1
|
Su Z, Lu W, Cao J, Xie Z, Zhao P. Endoplasmic reticulum stress in abdominal aortic aneurysm. INTERNATIONAL JOURNAL OF CARDIOLOGY. HEART & VASCULATURE 2024; 54:101500. [PMID: 39280692 PMCID: PMC11402186 DOI: 10.1016/j.ijcha.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by permanent dilatation of the abdominal aorta, which is accompanied by inflammation, degradation of the extracellular matrix (ECM) and disruption of vascular smooth muscle cell (VSMC) homeostasis. Endoplasmic reticulum (ER) stress is involved in the regulation of inflammation, oxidative stress and VSMC apoptosis, all of which are critical factors in AAA development. Although several studies have revealed the occurrence of ER stress in AAA development, the specific biological functions of ER stress in AAA development remain largely unknown. Given that targeting ER stress is a promising strategy for treating AAAs, further investigation of the physiological and pathological roles of ER stress in AAA development is warranted.
Collapse
Affiliation(s)
- Zhaohai Su
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Weiling Lu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Jun Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Zheng Xie
- Department of General Practice, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), Ganzhou, Jiangxi 341000, PR China
| | - Pei Zhao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu 225001, PR China
| |
Collapse
|
2
|
Liang J, Abdullah ALB, Li Y, Wang H, Xiong S, Han M. Long-term PS micro/nano-plastic exposure: Particle size effects on hepatopancreas injury in Parasesarma pictum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176530. [PMID: 39332714 DOI: 10.1016/j.scitotenv.2024.176530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
With the widespread use of plastic products, microplastics and nanoplastics have emerged as prevalent pollutants in coastal aquatic ecosystems. Parasesarma pictum, a common estuarine crab species, was selected as a model organism. P. pictum was exposed to polystyrene (PS) particles of sizes 80 nm (80PS), 500 nm (500PS), and 1000 nm (1000PS), as well as to clean seawater (CK) for 21 days. Histological and fluorescent staining results showed that PS particles of all three sizes induced hepatopancreatic nuclear pyknosis, cell junction damage, and necrosis. The degree of damage was observed as 1000PS > 80PS > 500PS. Transcriptomic analysis revealed that major differentially expressed genes (DEGs) were associated with cellular processes, membrane components, and catalytic activity. The respiratory chain disruptions and immune exhaustion induced by 1000PS were notably stronger than those by 80PS and 500PS. Additionally, necrosis caused hepatopancreas injury in P. pictum rather than apoptosis or autophagy after long-term PS particle exposure. Furthermore, PS particles of all three sizes inhibited innate immunity, while the complement pathway was not significantly affected in the 80PS group. This study elucidated potential distinctions in how plastic particles of varying sizes (nanoplastics, microplastics, and micro/nanoplastics) impact P. pictum, providing a reference for toxicological mechanism research on microplastics and nanoplastics in aquatic organisms. Future research should focus on exploring long-term effects and potential mitigation strategies for microplastics and nanoplastics of more types and a wider range of particle size pollution in aquatic environments.
Collapse
Affiliation(s)
- Ji Liang
- School of Humanities, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | | | - Yiming Li
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Hong Wang
- School of Humanities, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Sen Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Chengdu Jncon Environmental Protection Technology Co., Ltd, Chengdu, Sichuan 611130, China
| | - Mingming Han
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
3
|
Lai H, Levitt BB. Cellular and molecular effects of non-ionizing electromagnetic fields. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:519-529. [PMID: 37021652 DOI: 10.1515/reveh-2023-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The way that living cells respond to non-ionizing electromagnetic fields (EMF), including static/extremely-low frequency and radiofrequency electromagnetic fields, fits the pattern of 'cellular stress response' - a mechanism manifest at the cellular level intended to preserve the entire organism. It is a set pattern of cellular and molecular responses to environmental stressors, such as heat, ionizing radiation, oxidation, etc. It is triggered by cellular macromolecular damage (in proteins, lipids, and DNA) with the goal of repairing and returning cell functions to homeostasis. The pattern is independent of the type of stressor encountered. It involves cell cycle arrest, induction of specific molecular mechanisms for repair, damage removal, cell proliferation, and cell death if damage is too great. This response could be triggered by EMF-induced alternation in oxidative processes in cells. The concept that biological response to EMF is a 'cellular stress response' explains many observed effects of EMF, such as nonlinear dose- and time-dependency, increased and decreased risks of cancer and neurodegenerative diseases, enhanced nerve regeneration, and bone healing. These responses could be either detrimental or beneficial to health, depending on the duration and intensity of the exposure, as well as specific aspects of the living organism being exposed. A corollary to electromagnetic hypersensitivity syndrome (EHS) could be an inappropriate response of the hippocampus/limbic system to EMF, involving glucocorticoids on the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - B Blake Levitt
- National Association of Science Writers, Berkeley, CA CA 94707, USA
| |
Collapse
|
4
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
5
|
Berthiaume AA, Reda SM, Kleist KN, Setti SE, Wu W, Johnston JL, Taylor RW, Stein LR, Moebius HJ, Church KJ. ATH-1105, a small-molecule positive modulator of the neurotrophic HGF system, is neuroprotective, preserves neuromotor function, and extends survival in preclinical models of ALS. Front Neurosci 2024; 18:1348157. [PMID: 38389786 PMCID: PMC10881713 DOI: 10.3389/fnins.2024.1348157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurodegenerative disorder, primarily affects the motor neurons of the brain and spinal cord. Like other neurodegenerative conditions, ongoing pathological processes such as increased inflammation, excitotoxicity, and protein accumulation contribute to neuronal death. Hepatocyte growth factor (HGF) signaling through the MET receptor promotes pro-survival, anti-apoptotic, and anti-inflammatory effects in multiple cell types, including the neurons and support cells of the nervous system. This pleiotropic system is therefore a potential therapeutic target for treatment of neurodegenerative disorders such as ALS. Here, we test the effects of ATH-1105, a small-molecule positive modulator of the HGF signaling system, in preclinical models of ALS. Methods In vitro, the impact of ATH-1105 on HGF-mediated signaling was assessed via phosphorylation assays for MET, extracellular signal-regulated kinase (ERK), and protein kinase B (AKT). Neuroprotective effects of ATH-1105 were evaluated in rat primary neuron models including spinal motor neurons, motor neuron-astrocyte cocultures, and motor neuron-human muscle cocultures. The anti-inflammatory effects of ATH-1105 were evaluated in microglia- and macrophage-like cell systems exposed to lipopolysaccharide (LPS). In vivo, the impact of daily oral treatment with ATH-1105 was evaluated in Prp-TDP43A315T hemizygous transgenic ALS mice. Results In vitro, ATH-1105 augmented phosphorylation of MET, ERK, and AKT. ATH-1105 attenuated glutamate-mediated excitotoxicity in primary motor neurons and motor neuron- astrocyte cocultures, and had protective effects on motor neurons and neuromuscular junctions in motor neuron-muscle cocultures. ATH-1105 mitigated LPS-induced inflammation in microglia- and macrophage-like cell systems. In vivo, ATH-1105 treatment resulted in improved motor and nerve function, sciatic nerve axon and myelin integrity, and survival in ALS mice. Treatment with ATH-1105 also led to reductions in levels of plasma biomarkers of inflammation and neurodegeneration, along with decreased pathological protein accumulation (phospho-TDP-43) in the sciatic nerve. Additionally, both early intervention (treatment initiation at 1 month of age) and delayed intervention (treatment initiation at 2 months of age) with ATH-1105 produced benefits in this preclinical model of ALS. Discussion The consistent neuroprotective and anti-inflammatory effects demonstrated by ATH-1105 preclinically provide a compelling rationale for therapeutic interventions that leverage the positive modulation of the HGF pathway as a treatment for ALS.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wu
- Athira Pharma, Inc., Bothell, WA, United States
| | | | | | | | | | | |
Collapse
|
6
|
Wang W, Zhang Y, Geng X, Li H, Wang X, Zhang Y, Zhao H. Zinc attenuates arsenic overdose-induced brain damage via PERK/ATF6 and TLR/MyD88/NF-κB pathways. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109806. [PMID: 38042229 DOI: 10.1016/j.cbpc.2023.109806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Exposure to arsenic (As), a widespread non-metallic toxicant in nature, often results in neurotoxicity, although the exact mechanism is unknown. Zinc (Zn) is a powerful nutrient often thought to be beneficial for growth, development and immunity. Whether Zn can rescue brain damage caused by As contamination remains to be demonstrated. Therefore, in this study, a 30-day model of As poisoning (2.83 mg/L) in carp was established and treated with Zn (1 mg/L) to investigate the detoxification mechanism involved. Histological observations showed that As induced the loosening of the molecular layer structure of the cerebellum and the dissolution or even disappearance of nuclei, accompanied by the occurrence of microthrombi in the granular layer, and the addition of Zn attenuated such As-induced damage. Further mechanistic studies indicated that Zn ameliorated As exposure-induced abnormalities in antioxidant capacity (decreased CAT and Cu/Zn-SOD), activation of the Nrf2/keap1 pathway and endoplasmic reticulum stress (ERs), which is a key factor in As-induced brain damage. ERs (high expression of PERK, ATF6, CHOP, eiF2α and GRP78) and inflammation (overexpression of TLR2, TLR4, MyD88, IKK, NF-κB, IL-1β and IL-6 and low expression of IκBα and IL-10). We suggest that Zn can alleviate excessive As-induced brain damage by attenuating As-induced oxidative stress, PERK/ATF6 and TLR/MyD88/NF-κB pathways. The present study fills in the preventive mechanism of As injury in fish and provides the possibility of prevention and control of As pollution-induced brain tissue injury by Zn rescue.
Collapse
Affiliation(s)
- Weijun Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xiren Geng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hong Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xuehuan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yingzi Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
7
|
Zahid A, Wilson JC, Grice ID, Peak IR. Otitis media: recent advances in otitis media vaccine development and model systems. Front Microbiol 2024; 15:1345027. [PMID: 38328427 PMCID: PMC10847372 DOI: 10.3389/fmicb.2024.1345027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Otitis media is an inflammatory disorder of the middle ear caused by airways-associated bacterial or viral infections. It is one of the most common childhood infections as globally more than 80% of children are diagnosed with acute otitis media by 3 years of age and it is a common reason for doctor's visits, antibiotics prescriptions, and surgery among children. Otitis media is a multifactorial disease with various genetic, immunologic, infectious, and environmental factors predisposing children to develop ear infections. Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis are the most common culprits responsible for acute otitis media. Despite the massive global disease burden, the pathogenesis of otitis media is still unclear and requires extensive future research. Antibiotics are the preferred treatment to cure middle ear infections, however, the antimicrobial resistance rate of common middle ear pathogens has increased considerably over the years. At present, pneumococcal and influenza vaccines are administered as a preventive measure against otitis media, nevertheless, these vaccines are only beneficial in preventing carriage and/or disease caused by vaccine serotypes. Otitis media caused by non-vaccine serotype pneumococci, non-typeable H. influenza, and M. catarrhalis remain an important healthcare burden. The development of multi-species vaccines is an arduous process but is required to reduce the global burden of this disease. Many novel vaccines against S. pneumoniae, non-typeable H. influenza, and M. catarrhalis are in preclinical trials. It is anticipated that these vaccines will lower the disease burden and provide better protection against otitis media. To study disease pathology the rat, mouse, and chinchilla are commonly used to induce experimental acute otitis media to test new therapeutics, including antibiotics and vaccines. Each of these models has its advantages and disadvantages, yet there is still a need to develop an improved animal model providing a better correlated mechanistic understanding of human middle ear infections, thereby underpinning the development of more effective otitis media therapeutics. This review provides an updated summary of current vaccines against otitis media, various animal models of otitis media, their limitations, and some future insights in this field providing a springboard in the development of new animal models and novel vaccines for otitis media.
Collapse
Affiliation(s)
- Ayesha Zahid
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jennifer C. Wilson
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - I. Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Ian R. Peak
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
8
|
Aghakhani A, Hezave MB, Rasouli A, Saberi Rounkian M, Soleimanlou F, Alhani A, Sabet Eqlidi N, Pirani M, Mehrtabar S, Zerangian N, Pormehr-Yabandeh A, Keylani K, Tizro N, Deravi N. Endoplasmic Reticulum as a Therapeutic Target in Cancer: Is there a Role for Flavonoids? Curr Mol Med 2024; 24:298-315. [PMID: 36959143 DOI: 10.2174/1566524023666230320103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/25/2023]
Abstract
Flavonoids are classified into subclasses of polyphenols, a multipurpose category of natural compounds which comprises secondary metabolites extracted from vascular plants and are plentiful in the human diet. Although the details of flavonoid mechanisms are still not realized correctly, they are generally regarded as antimicrobial, anti-fungal, anti-inflammatory, anti-oxidative; anti-mutagenic; anti-neoplastic; anti-aging; anti-diabetic, cardio-protective, etc. The anti-cancer properties of flavonoids are evident in functions such as prevention of proliferation, metastasis, invasion, inflammation and activation of cell death. Tumors growth and enlargement expose cells to acidosis, hypoxia, and lack of nutrients which result in endoplasmic reticulum (ER) stress; it triggers the unfolded protein response (UPR), which reclaims homeostasis or activates autophagy. Steady stimulation of ER stress can switch autophagy to apoptosis. The connection between ER stress and cancer, in association with UPR, has been explained. The signals provided by UPR can activate or inhibit anti-apoptotic or apoptotic pathways depending on the period and grade of ER stress. In this review, we will peruse the link between flavonoids and their impact on the endoplasmic reticulum in association with cancer therapy.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Saberi Rounkian
- Student Research Committee, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Soleimanlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arian Alhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Sabet Eqlidi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Pirani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasibeh Zerangian
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asiyeh Pormehr-Yabandeh
- Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Tizro
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Li X, Zhang Y, Ding X, Jin Y, Wei C, Xu J. Mass Spectrometry Chromatography-Based Metabolomics: The Effect of Long-Term Aerobic Exercise on Learning Ability and the Metabolism of Intestinal Contents in Mice with Alzheimer's Disease. Metabolites 2023; 13:1150. [PMID: 37999246 PMCID: PMC10673277 DOI: 10.3390/metabo13111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
This study aimed to investigate the effect of long-term aerobic exercise on the metabolism of intestinal contents in APP/PS1 mice was studied using a non-targeted metabolomics technique based on high-performance liquid chromatography-mass spectrometry (HPLC-MS) coupling, providing a theoretical basis for exercise to regulate the metabolism of Alzheimer's disease (AD) organisms. Three-month-old male C57BL/6JNju mice, six wild-type (NC, n = 6); 12 APP/PS1 double transgenic species in total, were randomly divided into AD model (AM, n = 6) and AD model exercise (AE, n = 6) groups. The mice in the NC group were fed naturally, the mice in the AM group were statically placed on a running platform, and the mice in the AE group received a 20-week long-term moderate intensity running platform exercise intervention. Following the exercise intervention, the cecum contents of the mice in each group were collected and analyzed using the HPLC-MS technique, with those meeting both variable important in projection (VIP)> 1.5 and p < 0.05 being screened as differential metabolites. A total of 32 different metabolites were detected between the AM and NC groups, with 19 up-regulated in the AM group such as phosphatidic acid (PA) (18:4(6Z,9Z,12Z,15Z)/21:0) and 13 down-regulated in the AM group, such as 4,8-dimethylnonanoyl, compared to the NC group; 98 different metabolites were found between the AM and AE groups, 41 of which were upregulated such as Lyso phosphatidylcholine (LysoPC) and 57 of which were downregulated compared to the AM group such as Phosphatidylinositol (PI). The regulation of linoleic acid metabolism, glycerophospholipid metabolism, bile secretion, phenylalanine metabolism, and other pathways was predominantly regulated by nine metabolites, which were subsequently identified as indicators of exercise intervention to enhance metabolism in AD mice. The metabolomic technique can identify the metabolic problems of intestinal contents in AD mice and initially screen the biomarkers of exercise to improve the metabolic disorders in AD. These findings can help us better understand the impact of aerobic exercise on AD metabolism.
Collapse
Affiliation(s)
- Xue Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (Y.Z.); (X.D.); (Y.J.); (C.W.); (J.X.)
| | | | | | | | | | | |
Collapse
|
10
|
Ajmal MR. Protein Misfolding and Aggregation in Proteinopathies: Causes, Mechanism and Cellular Response. Diseases 2023; 11:30. [PMID: 36810544 PMCID: PMC9944956 DOI: 10.3390/diseases11010030] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Proteins are central to life functions. Alterations in the structure of proteins are reflected in their function. Misfolded proteins and their aggregates present a significant risk to the cell. Cells have a diverse but integrated network of protection mechanisms. Streams of misfolded proteins that cells are continuously exposed to must be continually monitored by an elaborated network of molecular chaperones and protein degradation factors to control and contain protein misfolding problems. Aggregation inhibition properties of small molecules such as polyphenols are important as they possess other beneficial properties such as antioxidative, anti-inflammatory, and pro-autophagic properties and help neuroprotection. A candidate with such desired features is important for any possible treatment development for protein aggregation diseases. There is a need to study the protein misfolding phenomenon so that we can treat some of the worst kinds of human ailments related to protein misfolding and aggregation.
Collapse
Affiliation(s)
- Mohammad Rehan Ajmal
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
11
|
Connecting the Dots: Macromolecular Crowding and Protein Aggregation. J Fluoresc 2023; 33:1-11. [PMID: 36417150 DOI: 10.1007/s10895-022-03082-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
Proteins are one of the dynamic macromolecules that play a significant role in many physiologically important processes to sustain life on the earth. Proteins need to be properly folded into their active conformation to perform their function. Alteration in the protein folding process may lead to the formation of misfolded conformers. Accumulation of these misfolded conformers can result in the formation of protein aggregates which are attributed to many human pathological conditions including neurodegeneration, cataract, neuromuscular disorders, and diabetes. Living cells naturally have heterogeneous crowding environments with different concentrations of various biomolecules. Macromolecular crowding condition has been found to alter the protein conformation. Here in this review, we tried to show the relation between macromolecular crowding, protein aggregation, and its consequences.
Collapse
|
12
|
Miglioranza Scavuzzi B, Holoshitz J. Endoplasmic Reticulum Stress, Oxidative Stress, and Rheumatic Diseases. Antioxidants (Basel) 2022; 11:1306. [PMID: 35883795 PMCID: PMC9312221 DOI: 10.3390/antiox11071306] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) is a multi-functional organelle responsible for cellular homeostasis, protein synthesis, folding and secretion. It has been increasingly recognized that the loss of ER homeostasis plays a central role in the development of autoimmune inflammatory disorders, such as rheumatic diseases. Purpose/Main contents: Here, we review current knowledge of the contribution of ER stress to the pathogenesis of rheumatic diseases, with a focus on rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We also review the interplay between protein folding and formation of reactive oxygen species (ROS), where ER stress induces oxidative stress (OS), which further aggravates the accumulation of misfolded proteins and oxidation, in a vicious cycle. Intervention studies targeting ER stress and oxidative stress in the context of rheumatic diseases are also reviewed. CONCLUSIONS Loss of ER homeostasis is a significant factor in the pathogeneses of RA and SLE. Targeting ER stress, unfolded protein response (UPR) pathways and oxidative stress in these diseases both in vitro and in animal models have shown promising results and deserve further investigation.
Collapse
Affiliation(s)
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
13
|
Lu SY, Guo S, Chai SB, Yang JQ, Yue Y, Li H, Yan HF, Zhang T, Sun PM, Sun HW, Zhou JL, Yang JW, Li ZP, Cui Y. Proteomic analysis of the effects of simulated microgravity in human gastric mucosal cells. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:26-37. [PMID: 35065758 DOI: 10.1016/j.lssr.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 06/14/2023]
Abstract
Microgravity is an ecological factor that affects the environment of the body. In this study, quantitative isobaric labeling (tandem mass tag) method was used to study the changes in human gastric mucosal cells under simulated microgravity for the first time. Comparative proteomic analysis identified 394 (202 upregulated and 192 downregulated) and 542 (286 upregulated and 256 downregulated) proteins differentially regulated by simulated microgravity after 3 and 7 days, respectively. Then the identified proteins were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses for further exploration. The results of the analysis showed that the ribosomes of gastric mucosal cells were significantly impacted after exposure to simulated microgravity for 3 days, and the cells appeared to be in a state of stress and inflammation. Exposure to simulated microgravity for 7 days significantly affected the mitochondria of the cells, oxidative stress became more evident, while inflammation and weakened connections were observed in the cells. The results of this study highlighted the temporal response trend of gastric mucosal cells to the stressor of microgravity at the two time points of 3 and 7 days. These findings will provide insights into the development of methods to protect the gastric mucosa during space flight.
Collapse
Affiliation(s)
- Sheng-Yu Lu
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Song Guo
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Shao-Bin Chai
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jia-Qi Yang
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Pei-Ming Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Zheng-Peng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| |
Collapse
|
14
|
Herranz-Montoya I, Park S, Djouder N. A comprehensive analysis of prefoldins and their implication in cancer. iScience 2021; 24:103273. [PMID: 34761191 PMCID: PMC8567396 DOI: 10.1016/j.isci.2021.103273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prefoldins (PFDNs) are evolutionary conserved co-chaperones, initially discovered in archaea but universally present in eukaryotes. PFDNs are prevalently organized into hetero-hexameric complexes. Although they have been overlooked since their discovery and their functions remain elusive, several reports indicate they act as co-chaperones escorting misfolded or non-native proteins to group II chaperonins. Unlike the eukaryotic PFDNs which interact with cytoskeletal components, the archaeal PFDNs can bind and stabilize a wide range of substrates, possibly due to their great structural diversity. The discovery of the unconventional RPB5 interactor (URI) PFDN-like complex (UPC) suggests that PFDNs have versatile functions and are required for different cellular processes, including an important role in cancer. Here, we summarize their functions across different species. Moreover, a comprehensive analysis of PFDNs genomic alterations across cancer types by using large-scale cancer genomic data indicates that PFDNs are a new class of non-mutated proteins significantly overexpressed in some cancer types.
Collapse
Affiliation(s)
- Irene Herranz-Montoya
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Solip Park
- Computational Cancer Genomics Group, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| |
Collapse
|
15
|
Moya-Torres A, Gupta M, Heide F, Krahn N, Legare S, Nikodemus D, Imhof T, Meier M, Koch M, Stetefeld J. Homogenous overexpression of the extracellular matrix protein Netrin-1 in a hollow fiber bioreactor. Appl Microbiol Biotechnol 2021; 105:6047-6057. [PMID: 34342709 PMCID: PMC8390410 DOI: 10.1007/s00253-021-11438-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022]
Abstract
The production of recombinant proteins for functional and biophysical studies, especially in the field of structural determination, still represents a challenge as high quality and quantities are needed to adequately perform experiments. This is in part solved by optimizing protein constructs and expression conditions to maximize the yields in regular flask expression systems. Still, work flow and effort can be substantial with no guarantee to obtain improvements. This study presents a combination of workflows that can be used to dramatically increase protein production and improve processing results, specifically for the extracellular matrix protein Netrin-1. This proteoglycan is an axon guidance cue which interacts with various receptors to initiate downstream signaling cascades affecting cell differentiation, proliferation, metabolism, and survival. We were able to produce large glycoprotein quantities in mammalian cells, which were engineered for protein overexpression and secretion into the media using the controlled environment provided by a hollow fiber bioreactor. Close monitoring of the internal bioreactor conditions allowed for stable production over an extended period of time. In addition to this, Netrin-1 concentrations were monitored in expression media through biolayer interferometry which allowed us to increase Netrin-1 media concentrations tenfold over our current flask systems while preserving excellent protein quality and in solution behavior. Our particular combination of genetic engineering, cell culture system, protein purification, and biophysical characterization permitted us to establish an efficient and continuous production of high-quality protein suitable for structural biology studies that can be translated to various biological systems. KEY POINTS: • Hollow fiber bioreactor produces substantial yields of homogenous Netrin-1 • Biolayer interferometry allows target protein quantitation in expression media • High production yields in the bioreactor do not impair Netrin-1 proteoglycan quality.
Collapse
Affiliation(s)
- Aniel Moya-Torres
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Monika Gupta
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fabian Heide
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Scott Legare
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Denise Nikodemus
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Imhof
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Markus Meier
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Center for Molecular Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
16
|
Mannan A, Singh TG, Singh V, Garg N, Kaur A, Singh M. Insights into the Mechanism of the Therapeutic Potential of Herbal Monoamine Oxidase Inhibitors in Neurological Diseases. Curr Drug Targets 2021; 23:286-310. [PMID: 34238153 DOI: 10.2174/1389450122666210707120256] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022]
Abstract
Monoamine oxidase (MAO) is an enzyme that catalyzes the deamination of monoamines and other proteins. MAO's hyperactivation results in the massive generation of reactive oxygen species, which leads to a variety of neurological diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and depression-like disorders. Although synthetic MAO inhibitors are clinically available, they are associated with side effects such as hepatotoxicity, cheese reaction, hypertensive crisis, and so on, necessitating the investigation of alternative MAO inhibitors from a natural source with a safe profile. Herbal medications have a significant impact on the prevention of many diseases; additionally, they have fewer side effects and serve as a precursor for drug development. This review discusses the potential of herbal MAO inhibitors as well as their associated mechanism of action, with an aim to foster future research on herbal MAO inhibitors as potential treatment for neurological diseases.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
17
|
Tang Y, Zhang X, Zhang Y, Feng H, Gao J, Liu H, Guo F, Chen Q. Senescent Changes and Endoplasmic Reticulum Stress May Be Involved in the Pathogenesis of Missed Miscarriage. Front Cell Dev Biol 2021; 9:656549. [PMID: 34222231 PMCID: PMC8247570 DOI: 10.3389/fcell.2021.656549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background Senescence is involved in many complications of pregnancy. However, whether senescent changes are also associated with missed miscarriage has not been fully investigated. Methods The levels of p16, p21, and γH2AX, markers of senescence, were measured in placentas collected from women with missed miscarriage by immunohistochemistry and Western blotting. Levels of misfolded proteins in missed miscarriage placentas or normal first-trimester placenta that had been treated with H2O2 (100 μM) or extracellular vesicles (EVs) collected from missed miscarriage placental explant culture were measured by fluorescent compound, thioflavin-T. The production of reactive oxygen species (ROS) by missed miscarriage placentas was measured by CellROX® Deep Red. Results Increased levels of p16, p21, and γH2AX were presented in missed miscarriage placentas compared to controls. Increased levels of misfolded proteins were shown in missed miscarriage placentas, but not in EVs that were collected from missed miscarriage placentas. The ROS production was significantly increased in missed miscarriage placental explant cultures. Increased levels of misfolded proteins were seen in the normal first-trimester placenta that had been treated with H2O2 compared to untreated. Conclusion Our data demonstrate that there are increases in senescence and endoplasmic reticulum stress and ROS production in missed miscarriage placenta. Oxidative stress and an accumulation of misfolded proteins in missed miscarriage placentas may contribute to the changes of senescence and endoplasmic reticulum stress seen in missed miscarriage placentas.
Collapse
Affiliation(s)
- Yunhui Tang
- Department of Family Planning, The Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Xinyan Zhang
- The Institution of Obstetrics and Gynaecology, The Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Hua Feng
- Department of Cervical Disease, The Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jing Gao
- Department of Medical Laboratory, The Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Haiyan Liu
- Department of Obstetrics, The Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Fang Guo
- Department of Obstetrics, The Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Qi Chen
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Imani A, Maleki N, Bohlouli S, Kouhsoltani M, Sharifi S, Maleki Dizaj S. Molecular mechanisms of anticancer effect of rutin. Phytother Res 2021; 35:2500-2513. [PMID: 33295678 DOI: 10.1002/ptr.6977] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/13/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Because of the extensive biological functions of natural substances such as bioflavonoids, and their high safety and low costs, they could have high priority application in the health care system. The antioxidant properties of rutin, a polyphenolic bioflavonoid, have been well documented and demonstrated a wide range of pharmacological applications in cancer research. Since chemotherapeutic drugs have a wide range of side effects and rutin is a safe anticancer agent with minor side effects so recent investigations are performed for study of mechanisms of its anticancer effect. Both in-vivo and in-vitro examinations on anticancer mechanisms of this natural agent have been widely carried out. Regulation of different cellular signaling pathways such as Wnt/β-catenin, p53-independent pathway, PI3K/Akt, JAK/STAT, MAPK, p53, apoptosis as well as NF-ĸB signaling pathways helps to mediate the anticancer impacts of this agent. This study tried to review the molecular mechanisms of rutin anticancer effect on various types of cancer. Deep exploration of these anticancer mechanisms can facilitate the development of this beneficial compound for its application in the treatment of different cancers.
Collapse
Affiliation(s)
- Amir Imani
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Maleki
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Bohlouli
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Kouhsoltani
- Oral and Maxillofacial Department of Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Bacci A, Runfola M, Sestito S, Rapposelli S. Beyond Antioxidant Effects: Nature-Based Templates Unveil New Strategies for Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10030367. [PMID: 33671015 PMCID: PMC7997428 DOI: 10.3390/antiox10030367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
The complex network of malfunctioning pathways occurring in the pathogenesis of neurodegenerative diseases (NDDs) represents a huge hurdle in the development of new effective drugs to be used in therapy. In this context, redox reactions act as crucial regulators in the maintenance of neuronal microenvironment homeostasis. Particularly, their imbalance results in the severe compromising of organism’s natural defense systems and subsequently, in the instauration of deleterious OS, that plays a fundamental role in the insurgence and progress of NDDs. Despite the huge efforts in drug discovery programs, the identification process of new therapeutic agents able to counteract the relentless progress of neurodegenerative processes has produced low or no effective therapies. Consequently, a paradigm-shift in the drug discovery approach for these diseases is gradually occurring, paving the way for innovative therapeutical approaches, such as polypharmacology. The aim of this review is to provide an overview of the main pharmacological features of most promising nature-based scaffolds for a possible application in drug discovery, especially for NDDs, highlighting their multifaceted effects against OS and neuronal disorders.
Collapse
Affiliation(s)
- Andrea Bacci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.B.); (M.R.)
| | - Massimiliano Runfola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.B.); (M.R.)
| | - Simona Sestito
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.B.); (M.R.)
- Correspondence:
| |
Collapse
|
20
|
Reversal of the Inflammatory Responses in Fabry Patient iPSC-Derived Cardiovascular Endothelial Cells by CRISPR/Cas9-Corrected Mutation. Int J Mol Sci 2021; 22:ijms22052381. [PMID: 33673551 PMCID: PMC7956852 DOI: 10.3390/ijms22052381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
The late-onset type of Fabry disease (FD) with GLA IVS4 + 919G > A mutation has been shown to lead to cardiovascular dysfunctions. In order to eliminate variations in other aspects of the genetic background, we established the isogenic control of induced pluripotent stem cells (iPSCs) for the identification of the pathogenetic factors for FD phenotypes through CRISPR/Cas9 genomic editing. We adopted droplet digital PCR (ddPCR) to efficiently capture mutational events, thus enabling isolation of the corrected FD from FD-iPSCs. Both of these exhibited the characteristics of pluripotency and phenotypic plasticity, and they can be differentiated into endothelial cells (ECs). We demonstrated the phenotypic abnormalities in FD iPSC-derived ECs (FD-ECs), including intracellular Gb3 accumulation, autophagic flux impairment, and reactive oxygen species (ROS) production, and these abnormalities were rescued in isogenic control iPSC-derived ECs (corrected FD-ECs). Microarray profiling revealed that corrected FD-derived endothelial cells reversed the enrichment of genes in the pro-inflammatory pathway and validated the downregulation of NF-κB and the MAPK signaling pathway. Our findings highlighted the critical role of ECs in FD-associated vascular dysfunctions by establishing a reliable isogenic control and providing information on potential cellular targets to reduce the morbidity and mortality of FD patients with vascular complications.
Collapse
|
21
|
Devi S, Kim JJ, Singh AP, Kumar S, Dubey AK, Singh SK, Singh RS, Kumar V. Proteotoxicity: A Fatal Consequence of Environmental Pollutants-Induced Impairments in Protein Clearance Machinery. J Pers Med 2021; 11:69. [PMID: 33503824 PMCID: PMC7912547 DOI: 10.3390/jpm11020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
A tightly regulated protein quality control (PQC) system maintains a healthy balance between correctly folded and misfolded protein species. This PQC system work with the help of a complex network comprised of molecular chaperones and proteostasis. Any intruder, especially environmental pollutants, disrupt the PQC network and lead to PQCs disruption, thus generating damaged and infectious protein. These misfolded/unfolded proteins are linked to several diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and cataracts. Numerous studies on proteins misfolding and disruption of PQCs by environmental pollutants highlight the necessity of detailed knowledge. This review represents the PQCs network and environmental pollutants' impact on the PQC network, especially through the protein clearance system.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Anand Prakash Singh
- Division of Cardiovascular Disease, The University of Alabama at Birmingham (UAB), 1720 2nd Ave South, Birmingham, AL 35294-1913, USA;
| | - Surendra Kumar
- Cytogenetics Lab, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | | | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Room 4D40, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| |
Collapse
|
22
|
Han B, Luo J, Jiang P, Li Y, Wang Q, Bai Y, Chen J, Wang J, Zhang J. Inhibition of Embryonic HSP 90 Function Promotes Variation of Cold Tolerance in Zebrafish. Front Genet 2020; 11:541944. [PMID: 33343615 PMCID: PMC7746879 DOI: 10.3389/fgene.2020.541944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence indicates that heat shock protein 90 (HSP90) plays essential roles in modulation of phenotypic plasticity in vertebrate development, however, the roles of HSP90 in modulation of cold tolerance capacity in fish are still unclear. In the present study, we showed that transient inhibition of embryonic HSP90 function by a chemical inhibitor or low conductivity stress promoted variation of cold tolerance capacity in adult zebrafish. Further work showed that embryonic HSP90 inhibition enhanced cold tolerance in adult zebrafish could be transmitted to their offspring. RNA-seq data showed that embryonic HSP90 inhibition enhanced cold tolerance involves variation of gene expression related to proteasome, lysosome, autophagy, and ribosome. Experiments with zebrafish ZF4 cells showed that two differentially expressed genes atg9b and psmd12 were up-regulated by radicicol treatment and provided protective roles for cells under cold stress, indicating that up-regulation of autophagy and proteasome function contributes to enhanced cold tolerance. The present work sheds a light on the roles of HSP90 in regulation of phenotypic plasticity associated with thermal adaptation in fish.
Collapse
Affiliation(s)
- Bingshe Han
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Juntao Luo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Penglei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Qiong Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yajing Bai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jing Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junfang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
23
|
Kim JW, Im I, Kim H, Jeon JS, Kang EH, Jo S, Chun HS, Yoon S, Kim JH, Kim SK, Park HJ. Live-cell screening platform using human-induced pluripotent stem cells expressing fluorescence-tagged cytochrome P450 1A1. FASEB J 2020; 34:9141-9155. [PMID: 32421247 DOI: 10.1096/fj.201903110r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/04/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) are invaluable sources for drug screening and toxicity tests because of their differentiation potential and proliferative capacity. Recently, the CRISPR-Cas9-mediated homologous recombination system has enabled reporter knock-ins at desired loci in hiPSCs, and here, we generated a hiPSC reporter line expressing mCherry-tagged cytochrome P450 1A1 (CYP1A1), which can be utilized to screen for the modulators of aryl hydrocarbon receptor (AHR) in live cells. CYP1A1-mCherry hiPSCs exhibited typical characteristics of pluripotent stem cells such as marker expression, differentiation potential, and normal karyotype. After differentiation into hepatocyte-like cells (HLCs), CYP1A1-mCherry fusion protein was expressed and localized at the endoplasmic reticulum, and induced by AHR agonists. We obtained 23 hits modulating CYP1A1 expression from high-content screening with 241 hepatotoxicity chemicals and nuclear receptor ligands, and identified three upregulating chemicals and two downregulating compounds. Responses of hiPSC-HLCs against an AHR agonist were more similar to human primary hepatocytes than of HepG2 hepatocellular carcinoma cells. This platform has the advantages of live-cell screening without sacrificing cells (unlike previously available CYP1A1 reporter cell lines), as well as an indefinite supply of cells, and can be utilized in a wide range of screening related to AHR- and CYP1A1-associated diseases in desired cell types.
Collapse
Affiliation(s)
- Ji-Woo Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Ilkyun Im
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Jang Su Jeon
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Hye Kang
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea.,Human and Environmental Toxicology, School of Engineering, University of Science and Technology, Daejeon, Republic of Korea
| | - Seongyea Jo
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hang-Suk Chun
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea.,Human and Environmental Toxicology, School of Engineering, University of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Hoon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| |
Collapse
|
24
|
Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection. Vaccines (Basel) 2020; 8:vaccines8010132. [PMID: 32192117 PMCID: PMC7157650 DOI: 10.3390/vaccines8010132] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is a major pathogen causing pneumonia with over 2 million deaths annually, especially in young children and the elderly. To date, at least 98 different pneumococcal capsular serotypes have been identified. Currently, the vaccines for prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes and are unable to protect against non-vaccine serotypes and unencapsulated S. pneumoniae. This has led to a rapid increase in antibiotic-resistant non-vaccine serotypes. Hence, there is an urgent need to develop new, effective, and affordable pneumococcal vaccines, which could cover a wide range of serotypes. This review discusses the new approaches to develop effective vaccines with broad serotype coverage as well as recent development of promising pneumococcal vaccines in clinical trials. New vaccine candidates are the inactivated whole-cell vaccine strain (Δpep27ΔcomD mutant) constructed by mutations of specific genes and several protein-based S. pneumoniae vaccines using conserved pneumococcal antigens, such as lipoprotein and surface-exposed protein (PspA). Among the vaccines in Phase 3 clinical trials are the pneumococcal conjugate vaccines, PCV-15 (V114) and 20vPnC. The inactivated whole-cell and several protein-based vaccines are either in Phase 1 or 2 trials. Furthermore, the recent progress of nanoparticles that play important roles as delivery systems and adjuvants to improve the performance, as well as the immunogenicity of the nanovaccines, are reviewed.
Collapse
|
25
|
de Oliveira AA, Webb RC, Nunes KP. Toll-Like Receptor 4 and Heat-Shock Protein 70: Is it a New Target Pathway for Diabetic Vasculopathies? Curr Drug Targets 2020; 20:51-59. [PMID: 30129410 DOI: 10.2174/1389450119666180821105544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/09/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
Diabetes is one of the most concerning diseases in modern times. Despite considerable advances in therapeutic management, the prevalence of diabetes and its contribution to death and disability continue to be a major health problem. Diabetic vasculopathies are the leading cause of mortality and morbidity in diabetic patients. Its pathophysiology includes oxidative stress, advanced glycation end products, and a low-grade inflammatory state. Lately, actions of the innate immune system via Toll-like receptors (TLRs) have been suggested as a new insight in this field. TLRs are pattern recognition receptors activated by highly conserved structural motifs of exogenous or endogenous ligands. Heat-shock proteins (HSPs), normally known for their ability to protect cells during stressful conditions, when released from injured cells bind to TLR4 and trigger the release of pro-inflammatory cytokines in a MyD88-dependent pathway. This pathway had been investigated in pancreatic beta cells and skeletal muscle, but it has not yet been explored in the vascular system and deserves investigation. In this work, the interplay between TLR4 and HSP70 in the vasculature during diabetes is reviewed and discussed. The current literature and preliminary results from our laboratory led us to hypothesize that hyperglycemia-associated HSP70 plays an important role in the pathophysiology of diabetic vasculopathies via the TLR4 pathway and might be a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Department of Biological Sciences, College of Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - R Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Kenia Pedrosa Nunes
- Department of Biological Sciences, College of Sciences, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
26
|
Enomoto Y, Namba Y, Hoshika Y, Komemushi Y, Mitani K, Kume H, Kobayashi E, Miyama Y, Homma Y, Ushiku T, Seyama K. A case of Birt-Hogg-Dubé syndrome implying reduced or no wild-type folliculin without mutated protein is pathogenic. Eur J Med Genet 2019; 63:103820. [PMID: 31778855 DOI: 10.1016/j.ejmg.2019.103820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/16/2019] [Accepted: 11/24/2019] [Indexed: 10/25/2022]
Abstract
Birt-Hogg-Dubé syndrome (BHDS) is an autosomal dominant cancer syndrome caused by a germline mutation of the folliculin (FLCN) gene. Previous studies have suggested that truncated mutant folliculin proteins generated by disease causing FLCN mutations may retain partial functionality and contribute to disease phenotype. A 38-year-old Russian man presented with a left renal tumor. He underwent a left radical nephrectomy and histological examination confirmed the diagnosis of chromophobe renal cell carcinoma. He had papulae on his face suggestive of fibrofolliculomas, and pulmonary cysts on his computed tomography of the chest. He had a family history of skin manifestations. Genetic analysis identified a genomic deletion including the putative promoter region of FLCN exon 1 in the germline, and the second hit on the remaining wild-type FLCN in the renal carcinoma cells, which is expected to cause the complete lack of folliculin protein. Immunohistochemistry with the use of anti-folliculin antibody showed no antibody-binding on chromophobe renal carcinoma cells. These findings suggest that the decreased FLCN expression itself without producing mutated folliculin proteins can be at risk for developing clinical manifestations of BHDS: fibrofolliculomas, lung cysts, and tumorigenesis in the kidneys. This sheds light on the pathogenesis of BHDS and the role of FLCN as a tumor suppressor gene.
Collapse
Affiliation(s)
- Yutaka Enomoto
- Division of Urology, Mitsui Memorial Hospital, 1 Kanda-izumi-cho, Chiyoda-ku, Tokyo, 101-8643, Japan.
| | - Yukiko Namba
- Divisions of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan.
| | - Yoshihito Hoshika
- Divisions of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan.
| | - Yoshimitsu Komemushi
- Department of Urology, JCHO Saitama Medical Center, 4-9-3 Kitaurawa, Urawa-ku, Saitama-shi, Saitama, 330-0074, Japan.
| | - Keiko Mitani
- Divisions of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan.
| | - Haruki Kume
- Department of Urology, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Etsuko Kobayashi
- Divisions of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan.
| | - Yu Miyama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Yukio Homma
- Department of Urology, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Kuniaki Seyama
- Divisions of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan.
| |
Collapse
|
27
|
Sanguinetti M, Iriarte A, Amillis S, Marín M, Musto H, Ramón A. A pair of non-optimal codons are necessary for the correct biosynthesis of the Aspergillus nidulans urea transporter, UreA. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190773. [PMID: 31827830 PMCID: PMC6894576 DOI: 10.1098/rsos.190773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
In both prokaryotic and eukaryotic genomes, synonymous codons are unevenly used. Such differential usage of optimal or non-optimal codons has been suggested to play a role in the control of translation initiation and elongation, as well as at the level of transcription and mRNA stability. In the case of membrane proteins, codon usage has been proposed to assist in the establishment of a pause necessary for the correct targeting of the nascent chains to the translocon. By using as a model UreA, the Aspergillus nidulans urea transporter, we revealed that a pair of non-optimal codons encoding amino acids situated at the boundary between the N-terminus and the first transmembrane segment are necessary for proper biogenesis of the protein at 37°C. These codons presumably regulate the translation rate in a previously undescribed fashion, possibly contributing to the correct interaction of ureA-translating ribosome-nascent chain complexes with the signal recognition particle and/or other factors, while the polypeptide has not yet emerged from the ribosomal tunnel. Our results suggest that the presence of the pair of non-optimal codons would not be functionally important in all cellular conditions. Whether this mechanism would affect other proteins remains to be determined.
Collapse
Affiliation(s)
- Manuel Sanguinetti
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay
- Laboratorio de Organización y Evolución del Genoma, Unidad de Genómica Evolutiva, Departamento de Evolución, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Athens, Hellas, Greece
| | - Mónica Marín
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Héctor Musto
- Laboratorio de Organización y Evolución del Genoma, Unidad de Genómica Evolutiva, Departamento de Evolución, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - Ana Ramón
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
28
|
Mangge H, Bengesser S, Dalkner N, Birner A, Fellendorf F, Platzer M, Queissner R, Pilz R, Maget A, Reininghaus B, Hamm C, Bauer K, Rieger A, Zelzer S, Fuchs D, Reininghaus E. Weight Gain During Treatment of Bipolar Disorder (BD)-Facts and Therapeutic Options. Front Nutr 2019; 6:76. [PMID: 31245376 PMCID: PMC6579840 DOI: 10.3389/fnut.2019.00076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/07/2019] [Indexed: 12/29/2022] Open
Abstract
Bipolar disorder (BPD) is a mood disorder, which is characterized by alternating affective states, namely (hypo)mania, depression, and euthymia. Evidence is growing that BPD has indeed a biologic substrate characterized by chronic inflammation, oxidative stress, and disturbed energy metabolism. Apart from this, there is obviously a hereditary component of this disease with multi-genetic factors. Most probably a susceptibility threshold favors the outbreak of clinical disease after a cascade of stress events that remain to be elucidated in more detail. Evidence is also growing that weak points in brain energy metabolism contribute to outbreak and severity of BPD. Conventional psychopharmacologic therapy must be reassessed under the aspects of weight cycling and development of central obesity as a deterioration factor for a worse clinical course leading to early cardiovascular events in BPD subgroups.
Collapse
Affiliation(s)
- Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Graz, Austria
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Frederike Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Martina Platzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Robert Queissner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Rene Pilz
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Maget
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Bernd Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Carlo Hamm
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Konstantin Bauer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Alexandra Rieger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Graz, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Eva Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
29
|
Hedl TJ, San Gil R, Cheng F, Rayner SL, Davidson JM, De Luca A, Villalva MD, Ecroyd H, Walker AK, Lee A. Proteomics Approaches for Biomarker and Drug Target Discovery in ALS and FTD. Front Neurosci 2019; 13:548. [PMID: 31244593 PMCID: PMC6579929 DOI: 10.3389/fnins.2019.00548] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are increasing in prevalence but lack targeted therapeutics. Although the pathological mechanisms behind these diseases remain unclear, both ALS and FTD are characterized pathologically by aberrant protein aggregation and inclusion formation within neurons, which correlates with neurodegeneration. Notably, aggregation of several key proteins, including TAR DNA binding protein of 43 kDa (TDP-43), superoxide dismutase 1 (SOD1), and tau, have been implicated in these diseases. Proteomics methods are being increasingly applied to better understand disease-related mechanisms and to identify biomarkers of disease, using model systems as well as human samples. Proteomics-based approaches offer unbiased, high-throughput, and quantitative results with numerous applications for investigating proteins of interest. Here, we review recent advances in the understanding of ALS and FTD pathophysiology obtained using proteomics approaches, and we assess technical and experimental limitations. We compare findings from various mass spectrometry (MS) approaches including quantitative proteomics methods such as stable isotope labeling by amino acids in cell culture (SILAC) and tandem mass tagging (TMT) to approaches such as label-free quantitation (LFQ) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) in studies of ALS and FTD. Similarly, we describe disease-related protein-protein interaction (PPI) studies using approaches including immunoprecipitation mass spectrometry (IP-MS) and proximity-dependent biotin identification (BioID) and discuss future application of new techniques including proximity-dependent ascorbic acid peroxidase labeling (APEX), and biotinylation by antibody recognition (BAR). Furthermore, we explore the use of MS to detect post-translational modifications (PTMs), such as ubiquitination and phosphorylation, of disease-relevant proteins in ALS and FTD. We also discuss upstream technologies that enable enrichment of proteins of interest, highlighting the contributions of new techniques to isolate disease-relevant protein inclusions including flow cytometric analysis of inclusions and trafficking (FloIT). These recently developed approaches, as well as related advances yet to be applied to studies of these neurodegenerative diseases, offer numerous opportunities for discovery of potential therapeutic targets and biomarkers for ALS and FTD.
Collapse
Affiliation(s)
- Thomas J Hedl
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Rebecca San Gil
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Flora Cheng
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Alana De Luca
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Maria D Villalva
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
30
|
Nagarajappa C, Rangappa SS, Suryanarayana R, Balakrishna S. Urinary protein carbonyl levels and its correlation with protein misfolding in preeclampsia. Hypertens Pregnancy 2019; 38:124-128. [PMID: 30913931 DOI: 10.1080/10641955.2019.1590720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To evaluate the association of protein carbonylation with preeclampsia and its correlation with urinary protein misfolding. METHOD Protein carbonyl and misfolded protein levels were measured in the midstream urine sample (58 preeclamptic and 44 normotensive pregnancy) by ELISA and Congo Red Dot assay respectively. RESULTS Significant difference was observed in the levels of protein carbonyls (P = 0.002) and misfolded proteins (P = 0.001). Correlation between protein carbonyl and misfolded proteins levels was significant but weak (r = 0.3; P = 0.018). CONCLUSION Urinary protein carbonyl level is elevated in preeclampsia but plays a minor role in proteins misfolding.
Collapse
Affiliation(s)
- Chandrakala Nagarajappa
- a Department of Cell Biology and Molecular Genetics , Sri Devaraj Urs Academy of Higher Education and Research , Kolar , India
| | | | | | - Sharath Balakrishna
- a Department of Cell Biology and Molecular Genetics , Sri Devaraj Urs Academy of Higher Education and Research , Kolar , India
| |
Collapse
|
31
|
Wang H, Lu J, Kulkarni S, Zhang W, Gorka JE, Mandel JA, Goetzman ES, Prochownik EV. Metabolic and oncogenic adaptations to pyruvate dehydrogenase inactivation in fibroblasts. J Biol Chem 2019; 294:5466-5486. [PMID: 30755479 DOI: 10.1074/jbc.ra118.005200] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/05/2019] [Indexed: 01/15/2023] Open
Abstract
Eukaryotic cell metabolism consists of processes that generate available energy, such as glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (Oxphos), and those that consume it, including macromolecular synthesis, the maintenance of ionic gradients, and cellular detoxification. By converting pyruvate to acetyl-CoA (AcCoA), the pyruvate dehydrogenase (PDH) complex (PDC) links glycolysis and the TCA cycle. Surprisingly, disrupting the connection between glycolysis and the TCA cycle by inactivation of PDC has only minor effects on cell replication. However, the molecular basis for this metabolic re-equilibration is unclear. We report here that CRISPR/Cas9-generated PDH-knockout (PDH-KO) rat fibroblasts reprogrammed their metabolism and their response to short-term c-Myc (Myc) oncoprotein overexpression. PDH-KO cells replicated normally but produced surprisingly little lactate. They also exhibited higher rates of glycolysis and Oxphos. In addition, PDH-KO cells showed altered cytoplasmic and mitochondrial pH, redox states, and mitochondrial membrane potential (ΔΨM). Conditionally activated Myc expression affected some of these parameters in a PDH-dependent manner. PDH-KO cells had increased oxygen consumption rates in response to glutamate, but not to malate, and were depleted in all TCA cycle substrates between α-ketoglutarate and malate despite high rates of glutaminolysis, as determined by flux studies with isotopically labeled glutamine. Malate and pyruvate were diverted to produce aspartate, thereby potentially explaining the failure to accumulate lactate. We conclude that PDH-KO cells maintain proliferative capacity by utilizing glutamine to supply high rates of AcCoA-independent flux through the bottom portion of the TCA cycle while accumulating pyruvate and aspartate that rescue their redox defects.
Collapse
Affiliation(s)
- Huabo Wang
- From the Section of Hematology/Oncology and
| | - Jie Lu
- From the Section of Hematology/Oncology and
| | | | | | | | | | - Eric S Goetzman
- Division of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Edward V Prochownik
- From the Section of Hematology/Oncology and .,the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, and.,the The Hillman Cancer Center of UPMC, Pittsburgh, Pennsylvania 15232
| |
Collapse
|
32
|
Kawahara R, Rosa-Fernandes L, Dos Santos AF, Bandeira CL, Dombrowski JG, Souza RM, Da Fonseca MP, Festuccia WT, Labriola L, Larsen MR, Marinho CRF, Palmisano G. Integrated Proteomics Reveals Apoptosis-related Mechanisms Associated with Placental Malaria. Mol Cell Proteomics 2019; 18:182-199. [PMID: 30242111 PMCID: PMC6356084 DOI: 10.1074/mcp.ra118.000907] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/15/2018] [Indexed: 12/27/2022] Open
Abstract
Malaria in pregnancy is a public health concern in malaria-endemic areas. Accumulation of maternal immune cells in the placenta and increased levels of inflammatory cytokines caused by sequestration of Plasmodium falciparum-infected erythrocytes have been associated to poor neonatal outcomes, including low birth weight because of fetal growth restriction. Little is known about the molecular changes occurring in a P. falciparum-infected placenta that has developed placental malaria during pregnancy but had the parasites cleared by pharmacological treatment (past infection). We conducted an integrated proteome, phosphoproteome and glycoproteome analysis in past P. falciparum-infected placentas aiming to find molecular changes associated with placental malaria. A total of 2946 proteins, 1733 N-linked glycosites and 4100 phosphosites were identified and quantified in this study, disclosing overrepresented processes related to oxidative stress, protein folding and regulation of apoptosis in past-infected placentas Moreover, AKT and ERK signaling pathways activation, together with clinical data, were further correlated to an increased apoptosis in past-infected placentas. This study showed apoptosis-related mechanisms associated with placental malaria that can be further explored as therapeutic target against adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Livia Rosa-Fernandes
- Department of Biochemistry and Molecular biology, University of Southern Denmark, Odense, Denmark
| | | | - Carla Letícia Bandeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Jamille G Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Rodrigo M Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | | | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Leticia Labriola
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Brazil
| | - Martin R Larsen
- Department of Biochemistry and Molecular biology, University of Southern Denmark, Odense, Denmark
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil;.
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil;.
| |
Collapse
|
33
|
Tominaga T, Sharma I, Fujita Y, Doi T, Wallner AK, Kanwar YS. Myo-inositol oxygenase accentuates renal tubular injury initiated by endoplasmic reticulum stress. Am J Physiol Renal Physiol 2018; 316:F301-F315. [PMID: 30539651 DOI: 10.1152/ajprenal.00534.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Besides oxidant stress, endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of various metabolic disorders affecting the kidney. These two forms of stresses are not mutually exclusive to each other and may operate by a feedback loop in worsening the cellular injury. To attest to this contention, studies were performed to assess whether in such a setting, there is worsening of tubulointerstitial injury. We employed tunicamycin as a model of ER stress and used tubular cells and mice overexpressing myo-inositol oxygenase (MIOX), an enzyme involved in glycolytic events with excessive generation of ROS. Concomitant treatment of tunicamycin and transfection of cells with MIOX-pcDNA led to a marked generation of ROS, which was reduced by MIOX-siRNA. Likewise, an accentuated expression of ER stress sensors, GRP78, XBP1, and CHOP, was observed, which was reduced with MIOX-siRNA. These sensors were markedly elevated in MIOX-TG mice compared with WT treated with tunicamycin. This was accompanied with marked deterioration of tubular morphology, along with impairment of renal functions. Interestingly, minimal damage and elevation of ER stressors was observed in MIOX-KO mice. Downstream events that were more adversely affected in MIOX-TG mice included accentuated expression of proapoptogenic proteins, proinflammatory cytokines, and extracellular matrix constituents, although expression of these molecules was unaffected in MIOX-KO mice. Also, their tunicamycin-induced accentuated expression in tubular cells was notably reduced with MIOX-siRNA. These studies suggest that the biology of MIOX-induced oxidant stress and tunicamycin-induced ER stress are interlinked, and both of the events may feed into each other to amplify the tubulointerstitial injury.
Collapse
Affiliation(s)
- Tatsuya Tominaga
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Isha Sharma
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yui Fujita
- Department of Nephrology, Tokushima University , Tokushima , Japan
| | - Toshio Doi
- Department of Nephrology, Tokushima University , Tokushima , Japan
| | - Aryana K Wallner
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
34
|
Oxidative Stress as Cause, Consequence, or Biomarker of Altered Female Reproduction and Development in the Space Environment. Int J Mol Sci 2018; 19:ijms19123729. [PMID: 30477143 PMCID: PMC6320872 DOI: 10.3390/ijms19123729] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress has been implicated in the pathophysiology of numerous terrestrial disease processes and associated with morbidity following spaceflight. Furthermore, oxidative stress has long been considered a causative agent in adverse reproductive outcomes. The purpose of this review is to summarize the pathogenesis of oxidative stress caused by cosmic radiation and microgravity, review the relationship between oxidative stress and reproductive outcomes in females, and explore what role spaceflight-induced oxidative damage may have on female reproductive and developmental outcomes.
Collapse
|
35
|
Wang JW, Wang JW, Zhang J, Wu CS, Fang Y, Su WW, Fan YC, Wang K. Decreased Methylation of IFNAR Gene Promoter from Peripheral Blood Mononuclear Cells Is Associated with Oxidative Stress in Chronic Hepatitis B. J Interferon Cytokine Res 2018; 38:480-490. [PMID: 30383464 DOI: 10.1089/jir.2018.0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Type I interferons (IFNs) play an antiviral effect by binding to type I interferon receptor (IFNAR). Oxidative stress might induce the gene promoter methylation. The purpose of our study was to evaluate the potential relationship between the methylation of IFNAR promoter and the status of oxidative stress in chronic hepatitis B (CHB). The methylation level of the IFNAR promoter in patients with CHB and healthy controls (HCs) was determined by methylation-specific polymerase chain reaction (MS-PCR). The quantitative real-time PCR (RT-qPCR) was used to evaluate the IFNAR mRNA status in peripheral blood mononuclear cells from CHB and HCs. Level of plasma-soluble IFNAR and oxidative stress parameters, including malondialdehyde (MDA) and glutathione (GSH) were determined by enzyme-linked immunosorbent assay (ELISA). The frequency of IFNAR promoter methylation in CHB patients was significantly lower than that of HCs. The IFNAR mRNA level of patients with CHB was higher than HCs. MDA level was higher in CHB patients, whereas GSH level was lower in CHB patients than that of HCs. In CHB patients, plasma MDA level was significantly higher with IFNAR promoter methylation than unmethylation, and soluble IFNAR in the circulation of methylated patients with CHB was decreased than unmethylated patients with CHB. Our results indicated that the IFNAR promoter methylation might have a potential relationship with the status of oxidative stress.
Collapse
Affiliation(s)
- Jing-Wen Wang
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
| | - Jing-Wei Wang
- 2 Department of Infectious Diseases, Qilu Hospital of Shandong University (Qingdao) , Qingdao, China
| | - Jun Zhang
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
| | - Chen-Si Wu
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
| | - Yu Fang
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
| | - Wei-Wei Su
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
| | - Yu-Chen Fan
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China .,3 Institute of Hepatology, Shandong University , Jinan, China
| | - Kai Wang
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China .,3 Institute of Hepatology, Shandong University , Jinan, China
| |
Collapse
|
36
|
Castillo-Morales A, Monzón-Sandoval J, Urrutia AO, Gutiérrez H. Postmitotic cell longevity-associated genes: a transcriptional signature of postmitotic maintenance in neural tissues. Neurobiol Aging 2018; 74:147-160. [PMID: 30448614 DOI: 10.1016/j.neurobiolaging.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/03/2018] [Accepted: 10/11/2018] [Indexed: 12/24/2022]
Abstract
Different cell types have different postmitotic maintenance requirements. Nerve cells, however, are unique in this respect as they need to survive and preserve their functional complexity for the entire lifetime of the organism, and failure at any level of their supporting mechanisms leads to a wide range of neurodegenerative conditions. Whether these differences across tissues arise from the activation of distinct cell type-specific maintenance mechanisms or the differential activation of a common molecular repertoire is not known. To identify the transcriptional signature of postmitotic cellular longevity (PMCL), we compared whole-genome transcriptome data from human tissues ranging in longevity from 120 days to over 70 years and found a set of 81 genes whose expression levels are closely associated with increased cell longevity. Using expression data from 10 independent sources, we found that these genes are more highly coexpressed in longer-living tissues and are enriched in specific biological processes and transcription factor targets compared with randomly selected gene samples. Crucially, we found that PMCL-associated genes are downregulated in the cerebral cortex and substantia nigra of patients with Alzheimer's and Parkinson's disease, respectively, as well as Hutchinson-Gilford progeria-derived fibroblasts, and that this downregulation is specifically linked to their underlying association with cellular longevity. Moreover, we found that sexually dimorphic brain expression of PMCL-associated genes reflects sexual differences in lifespan in humans and macaques. Taken together, our results suggest that PMCL-associated genes are part of a generalized machinery of postmitotic maintenance and functional stability in both neural and non-neural cells and support the notion of a common molecular repertoire differentially engaged in different cell types with different survival requirements.
Collapse
Affiliation(s)
- Atahualpa Castillo-Morales
- School of Life Sciences, University of Lincoln, Lincoln, UK; Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Jimena Monzón-Sandoval
- School of Life Sciences, University of Lincoln, Lincoln, UK; Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK; Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | | |
Collapse
|
37
|
Bengesser SA, Reininghaus EZ, Dalkner N, Birner A, Hohenberger H, Queissner R, Fellendorf F, Platzer M, Pilz R, Hamm C, Rieger A, Kapfhammer HP, Mangge H, Reininghaus B, Meier-Allard N, Stracke A, Fuchs R, Holasek S. Endoplasmic reticulum stress in bipolar disorder? - BiP and CHOP gene expression- and XBP1 splicing analysis in peripheral blood. Psychoneuroendocrinology 2018; 95:113-119. [PMID: 29843019 DOI: 10.1016/j.psyneuen.2018.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Endoplasmic Reticulum stress activates the Unfolded Protein Response, which is partially impaired in Bipolar Disorder (BD) according to previous in-vitro studies. Thus, BiP and CHOP gene expression and XBP1 splicing were analyzed in peripheral blood of study participants with BD and controls. METHODS RNA was isolated from fasting blood of study participants with BD (n = 81) and controls (n = 54) and reverse transcribed into cDNA. BiP and CHOP gene expression was analyzed with quantitative RT-PCR. Atypical splicing of XBP1 mRNA was measured by semi-quantitative RT-PCR, gel-electrophoresis and densitometry. ANCOVAs with the covariates age, BMI, sex, lithium and anticonvulsants intake were used with SPSS. Bonferroni correction was used to correct for multiple testing (adjusted p = 0.0083). RESULTS BiP gene expression was significantly higher in BD than in controls (F(1/128) = 10.076, p = 0.002, Partial η2 = 0.073). Total XBP1 (F(1/126) = 9.550, p = 0.002, Partial η2 = 0.070) and unspliced XBP1 (F(1/128)= 8.803, p= 0.004, Patial η2 = 0.065) were significantly decreased in BD. Spliced XBP1 (F(1/126) = 5.848, p = 0.017, Partial η2 = 0.044) and the ratio spliced XBP1/ unspliced XBP1 did not differ between BD and controls (F(1/126) = 0.599, p = 0.441, Partial η2 = 0.005). Gene expression did not differ between euthymia, depression and mania. DISCUSSION BiP gene expression was significantly higher in BD compared to controls. Total and unspliced XBP1 were significantly lower in BD than in the control group. Thus, both genes may be considered as putative trait markers. Nevertheless, XBP1 splicing itself did not differ between both groups.
Collapse
Affiliation(s)
- Susanne A Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria.
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Helena Hohenberger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Robert Queissner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Frederike Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Martina Platzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Rene Pilz
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Carlo Hamm
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Alexandra Rieger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Hans-Peter Kapfhammer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Graz, Austria
| | | | - Nathalie Meier-Allard
- Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria
| | - Anika Stracke
- Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria
| | - Robert Fuchs
- Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria
| | - Sandra Holasek
- Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria
| |
Collapse
|
38
|
Cohen MC, Scheimberg I. Forensic Aspects of Perinatal Deaths. Acad Forensic Pathol 2018; 8:452-491. [PMID: 31240056 DOI: 10.1177/1925362118797725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022]
Abstract
From a forensic pathologist's perspective, there are several aspects of the perinatal postmortem that are particularly important. If a fetus is found abandoned, the pathologist needs to ascertain the fetal age, the appropriateness of growth, if the baby was born alive or dead, and the possible causes of death. In cases of litigation for perinatal deaths occurring in hospitals, access to the obstetric and neonatal notes (if the baby is born alive and dies a few hours or days later) is fundamental to reach a correct interpretation and conclusion. The most important points to consider in cases of intrapartum death are the roles of asphyxia and trauma in the causation of the baby's death. Timing of the fetal death in relation to delivery may also be an important point in these cases. Finally, intrapartum lesions should always be considered in the differential diagnosis of possible child abuse in babies aged two months or less.
Collapse
|
39
|
Maiti P, Dunbar GL. Use of Curcumin, a Natural Polyphenol for Targeting Molecular Pathways in Treating Age-Related Neurodegenerative Diseases. Int J Mol Sci 2018; 19:E1637. [PMID: 29857538 PMCID: PMC6032333 DOI: 10.3390/ijms19061637] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Progressive accumulation of misfolded amyloid proteins in intracellular and extracellular spaces is one of the principal reasons for synaptic damage and impairment of neuronal communication in several neurodegenerative diseases. Effective treatments for these diseases are still lacking but remain the focus of much active investigation. Despite testing several synthesized compounds, small molecules, and drugs over the past few decades, very few of them can inhibit aggregation of amyloid proteins and lessen their neurotoxic effects. Recently, the natural polyphenol curcumin (Cur) has been shown to be a promising anti-amyloid, anti-inflammatory and neuroprotective agent for several neurodegenerative diseases. Because of its pleotropic actions on the central nervous system, including preferential binding to amyloid proteins, Cur is being touted as a promising treatment for age-related brain diseases. Here, we focus on molecular targeting of Cur to reduce amyloid burden, rescue neuronal damage, and restore normal cognitive and sensory motor functions in different animal models of neurodegenerative diseases. We specifically highlight Cur as a potential treatment for Alzheimer's, Parkinson's, Huntington's, and prion diseases. In addition, we discuss the major issues and limitations of using Cur for treating these diseases, along with ways of circumventing those shortcomings. Finally, we provide specific recommendations for optimal dosing with Cur for treating neurological diseases.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604, USA.
- Department of Biology, Saginaw Valley State University, Saginaw, MI 48610, USA.
- Brain Research Laboratory, Saginaw Valley State University, Saginaw, MI 48610, USA.
| | - Gary Leo Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604, USA.
| |
Collapse
|
40
|
Ou J, Ball JM, Luan Y, Zhao T, Miyagishima KJ, Xu Y, Zhou H, Chen J, Merriman DK, Xie Z, Mallon BS, Li W. iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential Medical Applications. Cell 2018; 173:851-863.e16. [PMID: 29576452 DOI: 10.1016/j.cell.2018.03.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/12/2017] [Accepted: 03/02/2018] [Indexed: 12/22/2022]
Abstract
Hibernating mammals survive hypothermia (<10°C) without injury, a remarkable feat of cellular preservation that bears significance for potential medical applications. However, mechanisms imparting cold resistance, such as cytoskeleton stability, remain elusive. Using the first iPSC line from a hibernating mammal (13-lined ground squirrel), we uncovered cellular pathways critical for cold tolerance. Comparison between human and ground squirrel iPSC-derived neurons revealed differential mitochondrial and protein quality control responses to cold. In human iPSC-neurons, cold triggered mitochondrial stress, resulting in reactive oxygen species overproduction and lysosomal membrane permeabilization, contributing to microtubule destruction. Manipulations of these pathways endowed microtubule cold stability upon human iPSC-neurons and rat (a non-hibernator) retina, preserving its light responsiveness after prolonged cold exposure. Furthermore, these treatments significantly improved microtubule integrity in cold-stored kidneys, demonstrating the potential for prolonging shelf-life of organ transplants. Thus, ground squirrel iPSCs offer a unique platform for bringing cold-adaptive strategies from hibernators to humans in clinical applications. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jingxing Ou
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John M Ball
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yizhao Luan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tantai Zhao
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Ophthalmology, The Second Xiang-Ya Hospital, Central South University, Changsha 410011, China
| | - Kiyoharu J Miyagishima
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yufeng Xu
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China
| | - Huizhi Zhou
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinguo Chen
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dana K Merriman
- Department of Biology, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Barbara S Mallon
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Cabrerizo J, Urcola JA, Vecino E, Melles G. Changes in lipidomic profile of aqueous humour in Fuchs endothelial dystrophy. Acta Ophthalmol 2017; 95:727-732. [PMID: 28258620 DOI: 10.1111/aos.13374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/29/2016] [Indexed: 01/01/2023]
Abstract
PURPOSE To identify and determine differences in lipid profile of aqueous humour (AH) in patients with Fuchs endothelial corneal dystrophy (FECD). METHODS Lipidomic profile of eight AH samples of FECD patients and 10 control samples was analysed. Patients with previous history of anterior segment surgery, anterior segment pathology or intraocular injections were excluded. Topical ocular medications within the last 6 months were reported. Aqueous humour (AH) was obtained during the first step of Descemet membrane endothelial keratoplasty in FECD patients and during refractive lensectomy in the control group. Lipidomic ultra-performance liquid chromatography mass spectrometry was used to perform an optimal profiling of glycerolipids, sterol lipids, sphingolipids and glycerophospholipids. Metabolite extraction was accomplished by fractionating the samples into pools of species with similar physicochemical properties. RESULTS The levels of 27 of 110 lipids change significantly in the AH of FECD eyes when compared to control samples. The concentration of most diacylglycerophosphocholines and 1-ether, 2-acylglycerophosphocholines increases in the AH of FECD eyes when compared to healthy controls. In addition, eight sphingomyelins and up to two long-chain highly unsaturated cholesteryl esters present higher levels in FECD samples when compared to controls. CONCLUSION The lipid composition of AH in FECD patients differs from that of healthy subjects. Those changes may reflect oxidative stress-related changes in the lipid metabolism of the corneal endothelial cells in FECD.
Collapse
Affiliation(s)
- Javier Cabrerizo
- Department of Ophthalmology; Rigshospitalet/Glostrup; University of Copenhagen; Copenhagen Denmark
- Copenhagen Eye Foundation (CEF); Copenhagen Denmark
- Netherlands Institute for Innovative Ocular Surgery (NIIOS); Rotterdam The Netherlands
| | - Javier Aritz Urcola
- Department of Ophthalmology; University Hospital of Alava; Vitoria Spain
- Experimental Ophthalmo-Biology Group (GOBE); University of the Basque Country (UPV/EHU); Leioa Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group (GOBE); University of the Basque Country (UPV/EHU); Leioa Spain
| | - Gerrit Melles
- Netherlands Institute for Innovative Ocular Surgery (NIIOS); Rotterdam The Netherlands
- Melles Cornea Clinic Rotterdam; Rotterdam The Netherlands
| |
Collapse
|
42
|
Nochi Z, Olsen RKJ, Gregersen N. Short-chain acyl-CoA dehydrogenase deficiency: from gene to cell pathology and possible disease mechanisms. J Inherit Metab Dis 2017; 40:641-655. [PMID: 28516284 DOI: 10.1007/s10545-017-0047-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022]
Abstract
Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an inherited disorder of mitochondrial fatty acid oxidation that is characterized by the presence of increased butyrylcarnitine and ethylmalonic acid (EMA) concentrations in plasma and urine. Individuals with symptomatic SCADD may show relatively severe phenotype, while the majority of those who are diagnosed through newborn screening by tandem mass spectrometry may remain asymptomatic. As such, the associated clinical symptoms are very diverse, ranging from severe metabolic or neuromuscular disabilities to asymptomatic. Molecular analysis of affected individuals has identified rare gene variants along with two common gene variants, c.511C > T and c.625G > A. In vitro studies have demonstrated that the common variants as well as the great majority of rare variants, which are missense variants, impair folding, that may lead to toxic accumulation of the encoded protein, and/or metabolites, and initiate excessive production of ROS and chronic oxidative stress. It has been suggested that this cell toxicity in combination with yet unknown factors can trigger disease development. This association and the full implications of SCADD are not commonly appreciated. Accordingly, there is a worldwide discussion of the relationship of clinical manifestation to SCADD, and whether SCAD gene variants are disease associated at all. Therefore, SCADD is not part of the newborn screening programs in most countries, and consequently many patients with SCAD gene variants do not get a diagnosis and the possibilities to be followed up during development.
Collapse
Affiliation(s)
- Zahra Nochi
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital and Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark.
| | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital and Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital and Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| |
Collapse
|
43
|
Bodas M, Silverberg D, Walworth K, Brucia K, Vij N. Augmentation of S-Nitrosoglutathione Controls Cigarette Smoke-Induced Inflammatory-Oxidative Stress and Chronic Obstructive Pulmonary Disease-Emphysema Pathogenesis by Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function. Antioxid Redox Signal 2017; 27:433-451. [PMID: 28006950 PMCID: PMC5564030 DOI: 10.1089/ars.2016.6895] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Cigarette smoke (CS)-mediated acquired cystic fibrosis transmembrane conductance regulator (CFTR)-dysfunction, autophagy-impairment, and resulting inflammatory-oxidative/nitrosative stress leads to chronic obstructive pulmonary disease (COPD)-emphysema pathogenesis. Moreover, nitric oxide (NO) signaling regulates lung function decline, and low serum NO levels that correlates with COPD severity. Hence, we aim to evaluate here the effects and mechanism(s) of S-nitrosoglutathione (GSNO) augmentation in regulating inflammatory-oxidative stress and COPD-emphysema pathogenesis. RESULTS Our data shows that cystic fibrosis transmembrane conductance regulator (CFTR) colocalizes with aggresome bodies in the lungs of COPD subjects with increasing emphysema severity (Global Initiative for Chronic Obstructive Lung Disease [GOLD] I - IV) compared to nonemphysema controls (GOLD 0). We further demonstrate that treatment with GSNO or S-nitrosoglutathione reductase (GSNOR)-inhibitor (N6022) significantly inhibits cigarette smoke extract (CSE; 5%)-induced decrease in membrane CFTR expression by rescuing it from ubiquitin (Ub)-positive aggresome bodies (p < 0.05). Moreover, GSNO restoration significantly (p < 0.05) decreases CSE-induced reactive oxygen species (ROS) activation and autophagy impairment (decreased accumulation of ubiquitinated proteins in the insoluble protein fractions and restoration of autophagy flux). In addition, GSNO augmentation inhibits protein misfolding as CSE-induced colocalization of ubiquitinated proteins and LC3B (in autophagy bodies) is significantly reduced by GSNO/N6022 treatment. We verified using the preclinical COPD-emphysema murine model that chronic CS (Ch-CS)-induced inflammation (interleukin [IL]-6/IL-1β levels), aggresome formation (perinuclear coexpression/colocalization of ubiquitinated proteins [Ub] and p62 [impaired autophagy marker], and CFTR), oxidative/nitrosative stress (p-Nrf2, inducible nitric oxide synthase [iNOS], and 3-nitrotyrosine expression), apoptosis (caspase-3/7 activity), and alveolar airspace enlargement (Lm) are significantly (p < 0.05) alleviated by augmenting airway GSNO levels. As a proof of concept, we demonstrate that GSNO augmentation suppresses Ch-CS-induced perinuclear CFTR protein accumulation (p < 0.05), which restores both acquired CFTR dysfunction and autophagy impairment, seen in COPD-emphysema subjects. INNOVATION GSNO augmentation alleviates CS-induced acquired CFTR dysfunction and resulting autophagy impairment. CONCLUSION Overall, we found that augmenting GSNO levels controls COPD-emphysema pathogenesis by reducing CS-induced acquired CFTR dysfunction and resulting autophagy impairment and chronic inflammatory-oxidative stress. Antioxid. Redox Signal. 27, 433-451.
Collapse
Affiliation(s)
- Manish Bodas
- 1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan
| | - David Silverberg
- 1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan
| | - Kyla Walworth
- 1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan
| | - Kathryn Brucia
- 1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan
| | - Neeraj Vij
- 1 College of Medicine, Central Michigan University , Mt. Pleasant, Michigan.,2 Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
44
|
Abstract
A healthy proteome is essential for cell survival. Protein misfolding is linked to a rapidly expanding list of human diseases, ranging from neurodegenerative diseases to aging and cancer. Many of these diseases are characterized by the accumulation of misfolded proteins in intra- and extracellular inclusions, such as amyloid plaques. The clear link between protein misfolding and disease highlights the need to better understand the elaborate machinery that manages proteome homeostasis, or proteostasis, in the cell. Proteostasis depends on a network of molecular chaperones and clearance pathways involved in the recognition, refolding, and/or clearance of aberrant proteins. Recent studies reveal that an integral part of the cellular management of misfolded proteins is their spatial sequestration into several defined compartments. Here, we review the properties, function, and formation of these compartments. Spatial sequestration plays a central role in protein quality control and cellular fitness and represents a critical link to the pathogenesis of protein aggregation-linked diseases.
Collapse
Affiliation(s)
| | - Rahul S Samant
- Department of Biology, Stanford University, Stanford, California 94305; , ,
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California 94305; , ,
| |
Collapse
|
45
|
|
46
|
Eckstein M, Vaeth M, Fornai C, Vinu M, Bromage TG, Nurbaeva MK, Sorge JL, Coelho PG, Idaghdour Y, Feske S, Lacruz RS. Store-operated Ca 2+ entry controls ameloblast cell function and enamel development. JCI Insight 2017; 2:e91166. [PMID: 28352661 DOI: 10.1172/jci.insight.91166] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Loss-of-function mutations in stromal interaction molecule 1 (STIM1) impair the activation of Ca2+ release-activated Ca2+ (CRAC) channels and store-operated Ca2+ entry (SOCE), resulting in a disease syndrome called CRAC channelopathy that is characterized by severe dental enamel defects. The cause of these enamel defects has remained unclear given a lack of animal models. We generated Stim1/2K14cre mice to delete STIM1 and its homolog STIM2 in enamel cells. These mice showed impaired SOCE in enamel cells. Enamel in Stim1/2K14cre mice was hypomineralized with decreased Ca content, mechanically weak, and thinner. The morphology of SOCE-deficient ameloblasts was altered, showing loss of the typical ruffled border, resulting in mislocalized mitochondria. Global gene expression analysis of SOCE-deficient ameloblasts revealed strong dysregulation of several pathways. ER stress genes associated with the unfolded protein response were increased in Stim1/2-deficient cells, whereas the expression of components of the glutathione system were decreased. Consistent with increased oxidative stress, we found increased ROS production, decreased mitochondrial function, and abnormal mitochondrial morphology in ameloblasts of Stim1/2K14cre mice. Collectively, these data show that loss of SOCE in enamel cells has substantial detrimental effects on gene expression, cell function, and the mineralization of dental enamel.
Collapse
Affiliation(s)
- Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Cinzia Fornai
- Department of Anthropology, University of Vienna, Vienna, Austria.,Department of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Manikandan Vinu
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Timothy G Bromage
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA.,Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York, USA
| | - Meerim K Nurbaeva
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - Jessica L Sorge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - Paulo G Coelho
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York, USA
| | - Youssef Idaghdour
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| |
Collapse
|
47
|
Andre GO, Converso TR, Politano WR, Ferraz LFC, Ribeiro ML, Leite LCC, Darrieux M. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity. Front Microbiol 2017; 8:224. [PMID: 28265264 PMCID: PMC5316553 DOI: 10.3389/fmicb.2017.00224] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/31/2017] [Indexed: 12/14/2022] Open
Abstract
The complement system plays a central role in immune defense against Streptococcus pneumoniae. In order to evade complement attack, pneumococci have evolved a number of mechanisms that limit complement mediated opsonization and subsequent phagocytosis. This review focuses on the strategies employed by pneumococci to circumvent complement mediated immunity, both in vitro and in vivo. At last, since many of the proteins involved in interactions with complement components are vaccine candidates in different stages of validation, we explore the use of these antigens alone or in combination, as potential vaccine approaches that aim at elimination or drastic reduction in the ability of this bacterium to evade complement.
Collapse
Affiliation(s)
- Greiciely O Andre
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Thiago R Converso
- Centro de Biotecnologia, Instituto ButantanSão Paulo, Brazil; Programa de Pós-graduação Interunidades em Biotecnologia, Universidade de São PauloSão Paulo, Brazil
| | - Walter R Politano
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Lucio F C Ferraz
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Marcelo L Ribeiro
- Laboratório de Farmacologia, Universidade São Francisco Bragança Paulista, Brazil
| | | | - Michelle Darrieux
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| |
Collapse
|
48
|
Altered mitochondrial quality control signaling in muscle of old gastric cancer patients with cachexia. Exp Gerontol 2017; 87:92-99. [DOI: 10.1016/j.exger.2016.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/19/2016] [Accepted: 10/12/2016] [Indexed: 01/09/2023]
|
49
|
Gurlo T, Costes S, Hoang JD, Rivera JF, Butler AE, Butler PC. β Cell-specific increased expression of calpastatin prevents diabetes induced by islet amyloid polypeptide toxicity. JCI Insight 2016; 1:e89590. [PMID: 27812546 DOI: 10.1172/jci.insight.89590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The islet in type 2 diabetes (T2D) shares many features of the brain in protein misfolding diseases. There is a deficit of β cells with islet amyloid derived from islet amyloid polypeptide (IAPP), a protein coexpressed with insulin. Small intracellular membrane-permeant oligomers, the most toxic form of IAPP, are more frequent in β cells of patients with T2D and rodents expressing human IAPP. β Cells in T2D, and affected cells in neurodegenerative diseases, share a comparable pattern of molecular pathology, including endoplasmic reticulum stress, mitochondrial dysfunction, attenuation of autophagy, and calpain hyperactivation. While this adverse functional cascade in response to toxic oligomers is well described, the sequence of events and how best to intervene is unknown. We hypothesized that calpain hyperactivation is a proximal event and tested this in vivo by β cell-specific suppression of calpain hyperactivation with calpastatin overexpression in human IAPP transgenic mice. β Cell-specific calpastatin overexpression was remarkably protective against β cell dysfunction and loss and diabetes onset. The critical autophagy/lysosomal pathway for β cell viability was protected with calpain suppression, consistent with findings in models of neurodegenerative diseases. We conclude that suppression of calpain hyperactivation is a potentially beneficial disease-modifying strategy for protein misfolding diseases, including T2D.
Collapse
|
50
|
Basso TS, Vita-Santos E, Marisco G, Pungartnik C, Brendel M. Changes in cellular infrastructure after induced endoplasmic reticulum stress in Moniliophthora perniciosa. Mycologia 2016; 108:869-881. [PMID: 27302047 DOI: 10.3852/14-234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 05/02/2016] [Indexed: 02/02/2023]
Abstract
Moniliophthora perniciosa is a basidiomycete fungus that causes witches' broom disease in Theobroma cacao We analyzed the morphology and survival of fungal hyphae and endoplasmic reticulum (ER) remodeling in either glucose- or glycerol-grown M. perniciosa after treatment with ER stress-inducing chemicals dithiothreitol (DTT) or tunicamycin (TM). Changes in intracellular redox potential can cause endoplasmic reticulum (ER) stress due to diminished efficiency in protein folding that could in turn reduce cell survival. Such stress diminishes protein-folding efficiency that could in turn reduce cell survival. Light microscopy revealed morphological changes in hyphae after TM but not after DTT treatment, regardless of the media carbon source. Decrease in fungal survival, after both TM and DTT treatments, was dose-dependent and glycerol-grown cells showed a higher resistance to both chemicals compared to glucose-grown cells. Electron microscopy showed TM and DDT-induced ER stress in M. perniciosa as evidenced by structural alterations of the organelle. The volume of ER structures increased as a typical consequence of unfolded protein stress, and the number of autophagosomes was higher. In glycerol-grown fungus DTT treatment slightly induced expression of molecular chaperone BiP. The TM exposure-induced expression of gene MpIRE1, involved in signaling of the unfolded protein response, was higher in glycerol than glucose-grown cells. Such difference was not observable with expression of gene MpATG8, encoding a key protein in autosome formation, that was induced 1.4-fold and 1.2-fold in glucose or glycerol-grown cells, respectively. DHE-based fluorescence assay showed M. perniciosa oxidative stress induced by H2O2, and treated cells had a higher level of oxidative stress compared to control. A comprehensive study of remodeling of ER is important in understanding M. perniciosa fungus resistance to oxidative stress and its ability to implement a successful infection in T. cacao.
Collapse
Affiliation(s)
- Tatiana Setenta Basso
- Laboratory of Biology and Fungi, Biotechnology and Genetic Center, Santa Cruz State University Rod. Jorge Amado, km 16, Ilhéus, Bahia, 45662-900 Brazil
| | - Evelyn Vita-Santos
- Laboratory of Biology and Fungi, Biotechnology and Genetic Center, Santa Cruz State University Rod. Jorge Amado, km 16, Ilhéus, Bahia, 45662-900 Brazil
| | - Gabriele Marisco
- State University of Southwest Bahia, DCN-Vitória da Conquista, Well-Wanting Road, km 4, Universitário, Vitoria da Conquista, BA, 45083-900 Brazil
| | - Cristina Pungartnik
- Laboratory of Biology and Fungi, Biotechnology and Genetic Center, Santa Cruz State University, Rod. Jorge Amado, km 16, Ilhéus, Bahia, 45662-900 Brazil
| | - Martin Brendel
- Laboratory of Biology and Fungi, Biotechnology and Genetic Center, Santa Cruz State University, Rod. Jorge Amado, km 16, Ilhéus, Bahia, 45662-900 Brazil
| |
Collapse
|