1
|
Wu W, Cheng R, Jiang Z, Zhang L, Huang X. UPLC-MS/MS method for the simultaneous quantification of pravastatin, fexofenadine, rosuvastatin, and methotrexate in a hepatic uptake model and its application to the possible drug-drug interaction study of triptolide. Biomed Chromatogr 2021; 35:e5093. [PMID: 33634891 DOI: 10.1002/bmc.5093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 11/07/2022]
Abstract
A rapid and specific UPLC-MS/MS method with a total run time of 3.5 min was developed for the determination of pravastatin, fexofenadine, rosuvastatin, and methotrexate in rat primary hepatocytes. After protein precipitation with 70% acetonitrile (containing 30% H2 O), these four analytes were separated under gradient conditions with a mobile phase consisting of 0.03% acetic acid (v/v) and methanol at a flow rate of 0.50 mL/min. The linearity, recovery, matrix effect, accuracy, precision, and stability of the method were well validated. We evaluated drug-drug interactions based on these four compounds in freshly suspended hepatocytes. The hepatic uptake of pravastatin, fexofenadine, rosuvastatin, and methotrexate at 4°C was significantly lower than that at 37°C, and the hepatocytes were saturable with increased substrate concentration and culture time, suggesting that the rat primary hepatocyte model was successfully established. Triptolide showed a significant inhibitory effect on the hepatic uptake of these four compounds. In conclusion, this method was successfully employed for the quantification of pravastatin, fexofenadine, rosuvastatin, and methotrexate and was used to verify the rat primary hepatocyte model for Oatp1, Oatp2, Oatp4, and Oat2 transporter studies. Then, we applied this model to explore the effect of triptolide on these four transporters.
Collapse
Affiliation(s)
- Wei Wu
- New drug screening center, Institute of Pharmaceutical Research, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Rui Cheng
- New drug screening center, Institute of Pharmaceutical Research, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Zhenzhou Jiang
- New drug screening center, Institute of Pharmaceutical Research, China Pharmaceutical University, Nanjing, China
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Huang
- New drug screening center, Institute of Pharmaceutical Research, China Pharmaceutical University, Nanjing, China
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Rizki-Safitri A, Tokito F, Nishikawa M, Tanaka M, Maeda K, Kusuhara H, Sakai Y. Prospect of in vitro Bile Fluids Collection in Improving Cell-Based Assay of Liver Function. FRONTIERS IN TOXICOLOGY 2021; 3:657432. [PMID: 35295147 PMCID: PMC8915818 DOI: 10.3389/ftox.2021.657432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The liver plays a pivotal role in the clearance of drugs. Reliable assays for liver function are crucial for various metabolism investigation, including toxicity, disease, and pre-clinical testing for drug development. Bile is an aqueous secretion of a functioning liver. Analyses of bile are used to explain drug clearance and related effects and are thus important for toxicology and pharmacokinetic research. Bile fluids collection is extensively performed in vivo, whereas this process is rarely reproduced as in the in vitro studies. The key to success is the technology involved, which needs to satisfy multiple criteria. To ensure the accuracy of subsequent chemical analyses, certain amounts of bile are needed. Additionally, non-invasive and continuous collections are preferable in view of cell culture. In this review, we summarize recent progress and limitations in the field. We highlight attempts to develop advanced liver cultures for bile fluids collection, including methods to stimulate the secretion of bile in vitro. With these strategies, researchers have used a variety of cell sources, extracellular matrix proteins, and growth factors to investigate different cell-culture environments, including three-dimensional spheroids, cocultures, and microfluidic devices. Effective combinations of expertise and technology have the potential to overcome these obstacles to achieve reliable in vitro bile assay systems.
Collapse
Affiliation(s)
- Astia Rizki-Safitri
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Fumiya Tokito
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Effects of Probenecid on Hepatic and Renal Disposition of Hexadecanedioate, an Endogenous Substrate of Organic Anion Transporting Polypeptide 1B in Rats. J Pharm Sci 2021; 110:2274-2284. [PMID: 33607188 DOI: 10.1016/j.xphs.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023]
Abstract
The aim of the present study was to investigate changes in plasma concentrations and tissue distribution of endogenous substrates of organic anion transporting polypeptide (OATP) 1B, hexadecanedioate (HDA), octadecanedioate (ODA), tetradecanedioate (TDA), and coproporphyrin-III, induced by its weak inhibitor, probenecid (PBD), in rats. PBD increased the plasma concentrations of these four compounds regardless of bile duct cannulation, whereas liver-to-plasma (Kp,liver) and kidney-to-plasma concentration ratios of HDA and TDA were reduced. Similar effects of PBD on plasma concentrations and Kp,liver of HDA, ODA, and TDA were observed in kidney-ligated rats, suggesting a minor contribution of renal disposition to the overall distribution of these three compounds. Tissue uptake clearance of deuterium-labeled HDA (d-HDA) in liver was 16-fold higher than that in kidney, and was reduced by 80% by PBD. This was compatible with inhibition by PBD of d-HDA uptake in isolated rat hepatocytes. Such inhibitory effects of PBD were also observed in the human OATP1B1-mediated uptake of d-HDA. Overall, the disposition of HDA is mainly determined by hepatic OATP-mediated uptake, which is inhibited by PBD. HDA might, thus, be a biomarker for OATPs minimally affected by urinary and biliary elimination in rats.
Collapse
|
4
|
Michiba K, Maeda K, Kurimori K, Enomoto T, Shimomura O, Takeuchi T, Nishiyama H, Oda T, Kusuhara H. Characterization of the Human Intestinal Drug Transport with Ussing Chamber System Incorporating Freshly Isolated Human Jejunum. Drug Metab Dispos 2020; 49:84-93. [DOI: 10.1124/dmd.120.000138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022] Open
|
5
|
Tátrai P, Krajcsi P. Prediction of Drug-Induced Hyperbilirubinemia by In Vitro Testing. Pharmaceutics 2020; 12:pharmaceutics12080755. [PMID: 32796590 PMCID: PMC7465333 DOI: 10.3390/pharmaceutics12080755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022] Open
Abstract
Bilirubin, the end product of heme catabolism, is produced continuously in the body and may reach toxic levels if accumulates in the serum and tissues; therefore, a highly efficient mechanism evolved for its disposition. Normally, unconjugated bilirubin enters hepatocytes through the uptake transporters organic anion transporting polypeptide (OATP) 1B1 and 1B3, undergoes glucuronidation by the Phase II enzyme UDP glucuronosyltransferase 1A1 (UGT1A1), and conjugated forms are excreted into the bile by the canalicular export pump multidrug resistance protein 2 (MRP2). Any remaining conjugated bilirubin is transported back to the blood by MRP3 and passed on for uptake and excretion by downstream hepatocytes or the kidney. The bile salt export pump BSEP as the main motor of bile flow is indirectly involved in bilirubin disposition. Genetic mutations and xenobiotics that interfere with this machinery may impede bilirubin disposition and cause hyperbilirubinemia. Several pharmaceutical compounds are known to cause hyperbilirubinemia via inhibition of OATP1Bs, UGT1A1, or BSEP. Herein we briefly review the in vitro prediction methods that serve to identify drugs with a potential to induce hyperbilirubinemia. In vitro assays can be deployed early in drug development and may help to minimize late-stage attrition. Based on current evidence, drugs that behave as mono- or multispecific inhibitors of OATP1B1, UGT1A1, and BSEP in vitro are at risk of causing clinically significant hyperbilirubinemia. By integrating inhibition data from in vitro assays, drug serum concentrations, and clinical reports of hyperbilirubinemia, predictor cut-off values have been established and are provisionally suggested in this review. Further validation of in vitro readouts to clinical outcomes is expected to enhance the predictive power of these assays.
Collapse
Affiliation(s)
- Péter Tátrai
- Solvo Biotechnology, Science Park, Building B1, 4-20 Irinyi József utca, H-1117 Budapest, Hungary;
| | - Péter Krajcsi
- Solvo Biotechnology, Science Park, Building B1, 4-20 Irinyi József utca, H-1117 Budapest, Hungary;
- Faculty of Health Sciences, Semmelweis University, H-1085 Budapest, Hungary
- Faculty of Information Technology and Bionics, Péter Pázmány Catholic University, H-1083 Budapest, Hungary
- Correspondence:
| |
Collapse
|
6
|
Liao M, Zhu Q, Zhu A, Gemski C, Ma B, Guan E, Li AP, Xiao G, Xia CQ. Comparison of uptake transporter functions in hepatocytes in different species to determine the optimal model for evaluating drug transporter activities in humans. Xenobiotica 2018; 49:852-862. [PMID: 30132394 DOI: 10.1080/00498254.2018.1512017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A thorough understanding of species-dependent differences in hepatic uptake transporters is critical for predicting human pharmacokinetics (PKs) from preclinical data. In this study, the activities of organic anion transporting polypeptide (OATP/Oatp), organic cation transporter 1 (OCT1/Oct1), and sodium-taurocholate cotransporting polypeptide (NTCP/Ntcp) in cultured rat, dog, monkey and human hepatocytes were compared. The activities of hepatic uptake transporters were evaluated with respect to culture duration, substrate and species-dependent differences in hepatocytes. Longer culture duration reduced hepatic uptake transporter activities across species except for Oatp and Ntcp in rats. Comparable apparent Michaelis-Menten constant (Km,app) values in hepatocytes were observed across species for atorvastatin, estradiol-17β-glucuronide and metformin. The Km,app values for rosuvastatin and taurocholate were significantly different across species. Rat hepatocytes exhibited the highest Oatp percentage of uptake transporter-mediated permeation clearance (PSinf,act) while no difference in %PSinf,act of probe substrates were observed across species. The in vitro hepatocyte inhibition data in rats, monkeys and humans provided reasonable predictions of in vivo drug-drug interaction (DDIs) between atorvastatin/rosuvastatin and rifampin. These findings suggested that using human hepatocytes with a short culture time is the most robust preclinical model for predicting DDIs for compounds exhibiting active hepatic uptake in humans.
Collapse
Affiliation(s)
| | - Qing Zhu
- b Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Andy Zhu
- b Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | | | - Bingli Ma
- b Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Emily Guan
- a Takeda Pharmaceuticals, DMPK , Cambridge , MA , USA
| | | | - Guangqing Xiao
- b Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Cindy Q Xia
- b Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| |
Collapse
|
7
|
Liu X, Chen L, Liu M, Zhang H, Huang S, Xiong Y, Xia C. Ginsenoside Rb1 and Rd Remarkably Inhibited the Hepatic Uptake of Ophiopogonin D in Shenmai Injection Mediated by OATPs/oatps. Front Pharmacol 2018; 9:957. [PMID: 30186179 PMCID: PMC6113708 DOI: 10.3389/fphar.2018.00957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/03/2018] [Indexed: 01/14/2023] Open
Abstract
Shenmai injection (SMI) is derived from traditional Chinese herbal prescription Shendong yin and widely used for treating cardiovascular diseases. Ophiopogonin D (OPD) is one of the main active components of SMI. The hepatic uptake of OPD is mediated by organic anion-transporting polypeptides (OATPs/oatps) and inhibited by some other components in SMI. This study aimed to identify the active components of SMI responsible for the inhibitory effects on hepatic uptake of OPD in rats and explore the compatibility mechanisms of complex components in SMI based on OATPs/oatps. The known effective fractions, the known components in Shenmai Formula, and the fractions obtained from SMI by HPLC gradual-separation technology were individually/combinedly tested for their effects on OPD uptake in rat primary hepatocytes and recombinant OATP1B1/OATP1B3-expressing HEK293T cells. The results indicated that the OPD uptake was inhibited by panaxadiol-type ginsenosides (ginsenoside Rb1 and Rd), but slightly influenced by panaxatriol-type ginsenosides in rat primary hepatocytes and recombinant cells. The fractions of SMI-3-1 (0–11 min) and SMI-3-3 (15–20 min) obtained by HPLC gradual-separation technology were proved to be the major effective fractions that influenced the OPD uptake, and subsequently identified as ginsenoside Rb1 and Rd, respectively. The plasma concentrations of OPD in rats given OPD+ginsenoside Rb1+ginsenoside Rd were higher compared to rats given OPD alone at the same dose. In conclusion, ginsenoside Rb1 and Rd are the major effective components in SMI that remarkably inhibited the hepatic OPD uptake mediated by OATPs/oatps. The interaction of complex components by OATPs/oatps may be one of the important compatibility mechanisms in SMI.
Collapse
Affiliation(s)
- Xiaopei Liu
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China.,The Second Hospital of Anhui Medical University, Hefei, China
| | - Lin Chen
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China.,Nanchang Hongdu Hospital of TCM, Nanchang, China
| | - Mingyi Liu
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China
| | - Hong Zhang
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China
| | - Shibo Huang
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China
| | - Yuqing Xiong
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Zhang W, Xiong X, Chen L, Liu M, Xiong Y, Zhang H, Huang S, Xia C. Hepatic Uptake Mechanism of Ophiopogonin D Mediated by Organic Anion Transporting Polypeptides. Eur J Drug Metab Pharmacokinet 2018; 42:669-676. [PMID: 27815731 DOI: 10.1007/s13318-016-0384-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Ophiopogonin D (OPD) is one of the main active ingredients of SMI (Shenmai injection) which is widely used in clinical practice in China. Our previous study indicated that OPD might be transported from blood into liver mediated by organic anion transporting polypeptides (OATPs/oatps). This study aims to explore the hepatic uptake mechanism of OPD in rat and human. METHODS Rosuvastatin (a competitive inhibitor of oatp1b2, oatp1a1, and oatp1a4), glycyrrhizic acid (a specific inhibitor of oatp1b2), digoxin (a specific inhibitor of oatp1a4), bromosulfophthalein (BSP), and ibuprofen (a specific inhibitor of oatp1a1) were used to study the uptake of OPD in rat hepatocytes. Furthermore, the uptake of OPD in human OATP1B1*1a-HEK293T cells was also investigated, and rosuvastatin, BSP, rifampin, and glycyrrhizic acid were all used as the competitive inhibitor of OATP1B1. RESULTS OPD can be taken in rat primary hepatocytes with K m (Michaelis Menten constant) of 8.10 μM and V max (maximum velocity) of 54.39 nmol/min/mg protein. The uptake of OPD in rat hepatocytes was inhibited significantly by rosuvastatin and glycyrrhizic acid. However, digoxin, BSP, and ibuprofen had no effect on the uptake of OPD in rat hepatocytes. OPD can also be transported by OATP1B1*1a-HEK293T cells with K m of 5.50 μΜ and V max of 29.07 nmol/min/mg protein. Compared with rosuvastatin, OPD has a higher affinity with OATP1B1 and can be transported faster in unit time. Rosuvastatin, BSP, rifampin, and glycyrrhizic acid all exhibited a certain extent inhibitory effect on the transport of OPD in OATP1B1*1a-HEK293T cells. CONCLUSIONS Overall, this study indicates OATP1B1 in human and oatp1b2 in rats might participate in the hepatic uptake of OPD.
Collapse
Affiliation(s)
- Wen Zhang
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China.,Chengdu Fifth People's Hospital, Chengdu, 611130, People's Republic of China
| | - Xiaomin Xiong
- Jiangxi Health Occupation College, Nanchang, 330201, People's Republic of China
| | - Lin Chen
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Mingyi Liu
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Yuqing Xiong
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Hong Zhang
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Shibo Huang
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
9
|
Wang C, Huo X, Wang C, Meng Q, Liu Z, Sun P, Cang J, Sun H, Liu K. Organic Anion–Transporting Polypeptide and Efflux Transporter–Mediated Hepatic Uptake and Biliary Excretion of Cilostazol and Its Metabolites in Rats and Humans. J Pharm Sci 2017; 106:2515-2523. [DOI: 10.1016/j.xphs.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/24/2023]
|
10
|
Fattah S, Shinde AB, Matic M, Baes M, van Schaik RHN, Allegaert K, Parmentier C, Richert L, Augustijns P, Annaert P. Inter-Subject Variability in OCT1 Activity in 27 Batches of Cryopreserved Human Hepatocytes and Association with OCT1 mRNA Expression and Genotype. Pharm Res 2017; 34:1309-1319. [PMID: 28364304 DOI: 10.1007/s11095-017-2148-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/17/2017] [Indexed: 01/11/2023]
Abstract
PURPOSE OCT1/3 (Organic Cation Transporter-1 and -3; SLC22A1/3) are transmembrane proteins localized at the basolateral membrane of hepatocytes. They mediate the uptake of cationic endogenous compounds and/or xenobiotics. The present study was set up to verify whether the previously observed variability in OCT activity in hepatocytes may be explained by inter-individual differences in OCT1/3 mRNA levels or OCT1 genotype. METHODS Twenty-seven batches of cryopreserved human hepatocytes (male and female, age 24-88 y) were characterized for OCT activity, normalized OCT1/3 mRNA expression, and OCT1 genetic mutation. ASP+ (4-[4-(dimethylamino)styryl]-N-methylpyridinium iodide) was used as probe substrate. RESULTS ASP+ uptake ranged between 75 ± 61 and 2531 ± 202 pmol/(min × million cells). The relative OCT1 and OCT3 mRNA expression ranged between 0.007-0.46 and 0.0002-0.005, respectively. The presence of one or two nonfunctional SLC22A1 alleles was observed in 13 batches and these exhibited significant (p = 0.04) association with OCT1 and OCT3 mRNA expression. However, direct association between genotype and OCT activity could not be established. CONCLUSION mRNA levels and genotype of OCT only partially explain inter-individual variability in OCT-mediated transport. Our findings illustrate the necessity of in vitro transporter activity profiling for better understanding of inter-individual drug disposition behavior.
Collapse
Affiliation(s)
- Sarinj Fattah
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N II Herestraat 49 Box 921, 3000, Leuven, Belgium
| | - Abhijit Babaji Shinde
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Maja Matic
- Department Clinical Chemistry, Erasmus University Medical Centre, Rotterdam, Netherlands.,Intensive Care and Department of Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Ron H N van Schaik
- Department Clinical Chemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Karel Allegaert
- Intensive Care and Department of Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Lysiane Richert
- KaLy-Cell, Plobsheim, France.,Université de Franche-Comté, 4267, Besançon, EA, France
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N II Herestraat 49 Box 921, 3000, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N II Herestraat 49 Box 921, 3000, Leuven, Belgium.
| |
Collapse
|
11
|
Dioscin protects against ANIT–induced cholestasis via regulating Oatps, Mrp2 and Bsep expression in rats. Toxicol Appl Pharmacol 2016; 305:127-135. [DOI: 10.1016/j.taap.2016.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
|
12
|
Renaud HJ, Klaassen CD, Csanaky IL. Calorie Restriction Increases P-Glycoprotein and Decreases Intestinal Absorption of Digoxin in Mice. ACTA ACUST UNITED AC 2016; 44:366-9. [PMID: 26744253 DOI: 10.1124/dmd.115.064766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 01/06/2016] [Indexed: 02/05/2023]
Abstract
There is wide variation in how patients respond to therapeutics. Factors that contribute to pharmacokinetic variations include disease, genetics, drugs, age, and diet. The purpose of this study was to determine the effect of calorie restriction on the expression of Abcb1a in the intestine and whether calorie restriction can alter the absorption of an Abcb1a substrate (i.e., digoxin) in mice. Ten-week-old C57BL/6 mice were given either an ad libitum diet or a 25% calorie-restricted diet for 3 weeks. To determine digoxin absorption, mice were administered [(3)H]-labeled digoxin by oral gavage. Blood and intestine with contents were collected at 1, 2, 4, and 12 hours after digoxin administration. Concentrations of [(3)H]-digoxin in plasma and tissues were determined by liquid scintillation. Calorie restriction decreased plasma digoxin concentrations (about 60%) at 1, 2, and 4 hours after administration. Additionally, digoxin concentrations in the small intestine of calorie-restricted mice were elevated at 4 and 12 hours after administration. Furthermore, calorie restriction increased Abcb1a transcripts in the duodenum (4.5-fold) and jejunum (12.5-fold). To confirm a role of Abcb1a in the altered digoxin pharmacokinetics induced by calorie restriction, the experiment was repeated in Abcb1a/b-null mice 4 hours after drug administration. No difference in intestine or plasma digoxin concentrations were observed between ad libitum-fed and calorie-restricted Abcb1a/b-null mice. Thus, these findings support the hypothesis that calorie restriction increases intestinal Abcb1a expression, leading to decreased absorption of digoxin in mice. Because Abcb1a transports a wide variety of therapeutics, these results may be of important clinical significance.
Collapse
Affiliation(s)
- Helen J Renaud
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Iván L Csanaky
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
13
|
Fattah S, Augustijns P, Annaert P. Effect of Age on The Hepatocellularity Number for Wistar rats. Drug Metab Dispos 2015; 44:366-9. [DOI: 10.1124/dmd.115.066381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/21/2015] [Indexed: 11/22/2022] Open
|
14
|
Xu Q, Wang C, Liu Q, Meng Q, Sun H, Peng J, Sun P, Huo X, Liu K. Decreased liver distribution of entecavir is related to down-regulation of Oat2/Oct1 and up-regulation of Mrp1/2/3/5 in rat liver fibrosis. Eur J Pharm Sci 2015; 71:73-9. [DOI: 10.1016/j.ejps.2015.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/31/2014] [Accepted: 02/15/2015] [Indexed: 12/12/2022]
|
15
|
Fattah S, Augustijns P, Annaert P. Age-dependent activity of the uptake transporters Ntcp and Oatp1b2 in male rat hepatocytes: from birth till adulthood. Drug Metab Dispos 2014; 43:1-8. [PMID: 25305012 DOI: 10.1124/dmd.114.059212] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recognition of the role of hepatic drug transporters in elimination of xenobiotics continues to grow. Hepatic uptake transporters, such as hepatic isoforms of the organic anion-transporting polypeptide (Oatp) family as well as the bile acid transporter Na(+)-taurocholate cotransporting polypeptide (Ntcp) have been studied extensively both at the mRNA and protein expression levels in adults. However, in pediatric/juvenile populations, there continues to be a knowledge gap about the functional activity of these transporters. Therefore, the aim of this study was to examine the functional maturation of Ntcp and Oatp isoforms as major hepatic transporters. Hepatocytes were freshly isolated from rats aged between birth and 8 weeks. Transporter activities were assessed by measuring the initial uptake rates of known substrates: taurocholate (TCA) for Ntcp and sodium fluorescein (NaFluo) for Oatp. Relative to adult values, uptake clearance of TCA in hepatocytes from rats aged 0, 1, 2, 3, and 4 weeks reached 19, 43, 22, 46, and 63%, respectively. In contrast, Oatp-mediated NaFluo uptake showed a considerably slower developmental pattern: uptake clearance of NaFluo in hepatocytes from rats aged 0, 1, 2, 3, 4, and 6 weeks were 24, 20, 19, 8, 19, and 64%, respectively. Maturation of NaFluo uptake activity correlated with the previously reported ontogeny of Oatp1b2 mRNA expression, confirming the role of Oatp1b2 for NaFluo uptake in rat liver. The outcome of this project will help in understanding and predicting age-dependent drug exposure in juvenile animals and will eventually support safe and more effective drug therapies for children.
Collapse
Affiliation(s)
- Sarinj Fattah
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| |
Collapse
|
16
|
Sun P, Wang C, Liu Q, Meng Q, Zhang A, Huo X, Sun H, Liu K. OATP and MRP2-mediated hepatic uptake and biliary excretion of eprosartan in rat and human. Pharmacol Rep 2014; 66:311-9. [PMID: 24911086 DOI: 10.1016/j.pharep.2014.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 10/03/2013] [Accepted: 10/31/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Eprosartan is an angiotensin II receptor antagonist, used in the treatment of hypertension and heart failure in clinical patients. The objective of this study was to clarify the mechanism underlying hepatic uptake and biliary excretion of eprosartan in rats and humans. METHODS Perfused rat liver in situ, rat liver slices, isolated rat hepatocytes and human organic anion-transporting polypeptide (OATP)-transfected cells in vitro were used in this study. RESULTS Extraction ratio of eprosartan was decreased by rifampicin in perfused rat livers. Uptake of eprosartan in rat liver slices and isolated rat hepatocytes was significantly inhibited by Oatp modulators such as ibuprofen, digoxin, rifampicin and cyclosporine A, but not by tetraethyl ammonium or p-aminohippurate. Uptake of eprosartan in rat hepatocytes indicated a saturable process. Although uptake of eprosartan in OATP1B3-human embryonic kidney cells (HEK) 293 cells was not observed, significant differences in cellular accumulations of eprosartan between vector- and OATP1B1-Madin-Darby canine kidney strain (MDCK) II cells were found in transcellular transport study. Moreover, cumulative biliary excretion rate of eprosartan in the presence of probenecid (Multidrug resistance-associated protein 2 (Mrp2) inhibitor) was significantly decreased in perfused rat livers. Vectorial basal-to-apical transport of eprosartan was also observed in OATP1B1/MRP2 double transfectants. CONCLUSIONS Eprosartan was transported by multiple Oatps (at least Oatp1a1 and Oatp1a4)/Mrp2 in rat and OATP1B1/MRP2, at least, in human.
Collapse
Affiliation(s)
- Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Aijie Zhang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China; Research Institute of Integrated Traditional and Western Medicine of Dalian Medical University, Liaoning, China.
| |
Collapse
|
17
|
Lundquist P, Lööf J, Fagerholm U, Sjögren I, Johansson J, Briem S, Hoogstraate J, Afzelius L, Andersson TB. Prediction of In Vivo Rat Biliary Drug Clearance from an In Vitro Hepatocyte Efflux Model. Drug Metab Dispos 2014; 42:459-68. [DOI: 10.1124/dmd.113.054155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Krajcsi P. Drug-transporter interaction testing in drug discovery and development. World J Pharmacol 2013; 2:35-46. [DOI: 10.5497/wjp.v2.i1.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/25/2012] [Accepted: 01/30/2013] [Indexed: 02/06/2023] Open
Abstract
The human body consists of several physiological barriers that express a number of membrane transporters. For an orally absorbed drug the intestinal, hepatic, renal and blood-brain barriers are of the greatest importance. The ATP-binding cassette (ABC) transporters that mediate cellular efflux and the solute carrier transporters that mostly mediate cellular uptake are the two superfamilies responsible for membrane transport of vast majority of drugs and drug metabolites. The total number of human transporters in the two superfamilies exceeds 400, and about 40-50 transporters have been characterized for drug transport. The latest Food and Drug Administration guidance focuses on P-glycoprotein, breast cancer resistance protein, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, organic cation transporter 2 (OCT2), and organic anion transporters 1 (OAT1) and OAT3. The European Medicines Agency’s shortlist additionally contains the bile salt export pump, OCT1, and the multidrug and toxin extrusion transporters, multidrug and toxin extrusion protein 1 (MATE1) and MATE2/MATE2K. A variety of transporter assays are available to test drug-transporter interactions, transporter-mediated drug-drug interactions, and transporter-mediated toxicity. The drug binding site of ABC transporters is accessible from the cytoplasm or the inner leaflet of the plasma membrane. Therefore, vesicular transport assays utilizing inside-out vesicles are commonly used assays, where the directionality of transport results in drugs being transported into the vesicle. Monolayer assays utilizing polarized cells expressing efflux transporters are the test systems suggested by regulatory agencies. However, in some monolayers, uptake transporters must be coexpressed with efflux transporters to assure detectable transport of low passive permeability drugs. For uptake transporters mediating cellular drug uptake, utilization of stable transfectants have been suggested. In vivo animal models complete the testing battery. Some issues, such as in vivo relevance, gender difference, age and ontogeny issues can only be addressed using in vivo models. Transporter specificity is provided by using knock-out or mutant models. Alternatively, chemical knock-outs can be employed. Compensatory changes are less likely when using chemical knock-outs. On the other hand, specific inhibitors for some uptake transporters are not available, limiting the options to genetic knock-outs.
Collapse
|
19
|
Zhang A, Wang C, Liu Q, Meng Q, Peng J, Sun H, Ma X, Huo X, Liu K. Involvement of organic anion-transporting polypeptides in the hepatic uptake of dioscin in rats and humans. Drug Metab Dispos 2013; 41:994-1003. [PMID: 23396419 DOI: 10.1124/dmd.112.049452] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The objective of this study was to clarify the mechanism underlying hepatic uptake of dioscin (diosgenyl 2,4-di-O-a-L-rhamnopyranosyl-p-D-glucopyranoside), an herbal ingredient with antihepatitis activity, in rats and humans. The liver uptake index (LUI) in vivo, perfused rat liver in situ, rat liver slices, isolated rat hepatocytes, and human organic anion-transporting polypeptide (OATP)-transfected cells in vitro were used to evaluate hepatic uptake of dioscin. Values of 11.9% ± 1.6% and 15.0% ± 0.9% of dose for uptake of dioscin were observed by LUI in vivo and perfused rat livers in situ, respectively. The time course of dioscin uptake by rat liver slices was temperature-dependent. Uptake of dioscin by rat liver slices and isolated rat hepatocytes was inhibited significantly by Oatp modulators, such as ibuprofen (Oatp1a1 inhibitor), digoxin (Oatp1a4 substrate), and glycyrrhizic acid (Oatp1b2 inhibitor), but not by TEA or p-aminohippurate. Uptake of dioscin in rat hepatocytes and OATP1B3-human embryonic kidney (HEK) 293 cells indicated a saturable process with a Km of 3.75 ± 0.51 μM and 2.08 ± 0.27 μM, respectively. (-)-Epigallocatechin gallate, cyclosporin A, rifampicin, and telmisartan inhibited transport of dioscin in OATP1B3-HEK293 cells. However, transcellular transport of dioscin in OATP1B1- or OATP1B1/multidrug resistance-associated protein 2-Madin-Darby canine kidney strain II cells was not observed. These results indicate that hepatic uptake of dioscin is involved in OATP1B3 in humans, and multiple Oatps might participate in this process in rats.
Collapse
Affiliation(s)
- Aijie Zhang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Liaoning, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang D, Luo G, Ding X, Lu C. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm Sin B 2012. [DOI: 10.1016/j.apsb.2012.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
21
|
The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov Today 2012. [PMID: 23207804 DOI: 10.1016/j.drudis.2012.11.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A recent paper in this journal sought to counter evidence for the role of transport proteins in effecting drug uptake into cells, and questions that transporters can recognize drug molecules in addition to their endogenous substrates. However, there is abundant evidence that both drugs and proteins are highly promiscuous. Most proteins bind to many drugs and most drugs bind to multiple proteins (on average more than six), including transporters (mutations in these can determine resistance); most drugs are known to recognise at least one transporter. In this response, we alert readers to the relevant evidence that exists or is required. This needs to be acquired in cells that contain the relevant proteins, and we highlight an experimental system for simultaneous genome-wide assessment of carrier-mediated uptake in a eukaryotic cell (yeast).
Collapse
|
22
|
Li L, Nouraldeen A, Wilson AGE. Evaluation of transporter-mediated hepatic uptake in a non-radioactive high-throughput assay: a study of kinetics, species difference and plasma protein effect. Xenobiotica 2012; 43:253-62. [DOI: 10.3109/00498254.2012.713146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Keogh JP. Membrane transporters in drug development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 63:1-42. [PMID: 22776638 DOI: 10.1016/b978-0-12-398339-8.00001-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Membrane transporters have wide, but specific tissue distributions. They can impact on multiple endogenous and xenobiotic processes. Knowledge and awareness within the pharmaceutical industry of their impact on drug absorption, distribution, metabolism and elimination (ADME) and drug safety is growing rapidly. Clinically important transporter-mediated drug-drug interactions (DDIs) have been observed. Up to nine diverse transporters are implicated in the DDIs of a number of widely prescribed drugs, posing a significant challenge to the pharmaceutical industry. There is a complex interplay between multiple transporters and/or enzymes in the ADME and pharmacogenomics of drugs. Integrating these different mechanisms to understand their relative contributions to ADME is a key challenge. Many different factors complicate the study of membrane transporters in drug development. These include a lack of specific substrates and inhibitors, non-standard in vitro tools, and competing/complementary mechanisms (e.g. passive permeability and metabolism). Discovering and contextualizing the contribution of membrane transporters to drug toxicity is a significant new challenge. Drug interactions with key membrane transporters are routinely assessed for central nervous system (CNS) drug discovery therapies, but are not generally considered across the wider drug discovery. But, there is interest in utilizing membrane transporters as drug delivery agents. Computational modeling approaches, notably physiology-based/pharmacokinetic (PB/PK) modeling are increasingly applied to transporter interactions, and permit integration of multiple ADME mechanisms. Because of the range of tissues and transporters of interest, robust transporter, in vitro to in vivo, scaling factors are required. Empirical factors have been applied, but absolute protein quantitation will probably be required.
Collapse
|