1
|
Mondal G, VanLith CJ, Nicolas CT, Thompson WS, Cao WS, Hillin L, Haugo BJ, Brien DRO, Kocher JP, Kaiser RA, Lillegard JB. Activation of homology-directed DNA repair plays key role in CRISPR-mediated genome correction. Gene Ther 2022; 30:386-397. [PMID: 36258038 DOI: 10.1038/s41434-022-00369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Gene editing for the cure of inborn errors of metabolism (IEMs) has been limited by inefficiency of adult hepatocyte targeting. Here, we demonstrate that in utero CRISPR/Cas9-mediated gene editing in a mouse model of hereditary tyrosinemia type 1 provides stable cure of the disease. Following this, we performed an extensive gene expression analysis to explore the inherent characteristics of fetal/neonatal hepatocytes that make them more susceptible to efficient gene editing than adult hepatocytes. We showed that fetal and neonatal livers are comprised of proliferative hepatocytes with abundant expression of genes involved in homology-directed repair (HDR) of DNA double-strand breaks (DSBs), key for efficient gene editing by CRISPR/Cas9. We demonstrated the same is true of hepatocytes after undergoing a regenerative stimulus (partial hepatectomy), where post-hepatectomy cells show a higher efficiency of HDR and correction. Specifically, we demonstrated that HDR-related genome correction is most effective in the replicative phase, or S-phase, of an actively proliferating cell. In conclusion, this study shows that taking advantage of or triggering cell proliferation, specifically DNA replication in S-phase, may serve as an important tool to improve efficiency of CRISPR/Cas9-mediated genome editing in the liver and provide a curative therapy for IEMs in both children and adults.
Collapse
Affiliation(s)
| | | | - Clara T Nicolas
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Surgery, University of Alabama Birmingham, Birmingham, AL, USA
| | - Whitney S Thompson
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - William S Cao
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lori Hillin
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Daniel R O' Brien
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jean-Pierre Kocher
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Robert A Kaiser
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Midwest Fetal Care Center, Children's Hospital of Minnesota, Minneapolis, MN, USA
| | - Joseph B Lillegard
- Department of Surgery, Mayo Clinic, Rochester, MN, USA. .,Midwest Fetal Care Center, Children's Hospital of Minnesota, Minneapolis, MN, USA. .,Pediatric Surgical Associates, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Najimi M, Defresne F, Sokal EM. Concise Review: Updated Advances and Current Challenges in Cell Therapy for Inborn Liver Metabolic Defects. Stem Cells Transl Med 2016; 5:1117-25. [PMID: 27245366 DOI: 10.5966/sctm.2015-0260] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED : The development of liver cell transplantation (LCT), considered a major biotechnological breakthrough, was intended to provide more accessible treatments for liver disease patients. By preserving the native recipient liver and decreasing hospitalization time, this innovative approach has progressively gained interest among clinicians. LCT initially targets inborn errors of liver metabolism, enabling the compensation of deficient metabolic functions for up to 18 months post-transplantation, supporting its use at least as a bridge to transplantation. The rigorous clinical development and widespread use of LCT depends strongly on controlled and consistent clinical trial data, which may help improve several critical factors, including the standardization of raw biological material and immunosuppression regimens. Substantial effort has also been made in defining and optimizing the most efficient cell population to be transplanted in the liver setting. Although isolated hepatocytes remain the best cell type, showing positive clinical results, their widespread use is hampered by their poor resistance to both cryopreservation and in vitro culture, as well as ever-more-significant donor shortages. Hence, there is considerable interest in developing more standardized and widely accessible cell medicinal products to improve engraftment permanency and post-cell transplantation metabolic effects. SIGNIFICANCE In this therapeutic approach to liver disease, new solutions are being designed and evaluated to bypass the documented limitations and move forward toward wide clinical use. Future developments also require a deep knowledge of regulatory framework to launch specific clinical trials that will allow clear assessment of cell therapy and help patients with significant unmet medical needs.
Collapse
Affiliation(s)
- Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain and Cliniques Universitaires St Luc, Brussels, Belgium
| | - Florence Defresne
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain and Cliniques Universitaires St Luc, Brussels, Belgium
| | - Etienne M Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain and Cliniques Universitaires St Luc, Brussels, Belgium
| |
Collapse
|
3
|
Gutti TL, Knibbe JS, Makarov E, Zhang J, Yannam GR, Gorantla S, Sun Y, Mercer DF, Suemizu H, Wisecarver JL, Osna NA, Bronich TK, Poluektova LY. Human hepatocytes and hematolymphoid dual reconstitution in treosulfan-conditioned uPA-NOG mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:101-9. [PMID: 24200850 PMCID: PMC3873481 DOI: 10.1016/j.ajpath.2013.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/28/2013] [Accepted: 09/18/2013] [Indexed: 02/05/2023]
Abstract
Human-specific HIV-1 and hepatitis co-infections significantly affect patient management and call for new therapeutic options. Small xenotransplantation models with human hepatocytes and hematolymphoid tissue should facilitate antiviral/antiretroviral drug trials. However, experience with mouse strains tested for dual reconstitution is limited, with technical difficulties such as risky manipulations with newborns and high mortality rates due to metabolic abnormalities. The best animal strains for hepatocyte transplantation are not optimal for human hematopoietic stem cell (HSC) engraftment, and vice versa. We evaluated a new strain of highly immunodeficient nonobese diabetic/Shi-scid (severe combined immunodeficiency)/IL-2Rγc(null) (NOG) mice that carry two copies of the mouse albumin promoter-driven urokinase-type plasminogen activator transgene for dual reconstitution with human liver and immune cells. Three approaches for dual reconstitution were evaluated: i) freshly isolated fetal hepatoblasts were injected intrasplenically, followed by transplantation of cryopreserved HSCs obtained from the same tissue samples 1 month later after treosulfan conditioning; ii) treosulfan conditioning is followed by intrasplenic simultaneous transplantation of fetal hepatoblasts and HSCs; and iii) transplantation of mature hepatocytes is followed by mismatched HSCs. The long-term dual reconstitution was achieved on urokinase-type plasminogen activator-NOG mice with mature hepatocytes (not fetal hepatoblasts) and HSCs. Even major histocompatibility complex mismatched transplantation was sustained without any evidence of hepatocyte rejection by the human immune system.
Collapse
Affiliation(s)
- Tanuja L Gutti
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jaclyn S Knibbe
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Edward Makarov
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jinjin Zhang
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Govardhana R Yannam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yimin Sun
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - David F Mercer
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kanagawa, Japan
| | - James L Wisecarver
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Natalia A Osna
- Liver Unit, Nebraska/Western Iowa Healthcare System, Omaha, Nebraska
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska; Liver Unit, Nebraska/Western Iowa Healthcare System, Omaha, Nebraska.
| |
Collapse
|
4
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
5
|
Moreno D, Balasiddaiah A, Lamas O, Duret C, Neri L, Guembe L, Galarraga M, Larrea E, Daujat-Chavanieu M, Muntane J, Maurel P, Riezu JI, Prieto J, Aldabe R. Usage of adenovirus expressing thymidine kinase mediated hepatocellular damage for enabling mouse liver repopulation with allogenic or xenogenic hepatocytes. PLoS One 2013; 8:e74948. [PMID: 24086405 PMCID: PMC3782477 DOI: 10.1371/journal.pone.0074948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/07/2013] [Indexed: 12/23/2022] Open
Abstract
It has been shown that the liver of immunodeficient mice can be efficiently repopulated with human hepatocytes when subjected to chronic hepatocellular damage. Mice with such chimeric livers represent useful reagents for medical and clinical studies. However all previously reported models of humanized livers are difficult to implement as they involve cross-breeding of immunodeficient mice with mice exhibiting genetic alterations causing sustained hepatic injury. In this paper we attempted to create chimeric livers by inducing persistent hepatocellular damage in immunodeficient Rag2(-/-) γc(-/-) mice using an adenovirus encoding herpes virus thymidine kinase (AdTk) and two consecutive doses of ganciclovir (GCV). We found that this treatment resulted in hepatocellular damage persisting for at least 10 weeks and enabled efficient engraftment and proliferation within the liver of either human or allogenic hepatocytes. Interestingly, while the nodules generated from the transplanted mouse hepatocytes were well vascularized, the human hepatocytes experienced progressive depolarization and exhibited reduced numbers of murine endothelial cells inside the nodules. In conclusion, AdTk/GCV-induced liver damage licenses the liver of immunodeficient mice for allogenic and xenogenic hepatocyte repopulation. This approach represents a simple alternative strategy for chimeric liver generation using immunodeficient mice without additional genetic manipulation of the germ line.
Collapse
Affiliation(s)
- Daniel Moreno
- Gene Therapy and Hepatology Area, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Anangi Balasiddaiah
- Gene Therapy and Hepatology Area, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Oscar Lamas
- Gene Therapy and Hepatology Area, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Cedric Duret
- Institut National de la Sante et de la recherche Medicale, U1040, Montpellier, France
- Université Montpellier 1, UMR-S1040, France
- CHU Montpellier, Institut de Recherche en Biotherapie, Hopital Saint Eloi, Montpellier, France
| | - Leire Neri
- Gene Therapy and Hepatology Area, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Laura Guembe
- Department of Morphology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Miguel Galarraga
- Department of Imaging, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Esther Larrea
- Gene Therapy and Hepatology Area, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Martine Daujat-Chavanieu
- Institut National de la Sante et de la recherche Medicale, U1040, Montpellier, France
- Université Montpellier 1, UMR-S1040, France
- CHU Montpellier, Institut de Recherche en Biotherapie, Hopital Saint Eloi, Montpellier, France
| | - Jordi Muntane
- Liver Research Unit, Instituto Maimónides para la Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain
- CIBER-EHD, University Clinic, University of Navarra, Pamplona, Spain
| | - Patrick Maurel
- Institut National de la Sante et de la recherche Medicale, U1040, Montpellier, France
- Université Montpellier 1, UMR-S1040, France
- CHU Montpellier, Institut de Recherche en Biotherapie, Hopital Saint Eloi, Montpellier, France
| | - Jose Ignacio Riezu
- Gene Therapy and Hepatology Area, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Jesus Prieto
- Gene Therapy and Hepatology Area, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- CIBER-EHD, University Clinic, University of Navarra, Pamplona, Spain
- Liver Unit, University Clinic, University of Navarra, Pamplona, Spain
| | - Rafael Aldabe
- Gene Therapy and Hepatology Area, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
6
|
Chuong CM, Randall VA, Widelitz RB, Wu P, Jiang TX. Physiological regeneration of skin appendages and implications for regenerative medicine. Physiology (Bethesda) 2012; 27:61-72. [PMID: 22505663 DOI: 10.1152/physiol.00028.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The concept of regenerative medicine is relatively new, but animals are well known to remake their hair and feathers regularly by normal regenerative physiological processes. Here, we focus on 1) how extrafollicular environments can regulate hair and feather stem cell activities and 2) how different configurations of stem cells can shape organ forms in different body regions to fulfill changing physiological needs.
Collapse
Affiliation(s)
- Cheng-Ming Chuong
- Department of Pathology, University of Southern California, School of Medicine, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
7
|
Di Rocco G, Gentile A, Antonini A, Truffa S, Piaggio G, Capogrossi MC, Toietta G. Analysis of biodistribution and engraftment into the liver of genetically modified mesenchymal stromal cells derived from adipose tissue. Cell Transplant 2012; 21:1997-2008. [PMID: 22469297 DOI: 10.3727/096368911x637452] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Presently, orthotopic liver transplant is the major therapeutic option for patients affected by primary liver diseases. This procedure is characterized by major invasive surgery, scarcity of donor organs, high costs, and lifelong immunosuppressive treatment. Transplant of hepatic precursor cells represents an attractive alternative. These cells could be used either for allogeneic transplantation or for autologous transplant after ex vivo genetic modification. We used stromal cells isolated from adipose tissue (AT-SCs) as platforms for autologous cell-mediated gene therapy. AT-SCs were transduced with lentiviral vectors expressing firefly luciferase, allowing for transplanted cell tracking by bioluminescent imaging (BLI). As a complementary approach, we followed circulating human α1-antitrypsin (hAAT) levels after infusion of AT-SCs overexpressing hAAT. Cells were transplanted into syngeneic mice after CCl(4)-induced hepatic injury. Luciferase bioluminescence signals and serum hAAT levels were measured at different time points after transplantation and demonstrate persistence of transplanted cells for up to 2 months after administration. These data, along with immunohistochemical analysis, suggest engraftment and repopulation of injured livers by transplanted AT-SCs. Moreover, by transcriptional targeting using cellular tissue-specific regulatory sequences, we confirmed that AT-SCs differentiate towards a hepatogenic-like phenotype in vitro and in vivo. Additionally, in transplanted cells reisolated from recipient animals' livers, we detected activation of the α-fetoprotein (AFP) promoter. This promoter is normally transcriptionally silenced in adult tissues but can be reactivated during liver regeneration, suggesting commitment towards hepatogenic-like differentiation of engrafted cells in vivo. Our data support AT-SC-mediated gene therapy as an innovative therapeutic option for disorders of liver metabolism.
Collapse
Affiliation(s)
- Giuliana Di Rocco
- Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|