Molecular Consortia-Various Structural and Synthetic Concepts for More Effective Therapeutics Synthesis.
Int J Mol Sci 2018;
19:ijms19041104. [PMID:
29642417 PMCID:
PMC5979569 DOI:
10.3390/ijms19041104]
[Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/24/2018] [Accepted: 04/02/2018] [Indexed: 11/16/2022] Open
Abstract
The design and discovery of novel drug candidates are the initial and most probably the crucial steps in the drug development process. One of the tasks of medicinal chemistry is to produce new molecules that have a desired biological effect. However, even today the search for new pharmaceuticals is a very complicated process that is hard to rationalize. Literature provides many scientific reports on future prospects of design of potentially useful drugs. Many trends have been proposed for the design of new drugs containing different structures (dimers, heterodimers, heteromers, adducts, associates, complexes, biooligomers, dendrimers, dual-, bivalent-, multifunction drugs and codrugs, identical or non-identical twin drugs, mixed or combo drugs, supramolecular particles and various nanoindividuals. Recently much attention has been paid to different strategies of molecular hybridization. In this paper, various molecular combinations were described e.g., drug–drug or drug-non-drug combinations which are expressed in a schematic multi-factor form called a molecular matrix, consisting of four factors: association mode, connection method, and the number of elements and linkers. One of the most popular trends is to create small–small molecule combinations such as different hybrids, codrugs, drug–drug conjugates (DDCs) and small-large molecule combinations such as antibody-drug conjugates (ADCs), polymer-drug conjugates (PDCs) or different prodrugs and macromolecular therapeutics. A review of the structural possibilities of active framework combinations indicates that a wide range of potentially effective novel-type compounds can be formed. What is particularly important is that new therapeutics can be obtained in fast, efficient, and selective methods using current trends in chemical synthesis and the design of drugs such as the “Lego” concept or rational green approach.
Collapse