1
|
Wang Y, Dahmane S, Ti R, Mai X, Zhu L, Carlson LA, Stjepanovic G. Structural basis for lipid transfer by the ATG2A-ATG9A complex. Nat Struct Mol Biol 2025; 32:35-47. [PMID: 39174844 DOI: 10.1038/s41594-024-01376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Autophagy is characterized by the formation of double-membrane vesicles called autophagosomes. Autophagy-related proteins (ATGs) 2A and 9A have an essential role in autophagy by mediating lipid transfer and re-equilibration between membranes for autophagosome formation. Here we report the cryo-electron microscopy structures of human ATG2A in complex with WD-repeat protein interacting with phosphoinositides 4 (WIPI4) at 3.2 Å and the ATG2A-WIPI4-ATG9A complex at 7 Å global resolution. On the basis of molecular dynamics simulations, we propose a mechanism of lipid extraction from the donor membranes. Our analysis revealed 3:1 stoichiometry of the ATG9A-ATG2A complex, directly aligning the ATG9A lateral pore with ATG2A lipid transfer cavity, and an interaction of the ATG9A trimer with both the N-terminal and the C-terminal tip of rod-shaped ATG2A. Cryo-electron tomography of ATG2A liposome-binding states showed that ATG2A tethers lipid vesicles at different orientations. In summary, this study provides a molecular basis for the growth of the phagophore membrane and lends structural insights into spatially coupled lipid transport and re-equilibration during autophagosome formation.
Collapse
Affiliation(s)
- Yang Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Selma Dahmane
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Rujuan Ti
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Xinyi Mai
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
| | - Lars-Anders Carlson
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
| | - Goran Stjepanovic
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
| |
Collapse
|
2
|
Herre C, Ho A, Eisenbraun B, Vincent J, Nicholson T, Boutsioukis G, Meyer PA, Ottaviano M, Krause KL, Key J, Sliz P. Introduction of the Capsules environment to support further growth of the SBGrid structural biology software collection. Acta Crystallogr D Struct Biol 2024; 80:439-450. [PMID: 38832828 PMCID: PMC11154594 DOI: 10.1107/s2059798324004881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Abstract
The expansive scientific software ecosystem, characterized by millions of titles across various platforms and formats, poses significant challenges in maintaining reproducibility and provenance in scientific research. The diversity of independently developed applications, evolving versions and heterogeneous components highlights the need for rigorous methodologies to navigate these complexities. In response to these challenges, the SBGrid team builds, installs and configures over 530 specialized software applications for use in the on-premises and cloud-based computing environments of SBGrid Consortium members. To address the intricacies of supporting this diverse application collection, the team has developed the Capsule Software Execution Environment, generally referred to as Capsules. Capsules rely on a collection of programmatically generated bash scripts that work together to isolate the runtime environment of one application from all other applications, thereby providing a transparent cross-platform solution without requiring specialized tools or elevated account privileges for researchers. Capsules facilitate modular, secure software distribution while maintaining a centralized, conflict-free environment. The SBGrid platform, which combines Capsules with the SBGrid collection of structural biology applications, aligns with FAIR goals by enhancing the findability, accessibility, interoperability and reusability of scientific software, ensuring seamless functionality across diverse computing environments. Its adaptability enables application beyond structural biology into other scientific fields.
Collapse
Affiliation(s)
- Carol Herre
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alex Ho
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ben Eisenbraun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - James Vincent
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Nicholson
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Peter A. Meyer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Michelle Ottaviano
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kurt L. Krause
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jason Key
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Piotr Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Structure of the NuA4 acetyltransferase complex bound to the nucleosome. Nature 2022; 610:569-574. [PMID: 36198799 DOI: 10.1038/s41586-022-05303-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Deoxyribonucleic acid in eukaryotes wraps around the histone octamer to form nucleosomes1, the fundamental unit of chromatin. The N termini of histone H4 interact with nearby nucleosomes and play an important role in the formation of high-order chromatin structure and heterochromatin silencing2-4. NuA4 in yeast and its homologue Tip60 complex in mammalian cells are the key enzymes that catalyse H4 acetylation, which in turn regulates chromatin packaging and function in transcription activation and DNA repair5-10. Here we report the cryo-electron microscopy structure of NuA4 from Saccharomyces cerevisiae bound to the nucleosome. NuA4 comprises two major modules: the catalytic histone acetyltransferase (HAT) module and the transcription activator-binding (TRA) module. The nucleosome is mainly bound by the HAT module and is positioned close to a polybasic surface of the TRA module, which is important for the optimal activity of NuA4. The nucleosomal linker DNA carrying the upstream activation sequence is oriented towards the conserved, transcription activator-binding surface of the Tra1 subunit, which suggests a potential mechanism of NuA4 to act as a transcription co-activator. The HAT module recognizes the disk face of the nucleosome through the H2A-H2B acidic patch and nucleosomal DNA, projecting the catalytic pocket of Esa1 to the N-terminal tail of H4 and supporting its function in selective acetylation of H4. Together, our findings illustrate how NuA4 is assembled and provide mechanistic insights into nucleosome recognition and transcription co-activation by a HAT.
Collapse
|
4
|
Rearrangement of a unique Kv1.3 selectivity filter conformation upon binding of a drug. Proc Natl Acad Sci U S A 2022; 119:2113536119. [PMID: 35091471 PMCID: PMC8812516 DOI: 10.1073/pnas.2113536119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
Voltage-gated potassium channels (Kv) open with membrane depolarization and allow the flow of K+ ions. Ion flow is tightly governed by time-dependent entry into nonconducting inactivated states. Here, we focus on Kv1.3, a channel of physiological importance in immune cells. We used cryogenic electron microscopy to determine structures of human Kv1.3 alone and bound to dalazatide, a peptide inhibitor in human trials. In the unbound state, Kv1.3’s outer pore is rearranged compared to all other K+ channels analyzed. Interaction of dalazatide with Kv1.3’s outer pore causes a dynamic rearrangement of the selectivity filter as Kv1.3 enters a drug-blocked state. We report two structures of the human voltage-gated potassium channel (Kv) Kv1.3 in immune cells alone (apo-Kv1.3) and bound to an immunomodulatory drug called dalazatide (dalazatide–Kv1.3). Both the apo-Kv1.3 and dalazatide–Kv1.3 structures are in an activated state based on their depolarized voltage sensor and open inner gate. In apo-Kv1.3, the aromatic residue in the signature sequence (Y447) adopts a position that diverges 11 Å from other K+ channels. The outer pore is significantly rearranged, causing widening of the selectivity filter and perturbation of ion binding within the filter. This conformation is stabilized by a network of intrasubunit hydrogen bonds. In dalazatide–Kv1.3, binding of dalazatide to the channel’s outer vestibule narrows the selectivity filter, Y447 occupies a position seen in other K+ channels, and this conformation is stabilized by a network of intersubunit hydrogen bonds. These remarkable rearrangements in the selectivity filter underlie Kv1.3’s transition into the drug-blocked state.
Collapse
|
5
|
Barski MS, Minnell JJ, Hodakova Z, Pye VE, Nans A, Cherepanov P, Maertens GN. Cryo-EM structure of the deltaretroviral intasome in complex with the PP2A regulatory subunit B56γ. Nat Commun 2020; 11:5043. [PMID: 33028863 PMCID: PMC7542444 DOI: 10.1038/s41467-020-18874-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is a deltaretrovirus and the most oncogenic pathogen. Many of the ~20 million HTLV-1 infected people will develop severe leukaemia or an ALS-like motor disease, unless a therapy becomes available. A key step in the establishment of infection is the integration of viral genetic material into the host genome, catalysed by the retroviral integrase (IN) enzyme. Here, we use X-ray crystallography and single-particle cryo-electron microscopy to determine the structure of the functional deltaretroviral IN assembled on viral DNA ends and bound to the B56γ subunit of its human host factor, protein phosphatase 2 A. The structure reveals a tetrameric IN assembly bound to two molecules of the phosphatase via a conserved short linear motif. Insight into the deltaretroviral intasome and its interaction with the host will be crucial for understanding the pattern of integration events in infected individuals and therefore bears important clinical implications.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Cloning, Molecular
- Cryoelectron Microscopy
- Crystallography, X-Ray
- DNA, Viral/metabolism
- DNA, Viral/ultrastructure
- Human T-lymphotropic virus 1/enzymology
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/pathogenicity
- Humans
- Integrases/genetics
- Integrases/metabolism
- Integrases/ultrastructure
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Leukemia-Lymphoma, Adult T-Cell/virology
- Molecular Docking Simulation
- Mutagenesis, Site-Directed
- Paraparesis, Tropical Spastic/pathology
- Paraparesis, Tropical Spastic/virology
- Protein Multimerization
- Protein Phosphatase 2/genetics
- Protein Phosphatase 2/metabolism
- Protein Phosphatase 2/ultrastructure
- Protein Structure, Quaternary
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinant Proteins/ultrastructure
- Sequence Homology, Amino Acid
- Simian T-lymphotropic virus 1/enzymology
- Simian T-lymphotropic virus 1/genetics
- Single Molecule Imaging
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Viral Proteins/ultrastructure
- Virus Integration
Collapse
Affiliation(s)
- Michał S Barski
- Imperial College London, St Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, W2 1PG, UK
| | - Jordan J Minnell
- Imperial College London, St Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, W2 1PG, UK
| | - Zuzana Hodakova
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Peter Cherepanov
- Imperial College London, St Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, W2 1PG, UK
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Goedele N Maertens
- Imperial College London, St Mary's Hospital, Department of Infectious Disease, Section of Virology, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
6
|
Ahmed I, Akram Z, Sahar MSU, Iqbal HMN, Landsberg MJ, Munn AL. WITHDRAWN: Structural studies of vitrified biological proteins and macromolecules - A review on the microimaging aspects of cryo-electron microscopy. Int J Biol Macromol 2020:S0141-8130(20)33915-5. [PMID: 32710963 DOI: 10.1016/j.ijbiomac.2020.07.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/03/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia.
| | - Zain Akram
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| | - M Sana Ullah Sahar
- School of Engineering, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alan L Munn
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| |
Collapse
|
7
|
Xu J, Wang D, Gui M, Xiang Y. Structural assembly of the tailed bacteriophage ϕ29. Nat Commun 2019; 10:2366. [PMID: 31147544 PMCID: PMC6542822 DOI: 10.1038/s41467-019-10272-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/24/2019] [Indexed: 11/30/2022] Open
Abstract
The mature virion of the tailed bacteriophage ϕ29 is an ~33 MDa complex that contains more than 450 subunits of seven structural proteins assembling into a prolate head and a short non-contractile tail. Here, we report the near-atomic structures of the ϕ29 pre-genome packaging head (prohead), the mature virion and the genome-emptied virion. Structural comparisons suggest local rotation or oscillation of the head-tail connector upon DNA packaging and release. Termination of the DNA packaging occurs through pressure-dependent correlative positional and conformational changes in the connector. The funnel-shaped tail lower collar attaches the expanded narrow end of the connector and has a 180-Å long, 24-strand β barrel narrow stem tube that undergoes conformational changes upon genome release. The appendages form an interlocked assembly attaching the tail around the collar. The membrane active long loops at the distal end of the tail knob exit during the late stage of infection and form the cone-shaped tip of a largely hydrophobic helix barrel, prepared for membrane penetration. Mature particles of bacteriophage ϕ29 consist of a 33-MDa complex formed by over 450 subunits, assembled into a head and a short tail. Here, Xu et al. report the near-atomic structures of the ϕ29 prohead, the mature virion and the genome-emptied virion, providing insights into DNA packaging and release.
Collapse
Affiliation(s)
- Jingwei Xu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.,Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, CH-8093, Zürich, Switzerland
| | - Dianhong Wang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Miao Gui
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
8
|
Jesaitis AJ, Riesselman M, Taylor RM, Brumfield S. Enhanced Immunoaffinity Purification of Human Neutrophil Flavocytochrome B for Structure Determination by Electron Microscopy. Methods Mol Biol 2019; 1982:39-59. [PMID: 31172465 DOI: 10.1007/978-1-4939-9424-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Determination of the structure of human neutrophil (PMN) flavocytochrome b (Cytb) is a necessary step for the understanding of the structure-function essentials of NADPH oxidase activity. This understanding is crucial for structure-driven therapeutic approaches addressing control of inflammation and infection. Our work on purification and sample preparation of Cytb has facilitated progress toward the goal of structure determination. Here we describe exploiting immunoaffinity purification of Cytb for initial examination of its size and shape by a combination of classical and cryoelectron microscopic (EM) methods. For these evaluations, we used conventional negative-stain transmission electron microscopy (TEM) to examine both detergent-solubilized Cytb as single particles and Cytb in phosphatidylcholine reconstituted membrane vesicles as densely packed random, partially ordered, and subcrystalline arrays. In preliminary trials, we also examined single particles by cryoelectron microscopy (cryoEM) methods. We conclude that Cytb in detergent and reconstituted in membrane is a relatively compact, symmetrical protein of about 100 Å in maximum dimension. The negative stain, preliminary cryoEM, and crude molecular models suggest that the protein is probably a heterotetramer of two p22phox and gp91phox subunits in both detergent micelles and membrane vesicles. This exploratory study also suggests that high-resolution 2D electron microscopic approaches may be accessible to human material collected from single donors.
Collapse
Affiliation(s)
- Algirdas J Jesaitis
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.
| | - Marcia Riesselman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Ross M Taylor
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
- Universal Cells , Seattle, WA, USA
| | - Susan Brumfield
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
9
|
Advances in image processing for single-particle analysis by electron cryomicroscopy and challenges ahead. Curr Opin Struct Biol 2018; 52:127-145. [PMID: 30509756 DOI: 10.1016/j.sbi.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/26/2018] [Accepted: 11/17/2018] [Indexed: 12/20/2022]
Abstract
Electron cryomicroscopy (cryoEM) is essential for the study and functional understanding of non-crystalline macromolecules such as proteins. These molecules cannot be imaged using X-ray crystallography or other popular methods. CryoEM has been successfully used to visualize macromolecular complexes such as ribosomes, viruses, and ion channels. Determination of structural models of these at various conformational states leads to insight on how these molecules function. Recent advances in imaging technology have given cryoEM a scientific rebirth. As a result of these technological advances image processing and analysis have yielded molecular structures at atomic resolution. Nevertheless there continue to be challenges in image processing, and in this article we will touch on the most essential in order to derive an accurate three-dimensional model from noisy projection images. Traditional approaches, such as k-means clustering for class averaging, will be provided as background. We will then highlight new approaches for each image processing subproblem, including a 3D reconstruction method for asymmetric molecules using just two projection images and deep learning algorithms for automated particle picking.
Collapse
|
10
|
Tiwari SP, Tama F, Miyashita O. Searching for 3D structural models from a library of biological shapes using a few 2D experimental images. BMC Bioinformatics 2018; 19:320. [PMID: 30208849 PMCID: PMC6134691 DOI: 10.1186/s12859-018-2358-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 09/03/2018] [Indexed: 01/08/2023] Open
Abstract
Background Advancements in biophysical experimental techniques have pushed the limits in terms of the types of phenomena that can be characterized, the amount of data that can be produced and the resolution at which we can visualize them. Single particle techniques such as Electron Microscopy (EM) and X-ray free electron laser (XFEL) scattering require a large number of 2D images collected to resolve three-dimensional (3D) structures. In this study, we propose a quick strategy to retrieve potential 3D shapes, as low-resolution models, from a few 2D experimental images by searching a library of 2D projection images generated from existing 3D structures. Results We developed the protocol to assemble a non-redundant set of 3D shapes for generating the 2D image library, and to retrieve potential match 3D shapes for query images, using EM data as a test. In our strategy, we disregard differences in volume size, giving previously unknown structures and conformations a greater number of 3D biological shapes as possible matches. We tested the strategy using images from three EM models as query images for searches against a library of 22750 2D projection images generated from 250 random EM models. We found that our ability to identify 3D shapes that match the query images depends on how complex the outline of the 2D shapes are and whether they are represented in the search image library. Conclusions Through our computational method, we are able to quickly retrieve a 3D shape from a few 2D projection images. Our approach has the potential for exploring other types of 2D single particle structural data such as from XFEL scattering experiments, for providing a tool to interpret low-resolution data that may be insufficient for 3D reconstruction, and for estimating the mixing of states or conformations that could exist in such experimental data. Electronic supplementary material The online version of this article (10.1186/s12859-018-2358-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandhya P Tiwari
- Computational Structural Biology Unit, RIKEN Center for Computational Science, Kobe, Japan
| | - Florence Tama
- Computational Structural Biology Unit, RIKEN Center for Computational Science, Kobe, Japan. .,Graduate School of Science, Department of Physics & Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.
| | - Osamu Miyashita
- Computational Structural Biology Unit, RIKEN Center for Computational Science, Kobe, Japan
| |
Collapse
|
11
|
Wang H, Chen X, Wang D, Yao C, Wang Q, Xie J, Shi X, Xiang Y, Liu W, Zhang L. Epitope-focused immunogens against the CD4-binding site of HIV-1 envelope protein induce neutralizing antibodies against auto- and heterologous viruses. J Biol Chem 2017; 293:830-846. [PMID: 29187598 DOI: 10.1074/jbc.m117.816447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
Recent discoveries of broadly neutralizing antibodies (bnAbs) in HIV-1-infected individuals have led to the identification of several major "vulnerable sites" on the HIV-1 envelope (Env) glycoprotein. These sites have provided precise targets for HIV-1 vaccine development, but identifying and utilizing many of these targets remain technically challenging. Using a yeast surface display-based approach, we sought to identify epitope-focused antigenic domains (EADs) containing one of the "vulnerable sites," the CD4-binding site (CD4bs), through screening and selection of a combinatorial antigen library of the HIV-1 envelope glycoprotein with the CD4bs bnAb VRC01. We isolated multiple EADs and found that their trimeric forms have biochemical and structural features that preferentially bind and activate B cells that express VRC01 in vitro More importantly, these EADs could induce detectable levels of neutralizing antibodies against genetically related autologous and heterologous subtype B viruses in guinea pigs. Our results demonstrate that an epitope-focused approach involving a screen of a combinatorial antigen library is feasible. The EADs identified here represent a promising collection of possible targets in the rational design of HIV-1 vaccines and lay the foundation for harnessing the specific antigenicity of CD4bs for protective immunogenicity in vivo.
Collapse
Affiliation(s)
- Hua Wang
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Xiangjun Chen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, and
| | - Dianhong Wang
- Beijing Advanced Innovation Center for Structural Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Yao
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Qian Wang
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Jiayu Xie
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Xuanling Shi
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structural Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, and
| | - Linqi Zhang
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine,
| |
Collapse
|
12
|
Hu G, Taylor DW, Liu J, Taylor KA. Identification of interfaces involved in weak interactions with application to F-actin-aldolase rafts. J Struct Biol 2017; 201:199-209. [PMID: 29146292 DOI: 10.1016/j.jsb.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
Abstract
Macromolecular interactions occur with widely varying affinities. Strong interactions form well defined interfaces but weak interactions are more dynamic and variable. Weak interactions can collectively lead to large structures such as microvilli via cooperativity and are often the precursors of much stronger interactions, e.g. the initial actin-myosin interaction during muscle contraction. Electron tomography combined with subvolume alignment and classification is an ideal method for the study of weak interactions because a 3-D image is obtained for the individual interactions, which subsequently are characterized collectively. Here we describe a method to characterize heterogeneous F-actin-aldolase interactions in 2-D rafts using electron tomography. By forming separate averages of the two constituents and fitting an atomic structure to each average, together with the alignment information which relates the raw motif to the average, an atomic model of each crosslink is determined and a frequency map of contact residues is computed. The approach should be applicable to any large structure composed of constituents that interact weakly and heterogeneously.
Collapse
Affiliation(s)
- Guiqing Hu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, United States
| | - Dianne W Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, United States
| | - Jun Liu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, United States
| | - Kenneth A Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, United States.
| |
Collapse
|
13
|
Cryo-EM structure of the bacteriophage T4 isometric head at 3.3-Å resolution and its relevance to the assembly of icosahedral viruses. Proc Natl Acad Sci U S A 2017; 114:E8184-E8193. [PMID: 28893988 DOI: 10.1073/pnas.1708483114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The 3.3-Å cryo-EM structure of the 860-Å-diameter isometric mutant bacteriophage T4 capsid has been determined. WT T4 has a prolate capsid characterized by triangulation numbers (T numbers) Tend = 13 for end caps and Tmid = 20 for midsection. A mutation in the major capsid protein, gp23, produced T=13 icosahedral capsids. The capsid is stabilized by 660 copies of the outer capsid protein, Soc, which clamp adjacent gp23 hexamers. The occupancies of Soc molecules are proportional to the size of the angle between the planes of adjacent hexameric capsomers. The angle between adjacent hexameric capsomers is greatest around the fivefold vertices, where there is the largest deviation from a planar hexagonal array. Thus, the Soc molecules reinforce the structure where there is the greatest strain in the gp23 hexagonal lattice. Mutations that change the angles between adjacent capsomers affect the positions of the pentameric vertices, resulting in different triangulation numbers in bacteriophage T4. The analysis of the T4 mutant head assembly gives guidance to how other icosahedral viruses reproducibly assemble into capsids with a predetermined T number, although the influence of scaffolding proteins is also important.
Collapse
|
14
|
Jayakanthan S, Braiterman LT, Hasan NM, Unger VM, Lutsenko S. Human copper transporter ATP7B (Wilson disease protein) forms stable dimers in vitro and in cells. J Biol Chem 2017; 292:18760-18774. [PMID: 28842499 DOI: 10.1074/jbc.m117.807263] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/21/2017] [Indexed: 11/06/2022] Open
Abstract
ATP7B is a copper-transporting P1B-type ATPase (Cu-ATPase) with an essential role in human physiology. Mutations in ATP7B cause the potentially fatal Wilson disease, and changes in ATP7B expression are observed in several cancers. Despite its physiologic importance, the biochemical information about ATP7B remains limited because of a complex multidomain organization of the protein. By analogy with the better characterized prokaryotic Cu-ATPases, ATP7B is assumed to be a single-chain monomer. We show that in eukaryotic cells, human ATP7B forms dimers that can be purified following solubilization. Deletion of the four N-terminal metal-binding domains, characteristic for human ATP7B, does not disrupt dimerization, i.e. the dimer interface is formed by the domains that are conserved among Cu-ATPases. Unlike the full-length ATP7B, which is targeted to the trans-Golgi network, 1-4ΔMBD-7B is targeted primarily to vesicles. This result and the analysis of differentially tagged ATP7B variants indicate that the dimeric structure is retained during ATP7B trafficking between the intracellular compartments. Purified dimeric species of 1-4ΔMBD-7B were characterized by a negative stain electron microscopy in the presence of ADP/MgCl2 Single-particle analysis yielded a low-resolution 3D model that provides the first insight into an overall architecture of a human Cu-ATPase, positions of the main domains, and a dimer interface.
Collapse
Affiliation(s)
| | - Lelita T Braiterman
- Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | | | - Vinzenz M Unger
- the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | | |
Collapse
|
15
|
Gakh O, Ranatunga W, Galeano BK, Smith DS, Thompson JR, Isaya G. Defining the Architecture of the Core Machinery for the Assembly of Fe-S Clusters in Human Mitochondria. Methods Enzymol 2017; 595:107-160. [PMID: 28882199 DOI: 10.1016/bs.mie.2017.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although Fe-S clusters may assemble spontaneously from elemental iron and sulfur in protein-free systems, the potential toxicity of free Fe2+, Fe3+, and S2- ions in aerobic environments underscores the requirement for specialized proteins to oversee the safe assembly of Fe-S clusters in living cells. Prokaryotes first developed multiprotein systems for Fe-S cluster assembly, from which mitochondria later derived their own system and became the main Fe-S cluster suppliers for eukaryotic cells. Early studies in yeast and human mitochondria indicated that Fe-S cluster assembly in eukaryotes is centered around highly conserved Fe-S proteins (human ISCU) that serve as scaffolds upon which new Fe-S clusters are assembled from (i) elemental sulfur, provided by a pyridoxal phosphate-dependent cysteine desulfurase (human NFS1) and its stabilizing-binding partner (human ISD11), and (ii) elemental iron, provided by an iron-binding protein of the frataxin family (human FXN). Further studies revealed that all of these proteins could form stable complexes that could reach molecular masses of megadaltons. However, the protein-protein interaction surfaces, catalytic mechanisms, and overall architecture of these macromolecular machines remained undefined for quite some time. The delay was due to difficulties inherent in reconstituting these very large multiprotein complexes in vitro or isolating them from cells in sufficient quantities to enable biochemical and structural studies. Here, we describe approaches we developed to reconstitute the human Fe-S cluster assembly machinery in Escherichia coli and to define its remarkable architecture.
Collapse
Affiliation(s)
| | | | - Belinda K Galeano
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | | | | | - Grazia Isaya
- Mayo Clinic, Rochester, MN, United States; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States; Mayo Clinic Children's Research Center, Rochester, MN, United States.
| |
Collapse
|
16
|
Galeano BK, Ranatunga W, Gakh O, Smith DY, Thompson JR, Isaya G. Zinc and the iron donor frataxin regulate oligomerization of the scaffold protein to form new Fe-S cluster assembly centers. Metallomics 2017; 9:773-801. [PMID: 28548666 PMCID: PMC5552075 DOI: 10.1039/c7mt00089h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
Early studies of the bacterial Fe-S cluster assembly system provided structural details for how the scaffold protein and the cysteine desulfurase interact. This work and additional work on the yeast and human systems elucidated a conserved mechanism for sulfur donation but did not provide any conclusive insights into the mechanism for iron delivery from the iron donor, frataxin, to the scaffold. We previously showed that oligomerization is a mechanism by which yeast frataxin (Yfh1) can promote assembly of the core machinery for Fe-S cluster synthesis both in vitro and in cells, in such a manner that the scaffold protein, Isu1, can bind to Yfh1 independent of the presence of the cysteine desulfurase, Nfs1. Here, in the absence of Yfh1, Isu1 was found to exist in two forms, one mostly monomeric with limited tendency to dimerize, and one with a strong propensity to oligomerize. Whereas the monomeric form is stabilized by zinc, the loss of zinc promotes formation of dimer and higher order oligomers. However, upon binding to oligomeric Yfh1, both forms take on a similar symmetrical trimeric configuration that places the Fe-S cluster coordinating residues of Isu1 in close proximity of iron-binding residues of Yfh1. This configuration is suitable for docking of Nfs1 in a manner that provides a structural context for coordinate iron and sulfur donation to the scaffold. Moreover, distinct structural features suggest that in physiological conditions the zinc-regulated abundance of monomeric vs. oligomeric Isu1 yields [Yfh1]·[Isu1] complexes with different Isu1 configurations that afford unique functional properties for Fe-S cluster assembly and delivery.
Collapse
Affiliation(s)
- B. K. Galeano
- Department of Pediatric & Adolescent Medicine , Mayo Clinic , Rochester , Minnesota , USA . ;
- Department of Biochemistry & Molecular Biology , Mayo Clinic , Rochester , Minnesota , USA
- Mayo Clinic Graduate School of Biomedical Sciences , Rochester , Minnesota , USA
| | - W. Ranatunga
- Department of Pediatric & Adolescent Medicine , Mayo Clinic , Rochester , Minnesota , USA . ;
- Mayo Clinic Children's Research Center , Rochester , Minnesota , USA
| | - O. Gakh
- Department of Pediatric & Adolescent Medicine , Mayo Clinic , Rochester , Minnesota , USA . ;
- Mayo Clinic Children's Research Center , Rochester , Minnesota , USA
| | - D. Y. Smith
- Department of Pediatric & Adolescent Medicine , Mayo Clinic , Rochester , Minnesota , USA . ;
- Mayo Clinic Children's Research Center , Rochester , Minnesota , USA
| | - J. R. Thompson
- Department of Biochemistry & Molecular Biology , Mayo Clinic , Rochester , Minnesota , USA
| | - G. Isaya
- Department of Pediatric & Adolescent Medicine , Mayo Clinic , Rochester , Minnesota , USA . ;
- Department of Biochemistry & Molecular Biology , Mayo Clinic , Rochester , Minnesota , USA
- Mayo Clinic Children's Research Center , Rochester , Minnesota , USA
| |
Collapse
|
17
|
Cabra V, Murayama T, Samsó M. Ultrastructural Analysis of Self-Associated RyR2s. Biophys J 2017; 110:2651-2662. [PMID: 27332123 DOI: 10.1016/j.bpj.2016.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022] Open
Abstract
In heart, type-2 ryanodine receptor (RyR2) forms discrete supramolecular clusters in the sarcoplasmic reticulum known as calcium release units (CRUs), which are responsible for most of the Ca(2+) released for muscle contraction. To learn about the substructure of the CRU, we sought to determine whether RyR2s have the ability to self-associate in the absence of other factors and if so, whether they do it in a specific manner. Purified RyR2 was negatively stained and imaged on the transmission electron microscope, and RyR2 particles closely associated were further analyzed using bias-free multivariate statistical analysis and classification. The resulting two-dimensional averages show that RyR2s can interact in two rigid, reproducible configurations: "adjoining", with two RyR2s alongside each other, and "oblique", with two partially overlapped RyR2s forming an angle of 12°. The two configurations are nearly identical under two extreme physiological Ca(2+) concentrations. Pseudo-atomic models for these two interactions indicate that the adjoining interaction involves contacts between the P1, SPRY1 and the helical domains. The oblique interaction is mediated by extensive contacts between the SPRY1 domains (domains 9) and P1 domains (domains 10) of both RyR2s and not through domain 6 as previously thought; in addition its asymmetric interface imposes steric constrains that inhibit the growth of RyR2 as a checkerboard, which is the configuration usually assumed, and generates new configurations, i.e., "branched" and "interlocked". This first, to our knowledge, structural detailed analysis of the inter-RyR2 interactions helps to understand important morphological and functional aspects of the CRU in the context of cardiac EC coupling.
Collapse
Affiliation(s)
- Vanessa Cabra
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
18
|
Gordon JE, Costa TRD, Patel RS, Gonzalez-Rivera C, Sarkar MK, Orlova EV, Waksman G, Christie PJ. Use of chimeric type IV secretion systems to define contributions of outer membrane subassemblies for contact-dependent translocation. Mol Microbiol 2017; 105:273-293. [PMID: 28452085 DOI: 10.1111/mmi.13700] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 01/26/2023]
Abstract
Recent studies have shown that conjugation systems of Gram-negative bacteria are composed of distinct inner and outer membrane core complexes (IMCs and OMCCs, respectively). Here, we characterized the OMCC by focusing first on a cap domain that forms a channel across the outer membrane. Strikingly, the OMCC caps of the Escherichia coli pKM101 Tra and Agrobacterium tumefaciens VirB/VirD4 systems are completely dispensable for substrate transfer, but required for formation of conjugative pili. The pKM101 OMCC cap and extended pilus also are dispensable for activation of a Pseudomonas aeruginosa type VI secretion system (T6SS). Chimeric conjugation systems composed of the IMCpKM101 joined to OMCCs from the A. tumefaciens VirB/VirD4, E. coli R388 Trw, and Bordetella pertussis Ptl systems support conjugative DNA transfer in E. coli and trigger P. aeruginosa T6SS killing, but not pilus production. The A. tumefaciens VirB/VirD4 OMCC, solved by transmission electron microscopy, adopts a cage structure similar to the pKM101 OMCC. The findings establish that OMCCs are highly structurally and functionally conserved - but also intrinsically conformationally flexible - scaffolds for translocation channels. Furthermore, the OMCC cap and a pilus tip protein coregulate pilus extension but are not required for channel assembly or function.
Collapse
Affiliation(s)
- Jay E Gordon
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Tiago R D Costa
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Roosheel S Patel
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Christian Gonzalez-Rivera
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Mayukh K Sarkar
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Elena V Orlova
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| |
Collapse
|
19
|
Liu X, Li M, Xia X, Li X, Chen Z. Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure. Nature 2017; 544:440-445. [PMID: 28424519 DOI: 10.1038/nature22036] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
Chromatin remodellers are helicase-like, ATP-dependent enzymes that alter chromatin structure and nucleosome positions to allow regulatory proteins access to DNA. Here we report the cryo-electron microscopy structure of chromatin remodeller Switch/sucrose non-fermentable (SWI2/SNF2) from Saccharomyces cerevisiae bound to the nucleosome. The structure shows that the two core domains of Snf2 are realigned upon nucleosome binding, suggesting activation of the enzyme. The core domains contact each other through two induced Brace helices, which are crucial for coupling ATP hydrolysis to chromatin remodelling. Snf2 binds to the phosphate backbones of one DNA gyre of the nucleosome mainly through its helicase motifs within the major domain cleft, suggesting a conserved mechanism of substrate engagement across different remodellers. Snf2 contacts the second DNA gyre via a positively charged surface, providing a mechanism to anchor the remodeller at a fixed position of the nucleosome. Snf2 locally deforms nucleosomal DNA at the site of binding, priming the substrate for the remodelling reaction. Together, these findings provide mechanistic insights into chromatin remodelling.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Meijing Li
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Xian Xia
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueming Li
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Zhucheng Chen
- Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Mosalaganti S, Keller J, Altenfeld A, Winzker M, Rombaut P, Saur M, Petrovic A, Wehenkel A, Wohlgemuth S, Müller F, Maffini S, Bange T, Herzog F, Waldmann H, Raunser S, Musacchio A. Structure of the RZZ complex and molecular basis of its interaction with Spindly. J Cell Biol 2017; 216:961-981. [PMID: 28320825 PMCID: PMC5379955 DOI: 10.1083/jcb.201611060] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/20/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022] Open
Abstract
The Rod–Zw10–Zwilch (RZZ) complex assembles as a fibrous corona on kinetochores before microtubule attachment during mitotic spindle formation. Mosalaganti et al. provide new structural insight into the Spindly–RZZ complex that suggests that it resembles a dynein adaptor–cargo pair in the kinetochore corona. Kinetochores are macromolecular assemblies that connect chromosomes to spindle microtubules (MTs) during mitosis. The metazoan-specific ≈800-kD ROD–Zwilch–ZW10 (RZZ) complex builds a fibrous corona that assembles on mitotic kinetochores before MT attachment to promote chromosome alignment and robust spindle assembly checkpoint signaling. In this study, we combine biochemical reconstitutions, single-particle electron cryomicroscopy, cross-linking mass spectrometry, and structural modeling to build a complete model of human RZZ. We find that RZZ is structurally related to self-assembling cytosolic coat scaffolds that mediate membrane cargo trafficking, including Clathrin, Sec13–Sec31, and αβ’ε-COP. We show that Spindly, a dynein adaptor, is related to BicD2 and binds RZZ directly in a farnesylation-dependent but membrane-independent manner. Through a targeted chemical biology approach, we identify ROD as the Spindly farnesyl receptor. Our results suggest that RZZ is dynein’s cargo at human kinetochores.
Collapse
Affiliation(s)
- Shyamal Mosalaganti
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Jenny Keller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Anika Altenfeld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Michael Winzker
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Pascaline Rombaut
- Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Michael Saur
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Annemarie Wehenkel
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Franziska Müller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Franz Herzog
- Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.,Department of Chemistry and Chemical Biology, Technical University Dortmund, 44227 Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany .,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
21
|
Cannone G, Visentin S, Palud A, Henneke G, Spagnolo L. Structure of an octameric form of the minichromosome maintenance protein from the archaeon Pyrococcus abyssi. Sci Rep 2017; 7:42019. [PMID: 28176822 PMCID: PMC5296750 DOI: 10.1038/srep42019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Cell division is a complex process that requires precise duplication of genetic material. Duplication is concerted by replisomes. The Minichromosome Maintenance (MCM) replicative helicase is a crucial component of replisomes. Eukaryotic and archaeal MCM proteins are highly conserved. In fact, archaeal MCMs are powerful tools for elucidating essential features of MCM function. However, while eukaryotic MCM2-7 is a heterocomplex made of different polypeptide chains, the MCM complexes of many Archaea form homohexamers from a single gene product. Moreover, some archaeal MCMs are polymorphic, and both hexameric and heptameric architectures have been reported for the same polypeptide. Here, we present the structure of the archaeal MCM helicase from Pyrococcus abyssi in its single octameric ring assembly. To our knowledge, this is the first report of a full-length octameric MCM helicase.
Collapse
Affiliation(s)
- Giuseppe Cannone
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
- School of Biological Sciences and Max Born Crescent, Edinburgh EH9 3JR, UK
- Centre for Science at extreme conditions, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3JR, UK
| | - Silvia Visentin
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
- School of Biological Sciences and Max Born Crescent, Edinburgh EH9 3JR, UK
- ISIS neutron source, Science and Technologies Research Council, Rutherford Appleton Laboratories, Harwell, OX11 0QX United Kingdom
| | - Adeline Palud
- IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, ZI de la pointe du diable CS 10070 29280 Plouzané, France
- Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
| | - Ghislaine Henneke
- IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, ZI de la pointe du diable CS 10070 29280 Plouzané, France
- Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
| | - Laura Spagnolo
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
22
|
Pyburn TM, Foegeding NJ, González-Rivera C, McDonald NA, Gould KL, Cover TL, Ohi MD. Structural organization of membrane-inserted hexamers formed by Helicobacter pylori VacA toxin. Mol Microbiol 2016; 102:22-36. [PMID: 27309820 PMCID: PMC5035229 DOI: 10.1111/mmi.13443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2016] [Indexed: 01/08/2023]
Abstract
Helicobacter pylori colonizes the human stomach and is a potential cause of peptic ulceration or gastric adenocarcinoma. H. pylori secretes a pore-forming toxin known as vacuolating cytotoxin A (VacA). The 88 kDa secreted VacA protein, composed of an N-terminal p33 domain and a C-terminal p55 domain, assembles into water-soluble oligomers. The structural organization of membrane-bound VacA has not been characterized in any detail and the role(s) of specific VacA domains in membrane binding and insertion are unclear. We show that membrane-bound VacA organizes into hexameric oligomers. Comparison of the two-dimensional averages of membrane-bound and soluble VacA hexamers generated using single particle electron microscopy reveals a structural difference in the central region of the oligomers (corresponding to the p33 domain), suggesting that membrane association triggers a structural change in the p33 domain. Analyses of the isolated p55 domain and VacA variants demonstrate that while the p55 domain can bind membranes, the p33 domain is required for membrane insertion. Surprisingly, neither VacA oligomerization nor the presence of putative transmembrane GXXXG repeats in the p33 domain is required for membrane insertion. These findings provide new insights into the process by which VacA binds and inserts into the lipid bilayer to form membrane channels.
Collapse
Affiliation(s)
- Tasia M Pyburn
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Nora J Foegeding
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Christian González-Rivera
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232.
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232.
| |
Collapse
|
23
|
Gakh O, Ranatunga W, Smith DY, Ahlgren EC, Al-Karadaghi S, Thompson JR, Isaya G. Architecture of the Human Mitochondrial Iron-Sulfur Cluster Assembly Machinery. J Biol Chem 2016; 291:21296-21321. [PMID: 27519411 PMCID: PMC5076535 DOI: 10.1074/jbc.m116.738542] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/10/2016] [Indexed: 11/06/2022] Open
Abstract
Fe-S clusters, essential cofactors needed for the activity of many different enzymes, are assembled by conserved protein machineries inside bacteria and mitochondria. As the architecture of the human machinery remains undefined, we co-expressed in Escherichia coli the following four proteins involved in the initial step of Fe-S cluster synthesis: FXN42-210 (iron donor); [NFS1]·[ISD11] (sulfur donor); and ISCU (scaffold upon which new clusters are assembled). We purified a stable, active complex consisting of all four proteins with 1:1:1:1 stoichiometry. Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional model of the complex with ∼14 Å resolution. Molecular dynamics flexible fitting of protein structures docked into the EM map of the model revealed a [FXN42-210]24·[NFS1]24·[ISD11]24·[ISCU]24 complex, consistent with the measured 1:1:1:1 stoichiometry of its four components. The complex structure fulfills distance constraints obtained from chemical cross-linking of the complex at multiple recurring interfaces, involving hydrogen bonds, salt bridges, or hydrophobic interactions between conserved residues. The complex consists of a central roughly cubic [FXN42-210]24·[ISCU]24 sub-complex with one symmetric ISCU trimer bound on top of one symmetric FXN42-210 trimer at each of its eight vertices. Binding of 12 [NFS1]2·[ISD11]2 sub-complexes to the surface results in a globular macromolecule with a diameter of ∼15 nm and creates 24 Fe-S cluster assembly centers. The organization of each center recapitulates a previously proposed conserved mechanism for sulfur donation from NFS1 to ISCU and reveals, for the first time, a path for iron donation from FXN42-210 to ISCU.
Collapse
Affiliation(s)
- Oleksandr Gakh
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry Molecular Biology, Mayo Clinic Children's Research Center, and
| | - Wasantha Ranatunga
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry Molecular Biology, Mayo Clinic Children's Research Center, and
| | - Douglas Y Smith
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry Molecular Biology, Mayo Clinic Children's Research Center, and
| | - Eva-Christina Ahlgren
- the Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Salam Al-Karadaghi
- the Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - James R Thompson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905 and
| | - Grazia Isaya
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry Molecular Biology, Mayo Clinic Children's Research Center, and
| |
Collapse
|
24
|
Coscia F, Estrozi LF, Hans F, Malet H, Noirclerc-Savoye M, Schoehn G, Petosa C. Fusion to a homo-oligomeric scaffold allows cryo-EM analysis of a small protein. Sci Rep 2016; 6:30909. [PMID: 27485862 PMCID: PMC4971460 DOI: 10.1038/srep30909] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/10/2016] [Indexed: 12/30/2022] Open
Abstract
Recent technical advances have revolutionized the field of cryo-electron microscopy (cryo-EM). However, most monomeric proteins remain too small (<100 kDa) for cryo-EM analysis. To overcome this limitation, we explored a strategy whereby a monomeric target protein is genetically fused to a homo-oligomeric scaffold protein and the junction optimized to allow the target to adopt the scaffold symmetry, thereby generating a chimeric particle suitable for cryo-EM. To demonstrate the concept, we fused maltose-binding protein (MBP), a 40 kDa monomer, to glutamine synthetase, a dodecamer formed by two hexameric rings. Chimeric constructs with different junction lengths were screened by biophysical analysis and negative-stain EM. The optimal construct yielded a cryo-EM reconstruction that revealed the MBP structure at sub-nanometre resolution. These findings illustrate the feasibility of using homo-oligomeric scaffolds to enable cryo-EM analysis of monomeric proteins, paving the way for applying this strategy to challenging structures resistant to crystallographic and NMR analysis.
Collapse
Affiliation(s)
- Francesca Coscia
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Leandro F Estrozi
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Fabienne Hans
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Hélène Malet
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | | | - Guy Schoehn
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Carlo Petosa
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| |
Collapse
|
25
|
Xu J, Gui M, Wang D, Xiang Y. The bacteriophage ϕ29 tail possesses a pore-forming loop for cell membrane penetration. Nature 2016; 534:544-7. [PMID: 27309813 DOI: 10.1038/nature18017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/14/2016] [Indexed: 12/29/2022]
Abstract
Most bacteriophages are tailed bacteriophages with an isometric or a prolate head attached to a long contractile, long non-contractile, or short non-contractile tail. The tail is a complex machine that plays a central role in host cell recognition and attachment, cell wall and membrane penetration, and viral genome ejection. The mechanisms involved in the penetration of the inner host cell membrane by bacteriophage tails are not well understood. Here we describe structural and functional studies of the bacteriophage ϕ29 tail knob protein gene product 9 (gp9). The 2.0 Å crystal structure of gp9 shows that six gp9 molecules form a hexameric tube structure with six flexible hydrophobic loops blocking one end of the tube before DNA ejection. Sequence and structural analyses suggest that the loops in the tube could be membrane active. Further biochemical assays and electron microscopy structural analyses show that the six hydrophobic loops in the tube exit upon DNA ejection and form a channel that spans the lipid bilayer of the membrane and allows the release of the bacteriophage genomic DNA, suggesting that cell membrane penetration involves a pore-forming mechanism similar to that of certain non-enveloped eukaryotic viruses. A search of other phage tail proteins identified similar hydrophobic loops, which indicates that a common mechanism might be used for membrane penetration by prokaryotic viruses. These findings suggest that although prokaryotic and eukaryotic viruses use apparently very different mechanisms for infection, they have evolved similar mechanisms for breaching the cell membrane.
Collapse
Affiliation(s)
- Jingwei Xu
- Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Miao Gui
- Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dianhong Wang
- Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ye Xiang
- Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Ranatunga W, Gakh O, Galeano BK, Smith DY, Söderberg CAG, Al-Karadaghi S, Thompson JR, Isaya G. Architecture of the Yeast Mitochondrial Iron-Sulfur Cluster Assembly Machinery: THE SUB-COMPLEX FORMED BY THE IRON DONOR, Yfh1 PROTEIN, AND THE SCAFFOLD, Isu1 PROTEIN. J Biol Chem 2016; 291:10378-98. [PMID: 26941001 PMCID: PMC4858984 DOI: 10.1074/jbc.m115.712414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/26/2016] [Indexed: 12/18/2022] Open
Abstract
The biosynthesis of Fe-S clusters is a vital process involving the delivery of elemental iron and sulfur to scaffold proteins via molecular interactions that are still poorly defined. We reconstituted a stable, functional complex consisting of the iron donor, Yfh1 (yeast frataxin homologue 1), and the Fe-S cluster scaffold, Isu1, with 1:1 stoichiometry, [Yfh1]24·[Isu1]24 Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional reconstruction of this complex at a resolution of ∼17 Å. In addition, via chemical cross-linking, limited proteolysis, and mass spectrometry, we identified protein-protein interaction surfaces within the complex. The data together reveal that [Yfh1]24·[Isu1]24 is a roughly cubic macromolecule consisting of one symmetric Isu1 trimer binding on top of one symmetric Yfh1 trimer at each of its eight vertices. Furthermore, molecular modeling suggests that two subunits of the cysteine desulfurase, Nfs1, may bind symmetrically on top of two adjacent Isu1 trimers in a manner that creates two putative [2Fe-2S] cluster assembly centers. In each center, conserved amino acids known to be involved in sulfur and iron donation by Nfs1 and Yfh1, respectively, are in close proximity to the Fe-S cluster-coordinating residues of Isu1. We suggest that this architecture is suitable to ensure concerted and protected transfer of potentially toxic iron and sulfur atoms to Isu1 during Fe-S cluster assembly.
Collapse
Affiliation(s)
- Wasantha Ranatunga
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry and Molecular Biology, and the Mayo Clinic Children's Research Center, and
| | - Oleksandr Gakh
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry and Molecular Biology, and the Mayo Clinic Children's Research Center, and
| | - Belinda K Galeano
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry and Molecular Biology, and the Mayo Clinic Children's Research Center, and
| | - Douglas Y Smith
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry and Molecular Biology, and the Mayo Clinic Children's Research Center, and
| | - Christopher A G Söderberg
- the Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Salam Al-Karadaghi
- the Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - James R Thompson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905 and
| | - Grazia Isaya
- From the Departments of Pediatric and Adolescent Medicine and Biochemistry and Molecular Biology, and the Mayo Clinic Children's Research Center, and
| |
Collapse
|
27
|
Couoh-Cardel S, Hsueh YC, Wilkens S, Movileanu L. Yeast V-ATPase Proteolipid Ring Acts as a Large-conductance Transmembrane Protein Pore. Sci Rep 2016; 6:24774. [PMID: 27098228 PMCID: PMC4838861 DOI: 10.1038/srep24774] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/04/2016] [Indexed: 12/12/2022] Open
Abstract
The vacuolar H+ -ATPase (V-ATPase) is a rotary motor enzyme that acidifies intracellular organelles and the extracellular milieu in some tissues. Besides its canonical proton-pumping function, V-ATPase’s membrane sector, Vo, has been implicated in non-canonical functions including membrane fusion and neurotransmitter release. Here, we report purification and biophysical characterization of yeast V-ATPase c subunit ring (c-ring) using electron microscopy and single-molecule electrophysiology. We find that yeast c-ring forms dimers mediated by the c subunits’ cytoplasmic loops. Electrophysiology measurements of the c-ring reconstituted into a planar lipid bilayer revealed a large unitary conductance of ~8.3 nS. Thus, the data support a role of V-ATPase c-ring in membrane fusion and neuronal communication.
Collapse
Affiliation(s)
- Sergio Couoh-Cardel
- Department of Biochemistry &Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | - Yi-Ching Hsueh
- Department of Physics, Syracuse University, 201 Physics Bldg., Syracuse, New York 13244-1130, USA
| | - Stephan Wilkens
- Department of Biochemistry &Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Bldg., Syracuse, New York 13244-1130, USA.,Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA.,The Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York 13244-1200, USA
| |
Collapse
|
28
|
Chaston JJ, Smits C, Aragão D, Wong ASW, Ahsan B, Sandin S, Molugu SK, Molugu SK, Bernal RA, Stock D, Stewart AG. Structural and Functional Insights into the Evolution and Stress Adaptation of Type II Chaperonins. Structure 2016; 24:364-74. [PMID: 26853941 DOI: 10.1016/j.str.2015.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Chaperonins are essential biological complexes assisting protein folding in all kingdoms of life. Whereas homooligomeric bacterial GroEL binds hydrophobic substrates non-specifically, the heterooligomeric eukaryotic CCT binds specifically to distinct classes of substrates. Sulfolobales, which survive in a wide range of temperatures, have evolved three different chaperonin subunits (α, β, γ) that form three distinct complexes tailored for different substrate classes at cold, normal, and elevated temperatures. The larger octadecameric β complexes cater for substrates under heat stress, whereas smaller hexadecameric αβ complexes prevail under normal conditions. The cold-shock complex contains all three subunits, consistent with greater substrate specificity. Structural analysis using crystallography and electron microscopy reveals the geometry of these complexes and shows a novel arrangement of the α and β subunits in the hexadecamer enabling incorporation of the γ subunit.
Collapse
Affiliation(s)
- Jessica J Chaston
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Callum Smits
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - David Aragão
- Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Andrew S W Wong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 637551
| | - Bilal Ahsan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technological University, Singapore 637551; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 637551
| | - Sudheer K Molugu
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sanjay K Molugu
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ricardo A Bernal
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Daniela Stock
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
29
|
López-Perrote A, Castaño R, Melero R, Zamarro T, Kurosawa H, Ohnishi T, Uchiyama A, Aoyagi K, Buchwald G, Kataoka N, Yamashita A, Llorca O. Human nonsense-mediated mRNA decay factor UPF2 interacts directly with eRF3 and the SURF complex. Nucleic Acids Res 2016; 44:1909-23. [PMID: 26740584 PMCID: PMC4770235 DOI: 10.1093/nar/gkv1527] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/22/2015] [Indexed: 01/01/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an mRNA degradation pathway that regulates gene expression and mRNA quality. A complex network of macromolecular interactions regulates NMD initiation, which is only partially understood. According to prevailing models, NMD begins by the assembly of the SURF (SMG1-UPF1-eRF1-eRF3) complex at the ribosome, followed by UPF1 activation by additional factors such as UPF2 and UPF3. Elucidating the interactions between NMD factors is essential to comprehend NMD, and here we demonstrate biochemically and structurally the interaction between human UPF2 and eukaryotic release factor 3 (eRF3). In addition, we find that UPF2 associates with SURF and ribosomes in cells, in an UPF3-independent manner. Binding assays using a collection of UPF2 truncated variants reveal that eRF3 binds to the C-terminal part of UPF2. This region of UPF2 is partially coincident with the UPF3-binding site as revealed by electron microscopy of the UPF2-eRF3 complex. Accordingly, we find that the interaction of UPF2 with UPF3b interferes with the assembly of the UPF2-eRF3 complex, and that UPF2 binds UPF3b more strongly than eRF3. Together, our results highlight the role of UPF2 as a platform for the transient interactions of several NMD factors, including several components of SURF.
Collapse
Affiliation(s)
- Andrés López-Perrote
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Raquel Castaño
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Roberto Melero
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Teresa Zamarro
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Hitomi Kurosawa
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Tetsuo Ohnishi
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Akiko Uchiyama
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Kyoko Aoyagi
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Gretel Buchwald
- Max Planck Institute of Biochemistry, Department of Structural Cell Biology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Naoyuki Kataoka
- Medical Innovation Center, Laboratory for Malignancy Control Research, Kyoto University Graduate School of Medicine, 53, Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Oscar Llorca
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
30
|
Kuruganti S, Miersch S, Deshpande A, Speir JA, Harris BD, Schriewer JM, Buller RML, Sidhu SS, Walter MR. Cytokine Activation by Antibody Fragments Targeted to Cytokine-Receptor Signaling Complexes. J Biol Chem 2016; 291:447-61. [PMID: 26546677 PMCID: PMC4697184 DOI: 10.1074/jbc.m115.665943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/14/2015] [Indexed: 01/12/2023] Open
Abstract
Exogenous cytokine therapy can induce systemic toxicity, which might be prevented by activating endogenously produced cytokines in local cell niches. Here we developed antibody-based activators of cytokine signaling (AcCS), which recognize cytokines only when they are bound to their cell surface receptors. AcCS were developed for type I interferons (IFNs), which induce cellular activities by binding to cell surface receptors IFNAR1 and IFNAR2. As a potential alternative to exogenous IFN therapy, AcCS were shown to potentiate the biological activities of natural IFNs by ∼100-fold. Biochemical and structural characterization demonstrates that the AcCS stabilize the IFN-IFNAR2 binary complex by recognizing an IFN-induced conformational change in IFNAR2. Using IFN mutants that disrupt IFNAR1 binding, AcCS were able to enhance IFN antiviral potency without activating antiproliferative responses. This suggests AcCS can be used to manipulate cytokine signaling for basic science and possibly for therapeutic applications.
Collapse
Affiliation(s)
- Srilalitha Kuruganti
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Shane Miersch
- Banting and Best Department of Medical Science, Donnelly Centre, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Ashlesha Deshpande
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jeffrey A Speir
- National Resource for Automated Molecular Microscopy, Department of Integrative Structural and, Computational Biology, The Scripps Research Institute, La Jolla, California 92037, and
| | - Bethany D Harris
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jill M Schriewer
- Department of Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, Missouri 63104
| | - R Mark L Buller
- Department of Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, Missouri 63104
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Science, Donnelly Centre, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Mark R Walter
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294,
| |
Collapse
|
31
|
Jamwal A, Round AR, Bannwarth L, Venien-Bryan C, Belrhali H, Yogavel M, Sharma A. Structural and Functional Highlights of Vacuolar Soluble Protein 1 from Pathogen Trypanosoma brucei brucei. J Biol Chem 2015; 290:30498-513. [PMID: 26494625 DOI: 10.1074/jbc.m115.674176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei (T. brucei) is responsible for the fatal human disease called African trypanosomiasis, or sleeping sickness. The causative parasite, Trypanosoma, encodes soluble versions of inorganic pyrophosphatases (PPase), also called vacuolar soluble proteins (VSPs), which are localized to its acidocalcisomes. The latter are acidic membrane-enclosed organelles rich in polyphosphate chains and divalent cations whose significance in these parasites remains unclear. We here report the crystal structure of T. brucei brucei acidocalcisomal PPases in a ternary complex with Mg(2+) and imidodiphosphate. The crystal structure reveals a novel structural architecture distinct from known class I PPases in its tetrameric oligomeric state in which a fused EF hand domain arranges around the catalytic PPase domain. This unprecedented assembly evident from TbbVSP1 crystal structure is further confirmed by SAXS and TEM data. SAXS data suggest structural flexibility in EF hand domains indicative of conformational plasticity within TbbVSP1.
Collapse
Affiliation(s)
- Abhishek Jamwal
- From the Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Adam R Round
- the European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France, the Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 38042 Grenoble, France, and
| | | | | | - Hassan Belrhali
- the European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France, the Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 38042 Grenoble, France, and
| | - Manickam Yogavel
- From the Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Amit Sharma
- From the Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India,
| |
Collapse
|
32
|
Prevato M, Ferlenghi I, Bonci A, Uematsu Y, Anselmi G, Giusti F, Bertholet S, Legay F, Telford JL, Settembre EC, Maione D, Cozzi R. Expression and Characterization of Recombinant, Tetrameric and Enzymatically Active Influenza Neuraminidase for the Setup of an Enzyme-Linked Lectin-Based Assay. PLoS One 2015; 10:e0135474. [PMID: 26280677 PMCID: PMC4539205 DOI: 10.1371/journal.pone.0135474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/22/2015] [Indexed: 11/26/2022] Open
Abstract
Developing a universal influenza vaccine that induces broad spectrum and longer-term immunity has become an important potentially achievable target in influenza vaccine research and development. Hemagglutinin (HA) and neuraminidase (NA) are the two major influenza virus antigens. Although antibody responses against influenza virus are mainly directed toward HA, NA is reported to be more genetically stable; hence NA-based vaccines have the potential to be effective for longer time periods. NA-specific immunity has been shown to limit the spread of influenza virus, thus reducing disease symptoms and providing cross-protection against heterosubtypic viruses in mouse challenge experiments. The production of large quantities of highly pure and stable NA could be beneficial for the development of new antivirals, subunit-based vaccines, and novel diagnostic tools. In this study, recombinant NA (rNA) was produced in mammalian cells at high levels from both swine A/California/07/2009 (H1N1) and avian A/turkey/Turkey/01/2005 (H5N1) influenza viruses. Biochemical, structural, and immunological characterizations revealed that the soluble rNAs produced are tetrameric, enzymatically active and immunogenic, and finally they represent good alternatives to conventionally used sources of NA in the Enzyme-Linked Lectin Assay (ELLA).
Collapse
Affiliation(s)
- Marua Prevato
- Research Center, Novartis Vaccines and Diagnostics s.r.l., (a GSK Company), Siena, Italy
| | - Ilaria Ferlenghi
- Research Center, Novartis Vaccines and Diagnostics s.r.l., (a GSK Company), Siena, Italy
| | - Alessandra Bonci
- Research Center, Novartis Vaccines and Diagnostics s.r.l., (a GSK Company), Siena, Italy
| | - Yasushi Uematsu
- Research Center, Novartis Vaccines and Diagnostics s.r.l., (a GSK Company), Siena, Italy
| | - Giulia Anselmi
- Research Center, Novartis Vaccines and Diagnostics s.r.l., (a GSK Company), Siena, Italy
| | - Fabiola Giusti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Sylvie Bertholet
- Research Center, Novartis Vaccines and Diagnostics s.r.l., (a GSK Company), Siena, Italy
| | - Francois Legay
- Vaccine Research, Novartis Vaccines and Diagnostics, (a GSK Company), Basel, Switzerland
| | - John Laird Telford
- Research Center, Novartis Vaccines and Diagnostics s.r.l., (a GSK Company), Siena, Italy
| | - Ethan C. Settembre
- Vaccine Research, Novartis Vaccines and Diagnostics Inc., (a GSK Company), Cambridge, MA, United States of America
| | - Domenico Maione
- Research Center, Novartis Vaccines and Diagnostics s.r.l., (a GSK Company), Siena, Italy
- * E-mail:
| | - Roberta Cozzi
- Research Center, Novartis Vaccines and Diagnostics s.r.l., (a GSK Company), Siena, Italy
| |
Collapse
|
33
|
Bannwarth L, Girerd-Chambaz Y, Arteni A, Guigner JM, Ronzon F, Manin C, Vénien-Bryan C. Mapping of the epitopes of poliovirus type 2 in complex with antibodies. Mol Immunol 2015; 67:233-9. [PMID: 26059753 DOI: 10.1016/j.molimm.2015.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/12/2015] [Accepted: 05/16/2015] [Indexed: 11/24/2022]
Abstract
The inactivated polio vaccine (IPV) contains poliovirus (PV) samples that belong to serotypes 1, 2 and 3. All three serotypes contain the D-antigen, which induces protective antibodies. The antigenic structure of PVs consists of at least four different antigenic sites and the D-antigen content represents the combined activity of multiple epitopes (Ferguson et al., 1993; Minor, 1990; Minor et al., 1986). The potency of IPV vaccines is determined by measuring the D-antigen content. Several ELISA methods have been developed using polyclonal or monoclonal antibodies (Mabs) in order to quantify the D-antigen content. Characterization of the epitopes recognized by the different Mabs is crucial to map the entire virus surface and ensure the presence of epitopes able to induce neutralizing antibodies. Using a new approach that we developed to study the interaction between monoclonal antibodies and poliovirus type 2, which combines cryo-electron microscopy, image analysis and X-ray crystallography along with identification of exposed amino acids, we have mapped in 3D the epitope sites recognized by three specific Fabs at the surface of poliovirus type 2 (PV2) and characterized precisely the antigenic sites for these Fabs.
Collapse
Affiliation(s)
| | | | - Ana Arteni
- IMPMC, UMR 7590, CNRS-UPMC-IRD, 75252 Paris, France
| | | | - Frederic Ronzon
- Sanofi Pasteur, 1541 av. Marcel Mérieux, F-69280 Marcy l'étoile, France
| | - Catherine Manin
- Sanofi Pasteur, 1541 av. Marcel Mérieux, F-69280 Marcy l'étoile, France
| | | |
Collapse
|
34
|
Gaubitz C, Oliveira TM, Prouteau M, Leitner A, Karuppasamy M, Konstantinidou G, Rispal D, Eltschinger S, Robinson GC, Thore S, Aebersold R, Schaffitzel C, Loewith R. Molecular Basis of the Rapamycin Insensitivity of Target Of Rapamycin Complex 2. Mol Cell 2015; 58:977-88. [PMID: 26028537 DOI: 10.1016/j.molcel.2015.04.031] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/31/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Target of Rapamycin (TOR) plays central roles in the regulation of eukaryote growth as the hub of two essential multiprotein complexes: TORC1, which is rapamycin-sensitive, and the lesser characterized TORC2, which is not. TORC2 is a key regulator of lipid biosynthesis and Akt-mediated survival signaling. In spite of its importance, its structure and the molecular basis of its rapamycin insensitivity are unknown. Using crosslinking-mass spectrometry and electron microscopy, we determined the architecture of TORC2. TORC2 displays a rhomboid shape with pseudo-2-fold symmetry and a prominent central cavity. Our data indicate that the C-terminal part of Avo3, a subunit unique to TORC2, is close to the FKBP12-rapamycin-binding domain of Tor2. Removal of this sequence generated a FKBP12-rapamycin-sensitive TORC2 variant, which provides a powerful tool for deciphering TORC2 function in vivo. Using this variant, we demonstrate a role for TORC2 in G2/M cell-cycle progression.
Collapse
Affiliation(s)
- Christl Gaubitz
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Taiana M Oliveira
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France; Fondation ARC, 9 rue Guy Môquet, BP 90003, 04803 Villejuif Cedex, France
| | - Manoel Prouteau
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Manikandan Karuppasamy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Georgia Konstantinidou
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Delphine Rispal
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Sandra Eltschinger
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Graham C Robinson
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland
| | - Stéphane Thore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland; University of Bordeaux, European Institute for Chemistry and Biology, ARNA Laboratory, F-33607 Pessac, France; Institut National de la Santé Et de la Recherche Médicale, INSERM-U869, ARNA Laboratory, F-33000, Bordeaux, France
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Faculty of Science, University of Zürich, 8057 Zürich, Switzerland
| | - Christiane Schaffitzel
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France; School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom.
| | - Robbie Loewith
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211 Geneva, Switzerland; National Centre of Competence in Research "Chemical Biology," University of Geneva, Geneva CH-1211, Switzerland.
| |
Collapse
|
35
|
Fernández-Millán P, Lázaro M, Cansız-Arda Ş, Gerhold JM, Rajala N, Schmitz CA, Silva-Espiña C, Gil D, Bernadó P, Valle M, Spelbrink JN, Solà M. The hexameric structure of the human mitochondrial replicative helicase Twinkle. Nucleic Acids Res 2015; 43:4284-95. [PMID: 25824949 PMCID: PMC4417153 DOI: 10.1093/nar/gkv189] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 12/21/2014] [Accepted: 02/23/2015] [Indexed: 01/28/2023] Open
Abstract
The mitochondrial replicative helicase Twinkle is involved in strand separation at the replication fork of mitochondrial DNA (mtDNA). Twinkle malfunction is associated with rare diseases that include late onset mitochondrial myopathies, neuromuscular disorders and fatal infantile mtDNA depletion syndrome. We examined its 3D structure by electron microscopy (EM) and small angle X-ray scattering (SAXS) and built the corresponding atomic models, which gave insight into the first molecular architecture of a full-length SF4 helicase that includes an N-terminal zinc-binding domain (ZBD), an intermediate RNA polymerase domain (RPD) and a RecA-like hexamerization C-terminal domain (CTD). The EM model of Twinkle reveals a hexameric two-layered ring comprising the ZBDs and RPDs in one layer and the CTDs in another. In the hexamer, contacts in trans with adjacent subunits occur between ZBDs and RPDs, and between RPDs and CTDs. The ZBDs show important structural heterogeneity. In solution, the scattering data are compatible with a mixture of extended hexa- and heptameric models in variable conformations. Overall, our structural data show a complex network of dynamic interactions that reconciles with the structural flexibility required for helicase activity.
Collapse
Affiliation(s)
- Pablo Fernández-Millán
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| | - Melisa Lázaro
- Structural Biology Unit. Centre for Cooperative Research in Biosciences, CICbioGUNE, Derio, E-48160, Spain
| | - Şirin Cansız-Arda
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, 6525 GA, The Netherlands
| | - Joachim M Gerhold
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, 6525 GA, The Netherlands
| | - Nina Rajala
- Mitochondrial DNA Maintenance Group, BioMediTech, University of Tampere, Tampere, FI-33014, Finland
| | - Claus-A Schmitz
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| | - Cristina Silva-Espiña
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| | - David Gil
- Structural Biology Unit. Centre for Cooperative Research in Biosciences, CICbioGUNE, Derio, E-48160, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM-U1054, CNRS UMR-5048, Université de Montpellier I&II. Montpellier, F-34090, France
| | - Mikel Valle
- Structural Biology Unit. Centre for Cooperative Research in Biosciences, CICbioGUNE, Derio, E-48160, Spain
| | - Johannes N Spelbrink
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, 6525 GA, The Netherlands Mitochondrial DNA Maintenance Group, BioMediTech, University of Tampere, Tampere, FI-33014, Finland
| | - Maria Solà
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| |
Collapse
|
36
|
Li TC, Iwasaki K, Katano H, Kataoka M, Nagata N, Kobayashi K, Mizutani T, Takeda N, Wakita T, Suzuki T. Characterization of self-assembled virus-like particles of Merkel cell polyomavirus. PLoS One 2015; 10:e0115646. [PMID: 25671590 PMCID: PMC4324643 DOI: 10.1371/journal.pone.0115646] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/25/2014] [Indexed: 12/17/2022] Open
Abstract
In our recombinant baculovirus system, VP1 protein of merkel cell polyomavirus (MCPyV), which is implicated as a causative agent in Merkel cell carcinoma, was self-assembled into MCPyV-like particles (MCPyV-LP) with two different sizes in insect cells, followed by being released into the culture medium. DNA molecules of 1.5- to 5-kb, which were derived from host insect cells, were packaged in large, ~50-nm spherical particles but not in small, ~25-nm particles. Structure reconstruction using cryo-electron microscopy showed that large MCPyV-LPs are composed of 72 pentameric capsomeres arranged in a T = 7 icosahedral surface lattice and are 48 nm in diameter. The MCPyV-LPs did not share antigenic determinants with BK- and JC viruses (BKPyV and JCPyV). The VLP-based enzyme immunoassay was applied to investigate age-specific prevalence of MCPyV infection in the general Japanese population aged 1–70 years. While seroprevalence of MCPyV increased with age in children and young individuals, its seropositivity in each age group was lower compared with BKPyV and JCPyV.
Collapse
Affiliation(s)
- Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazumi Kobayashi
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Tetsuya Mizutani
- Research and Education center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naokazu Takeda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
37
|
Cabra V, Samsó M. Do's and don'ts of cryo-electron microscopy: a primer on sample preparation and high quality data collection for macromolecular 3D reconstruction. J Vis Exp 2015:52311. [PMID: 25651412 PMCID: PMC4354528 DOI: 10.3791/52311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cryo-electron microscopy (cryoEM) entails flash-freezing a thin layer of sample on a support, and then visualizing the sample in its frozen hydrated state by transmission electron microscopy (TEM). This can be achieved with very low quantity of protein and in the buffer of choice, without the use of any stain, which is very useful to determine structure-function correlations of macromolecules. When combined with single-particle image processing, the technique has found widespread usefulness for 3D structural determination of purified macromolecules. The protocol presented here explains how to perform cryoEM and examines the causes of most commonly encountered problems for rational troubleshooting; following all these steps should lead to acquisition of high quality cryoEM images. The technique requires access to the electron microscope instrument and to a vitrification device. Knowledge of the 3D reconstruction concepts and software is also needed for computerized image processing. Importantly, high quality results depend on finding the right purification conditions leading to a uniform population of structurally intact macromolecules. The ability of cryoEM to visualize macromolecules combined with the versatility of single particle image processing has proven very successful for structural determination of large proteins and macromolecular machines in their near-native state, identification of their multiple components by 3D difference mapping, and creation of pseudo-atomic structures by docking of x-ray structures. The relentless development of cryoEM instrumentation and image processing techniques for the last 30 years has resulted in the possibility to generate de novo 3D reconstructions at atomic resolution level.
Collapse
Affiliation(s)
- Vanessa Cabra
- Department of Physiology and Biophysics, Virginia Commonwealth University
| | - Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University;
| |
Collapse
|
38
|
Bannwarth L, Girerd-Chambaz Y, Arteni AA, Guigner JM, Lemains J, Ronzon F, Manin C, Vénien-Bryan C. Structural studies of virus-antibody immune complexes (poliovirus type I): Characterization of the epitopes in 3D. Mol Immunol 2014; 63:279-86. [PMID: 25146483 DOI: 10.1016/j.molimm.2014.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 11/20/2022]
Abstract
The inactivated polio vaccine (IPV) contains poliovirus (PVs) samples that belong to serotypes 1, 2 and 3. All three serotypes contain the D-antigen, which induces protective antibodies. The antigenic structure of PVs consists of at least four different antigenic sites and the D-antigen content represents the combined activity of multiple epitopes (Ferguson et al., 1993; Minor, 1990; Minor et al., 1986). The potency of IPV vaccines is determined by measuring the D-antigen content. Several ELISA methods have been developed using polyclonal or monoclonal antibodies (Mabs) in order to quantify the D-antigen content. Characterization of the epitopes recognized by the different Mabs is crucial to map the entire virus surface and ensure the presence of epitopes able to induce neutralizing antibodies. In a new approach, combining cryo-electron microscopy and image analysis with X-ray crystallography data available along with identification of exposed amino acids we have mapped in 3D the epitope sites recognized by five specific Fabs and one Mab and characterized precisely the antigenic sites for these Mabs. We propose this method to be used to map the entire "epitopic" surface of virus.
Collapse
Affiliation(s)
| | | | - Ana A Arteni
- IMPMC, UMR 7590, CNRS-UPMC-IRD-MNHN, 75252 Paris, France
| | | | | | - Frédéric Ronzon
- Sanofi Pasteur, 1541 av. Marcel Mérieux, F-69280 Marcy l'étoile, France
| | - Catherine Manin
- Sanofi Pasteur, 1541 av. Marcel Mérieux, F-69280 Marcy l'étoile, France
| | | |
Collapse
|
39
|
Basilico F, Maffini S, Weir JR, Prumbaum D, Rojas AM, Zimniak T, De Antoni A, Jeganathan S, Voss B, van Gerwen S, Krenn V, Massimiliano L, Valencia A, Vetter IR, Herzog F, Raunser S, Pasqualato S, Musacchio A. The pseudo GTPase CENP-M drives human kinetochore assembly. eLife 2014; 3:e02978. [PMID: 25006165 PMCID: PMC4080450 DOI: 10.7554/elife.02978] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kinetochores, multi-subunit complexes that assemble at the interface with centromeres, bind spindle microtubules to ensure faithful delivery of chromosomes during cell division. The configuration and function of the kinetochore-centromere interface is poorly understood. We report that a protein at this interface, CENP-M, is structurally and evolutionarily related to small GTPases but is incapable of GTP-binding and conformational switching. We show that CENP-M is crucially required for the assembly and stability of a tetramer also comprising CENP-I, CENP-H, and CENP-K, the HIKM complex, which we extensively characterize through a combination of structural, biochemical, and cell biological approaches. A point mutant affecting the CENP-M/CENP-I interaction hampers kinetochore assembly and chromosome alignment and prevents kinetochore recruitment of the CENP-T/W complex, questioning a role of CENP-T/W as founder of an independent axis of kinetochore assembly. Our studies identify a single pathway having CENP-C as founder, and CENP-H/I/K/M and CENP-T/W as CENP-C-dependent followers.DOI: http://dx.doi.org/10.7554/eLife.02978.001.
Collapse
Affiliation(s)
- Federica Basilico
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - John R Weir
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Daniel Prumbaum
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ana M Rojas
- Computational Biology and Bioinformatics Group, Institute of Biomedicine of Seville, Campus Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Tomasz Zimniak
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-Universität, München, Munich, Germany
| | - Anna De Antoni
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Sadasivam Jeganathan
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Beate Voss
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Suzan van Gerwen
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Veronica Krenn
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Lucia Massimiliano
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alfonso Valencia
- Structural Biology and Biocomputing Programme, Spanish National Cancer Centre-CNIO, Madrid, Spain
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Franz Herzog
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-Universität, München, Munich, Germany
| | - Stefan Raunser
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
40
|
Melero R, Uchiyama A, Castaño R, Kataoka N, Kurosawa H, Ohno S, Yamashita A, Llorca O. Structures of SMG1-UPFs complexes: SMG1 contributes to regulate UPF2-dependent activation of UPF1 in NMD. Structure 2014; 22:1105-1119. [PMID: 25002321 DOI: 10.1016/j.str.2014.05.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 12/31/2022]
Abstract
SMG1, a PI3K-related kinase, plays a critical role in nonsense-mediated mRNA decay (NMD) in mammals. SMG1-mediated phosphorylation of the UPF1 helicase is an essential step during NMD initiation. Both SMG1 and UPF1 are presumably activated by UPF2, but this regulation is incompletely understood. Here we reveal that SMG1C (a complex containing SMG1, SMG8, and SMG9) contributes to regulate NMD by recruiting UPF1 and UPF2 to distinct sites in the vicinity of the kinase domain. UPF2 binds SMG1 in an UPF1-independent manner in vivo, and the SMG1C-UPF2 structure shows UPF2 recognizes the FRB domain, a region that regulates the related mTOR kinase. The molecular architectures of several SMG1C-UPFs complexes, obtained by combining electron microscopy with in vivo and in vitro interaction analyses, competition experiments, and mutations, suggest that UPF2 can be transferred to UPF1 within SMG1C, inducing UPF2-dependent conformational changes required to activate UPF1 within an SMG1C-UPF1-UPF2 complex.
Collapse
Affiliation(s)
- Roberto Melero
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Akiko Uchiyama
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Raquel Castaño
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Naoyuki Kataoka
- Medical Innovation Center, Laboratory for Malignancy Control Research, Kyoto University Graduate School of Medicine, 53, Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hitomi Kurosawa
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan.
| | - Oscar Llorca
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
41
|
Paixão-Cavalcante D, Torreira E, Lindorfer MA, Rodriguez de Cordoba S, Morgan BP, Taylor RP, Llorca O, Harris CL. A humanized antibody that regulates the alternative pathway convertase: potential for therapy of renal disease associated with nephritic factors. THE JOURNAL OF IMMUNOLOGY 2014; 192:4844-51. [PMID: 24729617 DOI: 10.4049/jimmunol.1303131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulation of the complement alternative pathway can cause disease in various organs that may be life-threatening. Severe alternative pathway dysregulation can be triggered by autoantibodies to the C3 convertase, termed nephritic factors, which cause pathological stabilization of the convertase enzyme and confer resistance to innate control mechanisms; unregulated complement consumption followed by deposition of C3 fragments in tissues ensues. The mAb, 3E7, and its humanized derivative, H17, have been shown previously to specifically bind activated C3 and prevent binding of both the activating protein, factor B, and the inhibitor, factor H, which are opposite effects that complicate its potential for therapy. Using ligand binding assays, functional assays, and electron microscopy, we show that these Abs bind C3b via a site that overlaps the binding site on C3 for the Ba domain within factor B, thereby blocking an interaction essential for convertase formation. Both Abs also bind the preformed convertase, C3bBb, and provide powerful inhibition of complement activation by preventing cleavage of C3. Critically, the Abs also bound and inhibited C3 cleavage by the nephritic factor-stabilized convertase. We suggest that by preventing enzyme formation and/or cleavage of C3 to its active downstream fragments, H17 may be an effective therapy for conditions caused by severe dysregulation of the C3 convertase and, in particular, those that involve nephritic factors, such as dense deposit disease.
Collapse
Affiliation(s)
- Danielle Paixão-Cavalcante
- Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mechanism of Tc toxin action revealed in molecular detail. Nature 2014; 508:61-5. [DOI: 10.1038/nature13015] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/10/2014] [Indexed: 12/20/2022]
|
43
|
Nemecek D, Boura E, Wu W, Cheng N, Plevka P, Qiao J, Mindich L, Heymann JB, Hurley JH, Steven AC. Subunit folds and maturation pathway of a dsRNA virus capsid. Structure 2013; 21:1374-83. [PMID: 23891288 PMCID: PMC3742642 DOI: 10.1016/j.str.2013.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/08/2013] [Accepted: 06/14/2013] [Indexed: 12/24/2022]
Abstract
The cystovirus ϕ6 shares several distinct features with other double-stranded RNA (dsRNA) viruses, including the human pathogen, rotavirus: segmented genomes, nonequivalent packing of 120 subunits in its icosahedral capsid, and capsids as compartments for transcription and replication. ϕ6 assembles as a dodecahedral procapsid that undergoes major conformational changes as it matures into the spherical capsid. We determined the crystal structure of the capsid protein, P1, revealing a flattened trapezoid subunit with an α-helical fold. We also solved the procapsid with cryo-electron microscopy to comparable resolution. Fitting the crystal structure into the procapsid disclosed substantial conformational differences between the two P1 conformers. Maturation via two intermediate states involves remodeling on a similar scale, besides huge rigid-body rotations. The capsid structure and its stepwise maturation that is coupled to sequential packaging of three RNA segments sets the cystoviruses apart from other dsRNA viruses as a dynamic molecular machine.
Collapse
Affiliation(s)
- Daniel Nemecek
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Evzen Boura
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2. 16600 Prague 6, Czech Republic
| | - Weimin Wu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - Naiqian Cheng
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907
| | - Jian Qiao
- Department of Microbiology, Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07103
| | - Leonard Mindich
- Department of Microbiology, Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07103
| | - J. Bernard Heymann
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - James H. Hurley
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - Alasdair C. Steven
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| |
Collapse
|
44
|
Varkey J, Mizuno N, Hegde BG, Cheng N, Steven AC, Langen R. α-Synuclein oligomers with broken helical conformation form lipoprotein nanoparticles. J Biol Chem 2013; 288:17620-30. [PMID: 23609437 PMCID: PMC3682563 DOI: 10.1074/jbc.m113.476697] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Indexed: 11/06/2022] Open
Abstract
α-Synuclein (αS) is a membrane-binding protein with sequence similarity to apolipoproteins and other lipid-carrying proteins, which are capable of forming lipid-containing nanoparticles, sometimes referred to as "discs." Previously, it has been unclear whether αS also possesses this property. Using cryo-electron microscopy and light scattering, we found that αS can remodel phosphatidylglycerol vesicles into nanoparticles whose shape (ellipsoidal) and dimensions (in the 7-10-nm range) resemble those formed by apolipoproteins. The molar ratio of αS to lipid in nanoparticles is ∼1:20, and αS is oligomeric (including trimers and tetramers). Similar nanoparticles form when αS is added to vesicles of mitochondrial lipids. This observation suggests a mechanism for the previously reported disruption of mitochondrial membranes by αS. Circular dichroism and four-pulse double electron electron resonance experiments revealed that in nanoparticles αS assumes a broken helical conformation distinct from the extended helical conformation adopted when αS is bound to intact vesicles or membrane tubules. We also observed αS-dependent tubule and nanoparticle formation in the presence of oleic acid, implying that αS can interact with fatty acids and lipids in a similar manner. αS-related nanoparticles might play a role in lipid and fatty acid transport functions previously attributed to this protein.
Collapse
Affiliation(s)
- Jobin Varkey
- From the Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033
| | - Naoko Mizuno
- the Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- the Laboratory of Structural Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892-8025
| | | | - Naiqian Cheng
- the Laboratory of Structural Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892-8025
| | - Alasdair C. Steven
- the Laboratory of Structural Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892-8025
| | - Ralf Langen
- From the Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
45
|
Gogol EP, Akkaladevi N, Szerszen L, Mukherjee S, Chollet-Hinton L, Katayama H, Pentelute BL, Collier RJ, Fisher MT. Three dimensional structure of the anthrax toxin translocon-lethal factor complex by cryo-electron microscopy. Protein Sci 2013; 22:586-94. [PMID: 23494942 DOI: 10.1002/pro.2241] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 11/11/2022]
Abstract
We have visualized by cryo-electron microscopy (cryo-EM) the complex of the anthrax protective antigen (PA) translocon and the N-terminal domain of anthrax lethal factor (LF(N) inserted into a nanodisc model lipid bilayer. We have determined the structure of this complex at a nominal resolution of 16 Å by single-particle analysis and three-dimensional reconstruction. Consistent with our previous analysis of negatively stained unliganded PA, the translocon comprises a globular structure (cap) separated from the nanodisc bilayer by a narrow stalk that terminates in a transmembrane channel (incompletely distinguished in this reconstruction). The globular cap is larger than the unliganded PA pore, probably due to distortions introduced in the previous negatively stained structures. The cap exhibits larger, more distinct radial protrusions, previously identified with PA domain three, fitted by elements of the NMFF PA prepore crystal structure. The presence of LF(N), though not distinguished due to the seven-fold averaging used in the reconstruction, contributes to the distinct protrusions on the cap rim volume distal to the membrane. Furthermore, the lumen of the cap region is less resolved than the unliganded negatively stained PA, due to the low contrast obtained in our images of this specimen. Presence of the LF(N) extended helix and N terminal unstructured regions may also contribute to this additional internal density within the interior of the cap. Initial NMFF fitting of the cryoEM-defined PA pore cap region positions the Phe clamp region of the PA pore translocon directly above an internal vestibule, consistent with its role in toxin translocation.
Collapse
Affiliation(s)
- E P Gogol
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
de Vries SJ, Zacharias M. ATTRACT-EM: a new method for the computational assembly of large molecular machines using cryo-EM maps. PLoS One 2012; 7:e49733. [PMID: 23251350 PMCID: PMC3522670 DOI: 10.1371/journal.pone.0049733] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/17/2012] [Indexed: 11/23/2022] Open
Abstract
Many of the most important functions in the cell are carried out by proteins organized in large molecular machines. Cryo-electron microscopy (cryo-EM) is increasingly being used to obtain low resolution density maps of these large assemblies. A new method, ATTRACT-EM, for the computational assembly of molecular assemblies from their components has been developed. Based on concepts from the protein-protein docking field, it utilizes cryo-EM density maps to assemble molecular subunits at near atomic detail, starting from millions of initial subunit configurations. The search efficiency was further enhanced by recombining partial solutions, the inclusion of symmetry information, and refinement using a molecular force field. The approach was tested on the GroES-GroEL system, using an experimental cryo-EM map at 23.5 Å resolution, and on several smaller complexes. Inclusion of experimental information on the symmetry of the systems and the application of a new gradient vector matching algorithm allowed the efficient identification of docked assemblies in close agreement with experiment. Application to the GroES-GroEL complex resulted in a top ranked model with a deviation of 4.6 Å (and a 2.8 Å model within the top 10) from the GroES-GroEL crystal structure, a significant improvement over existing methods.
Collapse
Affiliation(s)
- Sjoerd J de Vries
- Physik-Department T38, Technische Universität München, Garching, Germany.
| | | |
Collapse
|
47
|
Szpyt J, Lorenzon N, Perez CF, Norris E, Allen PD, Beam KG, Samsó M. Three-dimensional localization of the α and β subunits and of the II-III loop in the skeletal muscle L-type Ca2+ channel. J Biol Chem 2012; 287:43853-61. [PMID: 23118233 DOI: 10.1074/jbc.m112.419283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The L-type Ca(2+) channel (dihydropyridine receptor (DHPR) in skeletal muscle acts as the voltage sensor for excitation-contraction coupling. To better resolve the spatial organization of the DHPR subunits (α(1s) or Ca(V)1.1, α(2), β(1a), δ1, and γ), we created transgenic mice expressing a recombinant β(1a) subunit with YFP and a biotin acceptor domain attached to its N- and C- termini, respectively. DHPR complexes were purified from skeletal muscle, negatively stained, imaged by electron microscopy, and subjected to single-particle image analysis. The resulting 19.1-Å resolution, three-dimensional reconstruction shows a main body of 17 × 11 × 8 nm with five corners along its perimeter. Two protrusions emerge from either face of the main body: the larger one attributed to the α(2)-δ1 subunit that forms a flexible hook-shaped feature and a smaller protrusion on the opposite side that corresponds to the II-III loop of Ca(V)1.1 as revealed by antibody labeling. Novel features discernible in the electron density accommodate the atomic coordinates of a voltage-gated sodium channel and of the β subunit in a single docking possibility that defines the α1-β interaction. The β subunit appears more closely associated to the membrane than expected, which may better account for both its role in localizing the α(1s) subunit to the membrane and its suggested role in excitation-contraction coupling.
Collapse
Affiliation(s)
- John Szpyt
- Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Mizuno N, Varkey J, Kegulian NC, Hegde BG, Cheng N, Langen R, Steven AC. Remodeling of lipid vesicles into cylindrical micelles by α-synuclein in an extended α-helical conformation. J Biol Chem 2012; 287:29301-11. [PMID: 22767608 DOI: 10.1074/jbc.m112.365817] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-Synuclein (αS) is a protein with multiple conformations and interactions. Natively unfolded in solution, αS accumulates as amyloid in neurological tissue in Parkinson disease and interacts with membranes under both physiological and pathological conditions. Here, we used cryoelectron microscopy in conjunction with electron paramagnetic resonance (EPR) and other techniques to characterize the ability of αS to remodel vesicles. At molar ratios of 1:5 to 1:40 for protein/lipid (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol), large spherical vesicles are converted into cylindrical micelles ~50 Å in diameter. Other lipids of the same charge (negative) exhibit generally similar behavior, although bilayer tubes of 150-500 Å in width are also produced, depending on the lipid acyl chains. At higher protein/lipid ratios, discoid particles, 70-100 Å across, are formed. EPR data show that, on cylindrical micelles, αS adopts an extended amphipathic α-helical conformation, with its long axis aligned with the tube axis. The observed geometrical relationship between αS and the micelle suggests that the wedging of its long α-helix into the outer leaflet of a membrane may cause curvature and an anisotropic partition of lipids, leading to tube formation.
Collapse
Affiliation(s)
- Naoko Mizuno
- Laboratory of Structural Biology, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Melero R, Buchwald G, Castaño R, Raabe M, Gil D, Lázaro M, Urlaub H, Conti E, Llorca O. The cryo-EM structure of the UPF-EJC complex shows UPF1 poised toward the RNA 3' end. Nat Struct Mol Biol 2012; 19:498-505, S1-2. [PMID: 22522823 DOI: 10.1038/nsmb.2287] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/22/2012] [Indexed: 11/09/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance pathway that degrades aberrant mRNAs containing premature termination codons (PTCs). NMD is triggered upon the assembly of the UPF surveillance complex near a PTC. In humans, UPF assembly is prompted by the exon junction complex (EJC). We investigated the molecular architecture of the human UPF complex bound to the EJC by cryo-EM and using positional restraints from additional EM, MS and biochemical interaction data. The heptameric assembly is built around UPF2, a scaffold protein with a ring structure that closes around the CH domain of UPF1, keeping the helicase region in an accessible and unwinding-competent state. UPF2 also positions UPF3 to interact with the EJC. The geometry is such that this transient complex poises UPF1 to elicit helicase activity toward the 3' end of the mRNP.
Collapse
Affiliation(s)
- Roberto Melero
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Noinaj N, Easley NC, Oke M, Mizuno N, Gumbart J, Boura E, Steere AN, Zak O, Aisen P, Tajkhorshid E, Evans RW, Gorringe AR, Mason AB, Steven AC, Buchanan SK. Structural basis for iron piracy by pathogenic Neisseria. Nature 2012; 483:53-8. [PMID: 22327295 PMCID: PMC3292680 DOI: 10.1038/nature10823] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/09/2012] [Indexed: 11/20/2022]
Abstract
Neisseria are obligate human pathogens causing bacterial meningitis, septicaemia and gonorrhoea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are how human transferrin is specifically targeted, and how the bacteria liberate iron from transferrin at neutral pH. To address these questions, we solved crystal structures of the TbpA-transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB-transferrin complex by small-angle X-ray scattering and the TbpA-TbpB-transferrin complex by electron microscopy. Our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process.
Collapse
Affiliation(s)
- Nicholas Noinaj
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|