling
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Nikola Plenagl
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | | | - Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| | | | - Eyas Dayyoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Jarmila Jedelska
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| |
Collapse
|
6
|
Plenagl N, Duse L, Seitz BS, Goergen N, Pinnapireddy SR, Jedelska J, Brüßler J, Bakowsky U. Photodynamic therapy - hypericin tetraether liposome conjugates and their antitumor and antiangiogenic activity. Drug Deliv 2019; 26:23-33. [PMID: 30691327 PMCID: PMC6352941 DOI: 10.1080/10717544.2018.1531954] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Photodynamic therapy (PDT) is an established noninvasive tumor treatment. The hydrophobic natural occurring pigment hypericin shows a lot of attractive properties for the application in PDT. Hence, the administration to biological systems or patients requires the formulation in drug carriers enabling sufficient bioavailability. Therefore, free hypericin was encapsulated by the thin film hydration method or a hypericin-hydroxypropyl-β-cyclodextrin inclusion complex (Hyp-HPβCD) was incorporated by dehydration-rehydration vesicle method in either conventional or ultra-stable tetraether lipid (TEL) liposomes. The hydrodynamic diameter of the prepared nanoformulations ranged between 127 and 212 nm. These results were confirmed by atomic force microscopy. All liposomes showed a good stability under physiological conditions. TEL liposomes which tend to build more rigid bilayers, generate higher encapsulation efficiencies than their conventional counterparts. Furthermore, the suitability for intravenous application was confirmed by hemocompatibility studies resulting in a hemolytic potential less than 20% and a coagulation time less than 50 sec. The uptake of liposomal hypericin into human ovarian carcinoma cells (SK-OV-3) was confirmed using confocal microscopy and further characterized by pathway studies. It was demonstrated that the lipid composition and intraliposomal hypericin localization influenced the anti-vascular effect in the chorioallantoic membrane (CAM). While hypericin TEL liposomes exhibit substantial destruction of the microvasculature drug-in-cyclodextrin TEL liposomes showed no effect. Nevertheless, both formulations yielded severe photocytotoxicity in SK-OV-3 cells in a therapeutic dosage range. Conclusively, hypericin TEL liposomes would be perfectly suited for anti-vascular targeting while Hyp-HPβCD TEL liposomes could deliver the photosensitizer to the tumor site in a more protected manner.
Collapse
Affiliation(s)
- Nikola Plenagl
- a Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Marburg , Germany
| | - Lili Duse
- a Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Marburg , Germany
| | | | - Nathalie Goergen
- a Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Marburg , Germany
| | | | - Jarmila Jedelska
- a Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Marburg , Germany
| | - Jana Brüßler
- a Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Marburg , Germany
| | - Udo Bakowsky
- a Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Marburg , Germany
| |
Collapse
|
7
|
Rovoli M, Pappas I, Lalas S, Gortzi O, Kontopidis G. In vitro and in vivo assessment of vitamin A encapsulation in a liposome–protein delivery system. J Liposome Res 2018; 29:142-152. [DOI: 10.1080/08982104.2018.1502314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Magdalini Rovoli
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Ioannis Pappas
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Stavros Lalas
- Department of Food Technology, Technological Educational Institution of Thessaly, Karditsa, Greece
| | - Olga Gortzi
- Department of Food Technology, Technological Educational Institution of Thessaly, Karditsa, Greece
| | - George Kontopidis
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| |
Collapse
|
8
|
Lun CM, Samuel RL, Gillmor SD, Boyd A, Smith LC. The Recombinant Sea Urchin Immune Effector Protein, rSpTransformer-E1, Binds to Phosphatidic Acid and Deforms Membranes. Front Immunol 2017; 8:481. [PMID: 28553283 PMCID: PMC5427130 DOI: 10.3389/fimmu.2017.00481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/06/2017] [Indexed: 01/11/2023] Open
Abstract
The purple sea urchin, Strongylocentrotus purpuratus, possesses a sophisticated innate immune system that functions without adaptive capabilities and responds to pathogens effectively by expressing the highly diverse SpTransformer gene family (formerly the Sp185/333 gene family). The swift gene expression response and the sequence diversity of SpTransformer cDNAs suggest that the encoded proteins have immune functions. Individual sea urchins can express up to 260 distinct SpTransformer proteins, and their diversity suggests that different versions may have different functions. Although the deduced proteins are diverse, they share an overall structure of a hydrophobic leader, a glycine-rich N-terminal region, a histidine-rich region, and a C-terminal region. Circular dichroism analysis of a recombinant SpTransformer protein, rSpTransformer-E1 (rSpTrf-E1) demonstrates that it is intrinsically disordered and transforms to α helical in the presence of buffer additives and binding targets. Although native SpTrf proteins are associated with the membranes of perinuclear vesicles in the phagocyte class of coelomocytes and are present on the surface of small phagocytes, they have no predicted transmembrane region or conserved site for glycophosphatidylinositol linkage. To determine whether native SpTrf proteins associate with phagocyte membranes through interactions with lipids, when rSpTrf-E1 is incubated with lipid-embedded nylon strips, it binds to phosphatidic acid (PA) through both the glycine-rich region and the histidine-rich region. Synthetic liposomes composed of PA and phosphatidylcholine show binding between rSpTrf-E1 and PA by fluorescence resonance energy transfer, which is associated with leakage of luminal contents suggesting changes in lipid organization and perhaps liposome lysis. Interactions with liposomes also change membrane curvature leading to liposome budding, fusion, and invagination, which is associated with PA clustering induced by rSpTrf-E1 binding. Longer incubations result in the extraction of PA from the liposomes, which form disorganized clusters. CD shows that when rSpTrf-E1 binds to PA, it changes its secondary structure from disordered to α helical. These results provide evidence for how SpTransformer proteins may associate with molecules that have exposed phosphates including PA on cell membranes and how the characteristic of protein multimerization may drive changes in the organization of membrane lipids.
Collapse
Affiliation(s)
- Cheng Man Lun
- Department of Biological Sciences, George Washington University, Science and Engineering Hall, Washington, DC, USA
| | - Robin L. Samuel
- Department of Chemistry, George Washington University, Science and Engineering Hall, Washington, DC, USA
| | - Susan D. Gillmor
- Department of Chemistry, George Washington University, Science and Engineering Hall, Washington, DC, USA
| | - Anthony Boyd
- Department of Biological Sciences, George Washington University, Science and Engineering Hall, Washington, DC, USA
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Science and Engineering Hall, Washington, DC, USA
| |
Collapse
|
9
|
Abstract
Dried reconstituted vesicles (DRV) are liposomes that are formulated under mild conditions and have the capability to entrap substantially high amounts of hydrophilic solutes (compared to other types of liposomes). These characteristics make this liposome type ideal for entrapment of labile substances, as peptide, protein, or DNA vaccines, or in general biopharmaceuticals and sensitive drugs. In this chapter, all possible types of DRV liposomes (with respect to the encapsulated molecule characteristics and/or their applications in therapeutics) are introduced, and preparation methodologies (for each type) are described in detail.
Collapse
Affiliation(s)
- Sophia G Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26510, Rio, Patras, Greece.
- FORTH/ICE-HT, 26510, Rio, Patras, Greece.
| |
Collapse
|
10
|
Abstract
It has been a long journey from Pliny the Elder (23-79 AD) to the FDA approval of the first injectable Nanomedicine in 1997. It has been a journey powered by intellectual curiosity, which began with sprinkling olive oil on seawater and culminated in playing around with smears of egg lecithin on microscopic slides. This brief review highlights how a few pairs of gifted hands attached to highly motivated brains have launched Liposome Technology.
Collapse
Affiliation(s)
- Volkmar Weissig
- Department of Pharmaceutical Sciences, Midwestern University College of Pharmacy Glendale, 19555 North 59th Ave., Glendale, AZ, 85308, USA.
| |
Collapse
|
11
|
Rovoli M, Gortzi O, Lalas S, Kontopidis G. β-Lactoglobulin improves liposome’s encapsulation properties for vitamin E delivery. J Liposome Res 2013; 24:74-81. [DOI: 10.3109/08982104.2013.839701] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Sherry M, Charcosset C, Fessi H, Greige-Gerges H. Essential oils encapsulated in liposomes: a review. J Liposome Res 2013; 23:268-75. [PMID: 23879218 DOI: 10.3109/08982104.2013.819888] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the recent years there has been an increased interest toward the biological activities of essential oils. However, essential oils are unstable and susceptible to degradation in the presence of oxygen, light and temperature. So, attempts have been made to preserve them through encapsulation in various colloidal systems such as microcapsules, microspheres, nanoemulsions and liposomes. This review focuses specifically on encapsulation of essential oils into liposomes. First, we present the techniques used to prepare liposomes encapsulating essential oils. The effects of essential oils and other factors on liposome characteristics such as size, encapsulation efficiency and thermal behavior of lipid bilayers are then discussed. The composition of lipid vesicles membrane, especially the type of phospholipids, cholesterol content, the molar ratio of essential oils to lipids, the preparation method and the kind of essential oil may affect the liposome size and the encapsulation efficiency. Several essential oils can decrease the size of liposomes, homogenize the liposomal dispersions, increase the fluidity and reduce the oxidation of the lipid bilayer. Moreover, liposomes can protect the fluidity of essential oils and are stable at 4-5 °C for 6 months at least. The applications of liposomes incorporating essential oils are also summarized in this review. Liposomes encapsulating essential oils are promising agents that can be used to increase the anti-microbial activity of the essential oils, to study the effect of essential oils on cell membranes, and to provide alternative therapeutic agents to treat several diseases.
Collapse
Affiliation(s)
- Mirna Sherry
- Faculty of Sciences, Section II, Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Jdaidet El-Matn, Lebanese University , Lebanon and
| | | | | | | |
Collapse
|
13
|
Abstract
INTRODUCTION A number of delivery issues exist for biotech molecules including peptides, proteins and gene-based medicines that now make up over 60% of the drug pipeline. The problems comprise pharmaceutical ad biopharmaceutical issues. One of the common approaches to overcome these issues is the use of a carrier and liposomes as carriers have been investigated extensively over the last decade. AREAS COVERED The review has been discussed in terms of formulation and preclinical development studies and in vivo studies encompassing different delivery routes including parenteral, oral, buccal, pulmonary, intranasal, ocular and transdermal involving liposomes as carriers. Important research findings have been tabulated under each side heading and an expert opinion has been summarised for each delivery route. EXPERT OPINION The conclusion and expert opinion - conclusion sections discuss in detail troubleshooting aspects related to the use of liposomes as carriers for delivery of biopharmaceutical moieties and scrutinises the aspects behind the absence of a protein/peptide-containing liposome in market.
Collapse
Affiliation(s)
- Janani Swaminathan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Panoz Institute, Dublin 2, Ireland.
| | | |
Collapse
|
14
|
Haemocompatibility improvement of metallic surfaces by covalent immobilization of heparin–liposomes. Int J Pharm 2012; 432:91-8. [DOI: 10.1016/j.ijpharm.2012.04.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 04/19/2012] [Accepted: 04/21/2012] [Indexed: 01/24/2023]
|
15
|
MOURTAS SPYRIDON, MAO JOHN, PARSY CHRISTOPHEC, STORER RICHARD, KLEPETSANIS PAVLOS, ANTIMISIARIS SOPHIAG. LIPOSOMAL GELS FOR VAGINAL DELIVERY OF THE MICROBICIDE MC-1220: PREPARATION AND IN VIVO VAGINAL TOXICITY AND PHARMACOKINETICS. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1793984410000225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MC-1220 is a highly potent and selective non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV. The objective is to develop formulations for the vaginal delivery of MC-1220 and characterize them in vitro and in vivo (drug uptake, pharmacokinetics, toxicokinetics and vaginal irritation/inflammation). Due to the low aqueous solubility of MC-1220, emulsion-type and liposomal formulations of MC-1220 were developed. After rheological property adjustment (by gelling agents), the toxicity of two types of vaginal formulations of MC-1220 (emulsion [E] and liposomal [LIP] formulations) at 0.1% (E and LIP) and 0.5% (LIP) drug concentration, towards the vaginal mucosa as well as the absorption of the drug through the vaginal epithelium were investigated, after single and multiple administrations in New Zealand white NZW rabbits, for 10 days. Vaginal irritation was found to be within the acceptable range and always lower compared to the irritation caused by positive control formulation (nonoxynol-9), for all the formulation types (and concentrations evaluated). Pharmacokinetic values measured showed that the 0.1% LIP formulation was faster and better absorbed compared to the similar concentration E formulation, although most differences were not significant due to high variations. In conclusion, both types of formulations can be considered as safe for prolonged vaginal administration of MC-1220 or other drugs.
Collapse
Affiliation(s)
| | - JOHN MAO
- Idenix Pharmaceuticals, 1682 rue de la Valsiere, 34189 Montpellier, Cedex 4, France
| | - CHRISTOPHE C. PARSY
- Idenix Pharmaceuticals, 1682 rue de la Valsiere, 34189 Montpellier, Cedex 4, France
| | - RICHARD STORER
- Idenix Pharmaceuticals, 1682 rue de la Valsiere, 34189 Montpellier, Cedex 4, France
| | - PAVLOS KLEPETSANIS
- Department of Pharmacy, University of Patras and ICEHT/FORTH, 26510 Rio, Greece
| | | |
Collapse
|
16
|
Skouras A, Mourtas S, Markoutsa E, De Goltstein MC, Wallon C, Catoen S, Antimisiaris SG. Magnetoliposomes with high USPIO entrapping efficiency, stability and magnetic properties. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:572-9. [PMID: 21704597 DOI: 10.1016/j.nano.2011.06.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/12/2011] [Accepted: 06/06/2011] [Indexed: 11/30/2022]
Abstract
The DRV technique (followed by extrusion) was used for construction of hydrophilic-USPIO encapsulating liposomes. Magnetoliposomes (ML) were characterized for size, surface charge, entrapment, physical stability and magnetic properties (relaxivity). Results show that nanosized extruded-DRV MLs encapsulate higher amounts of USPIOs in comparison with sonicated vesicles. Fe (III) encapsulation efficiency (EE) is 12%, the highest reported to date for nanosized MLs. EE of MLs is influenced by ML membrane composition and polyethyleneglycol (PEG) coating. PEG-coating increases ML EE and stability; however, r(2)-to-r(1) ratios decrease (in comparison with non-PEGylated MLs). Most ML-types are efficient T2 contrast agents (because r(2)-to-r(1) ratios are higher than that of free USPIOs). Targeted MLs were formed by successfully immobilizing OX-26 monoclonal antibody on ML surface (biotin-streptavidin ligation), without significant loss of USPIOs. Targeted MLs retained their nanosize and integrity during storage for 1 month at 4 °C and up to 2 weeks at 37 °C.
Collapse
Affiliation(s)
- Athanasios Skouras
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | | | | | | | | | | | | |
Collapse
|