1
|
Secondo MTS, Rodrigues LDS, Ramos LPM, Bovolato ALC, Rodriguez-Sanchez DN, Sobreira ML, Moraes MPDT, Bertanha M. Evaluation of Biointegration and Inflammatory Response to Blood Vessels Produced by Tissue Engineering-Experimental Model in Rabbits. Biomolecules 2022; 12:biom12121776. [PMID: 36551204 PMCID: PMC9775166 DOI: 10.3390/biom12121776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/29/2022] [Accepted: 11/19/2022] [Indexed: 12/05/2022] Open
Abstract
Peripheral arterial disease (PAD) is the main cause of mortality in the western population and requires surgical intervention with the use of vascular substitutes, such as autologous veins or Dacron or PTFE prostheses. When this is not possible, it progresses to limb amputation. For cases where there is no autologous vascular substitute, tissue engineering with the production of neovessels may be a promising option. Previous experimental studies have shown in vitro that rabbit vena cava can be decellularized and serve as a scaffold for receiving mesenchymal stem cells (MSC), with subsequent differentiation into endothelial cells. The current study aimed to evaluate the behavior of a 3D product structure based on decellularized rabbit inferior vena cava (IVC) scaffolds seeded with adipose-tissue-derived stem cells (ASCs) and implanted in rabbits dorsally subcutaneously. We evaluated the induction of the inflammatory response in the animal. We found that stem cells were positive in reducing the inflammatory response induced by the decellularized scaffolds.
Collapse
Affiliation(s)
- Mariana Thaís Silva Secondo
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University—UNESP, Botucatu 18618-687, Brazil
| | - Lenize da Silva Rodrigues
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University—UNESP, Botucatu 18618-687, Brazil
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University—UNESP, Botucatu 18618-687, Brazil
- Correspondence: ; Tel.: +55-14-3880-1444
| | - Leandro Pereira Miranda Ramos
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University—UNESP, Botucatu 18618-687, Brazil
| | - Ana Lívia Carvalho Bovolato
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University—UNESP, Botucatu 18618-687, Brazil
| | - Diego Noé Rodriguez-Sanchez
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University—UNESP, Botucatu 18618-687, Brazil
| | - Marcone Lima Sobreira
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University—UNESP, Botucatu 18618-687, Brazil
| | | | - Matheus Bertanha
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University—UNESP, Botucatu 18618-687, Brazil
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University—UNESP, Botucatu 18618-687, Brazil
| |
Collapse
|
2
|
Piovesana TR, Rodrigues LDS, Bovolato ALDC, Rodríguez-Sánchez DN, Rinaldi JC, Santos NJ, Mori JC, Lourenção PLTDA, Birch L, Bertanha M. Urinary Bladder Patch Made with Decellularized Vein Scaffold Seeded with Adipose-Derived Mesenchymal Stem Cells: Model in Rabbits. Biomedicines 2022; 10:2814. [PMID: 36359335 PMCID: PMC9687924 DOI: 10.3390/biomedicines10112814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND To evaluate tissue regeneration of the urinary bladder after the implantation of a decellularized vein sown with autologous adipose-derived mesenchymal stem cells (ASC) on luminal surfaces. METHODS New Zealand rabbits (n = 10) were distributed in two groups: Group Bioscaffold alone (G1)-decellularized vena cava (1 cm2) was implanted, and Group Bioscaffold plus ACSs (G2)-decellularized vena cava (1 cm2) containing ASCs were implanted. ASCs were expanded, characterized, and maintained for one week in culture with a decellularized vein scaffold. The implants were performed under general anesthesia using a continuous suture pattern. Afterward, 21 d (day) specimens were collected and analyzed by hematoxylin and eosin (HE) histology and scanning electron microscopy (SEM). RESULTS The integrity of the urinary bladder was maintained in both groups. A superior regenerative process was observed in the G2 group, compared to the G1 group. We observed a greater urothelial epithelialization and maturity of the mucosa and submucosa fibroblasts. Furthermore, SEM demonstrated a notable amount of urothelial villus in the G2 group. CONCLUSION Decellularized vena cava scaffolds were able to maintain the integrity of the urinary bladder in the proposed model. In addition, ASCs accelerated the regenerative process development, observed primarily by the new urothelial epithelization and the maturity of mucosa and submucosa fibroblasts.
Collapse
Affiliation(s)
- Tadeu Ravazi Piovesana
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University-UNESP, Botucatu 18618-687, Brazil
| | - Lenize da Silva Rodrigues
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University-UNESP, Botucatu 18618-687, Brazil
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University-UNESP, Botucatu 18618-687, Brazil
| | - Ana Livia de Carvalho Bovolato
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University-UNESP, Botucatu 18618-687, Brazil
| | - Diego Noé Rodríguez-Sánchez
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University-UNESP, Botucatu 18618-687, Brazil
| | - Jaqueline Carvalho Rinaldi
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringa, Maringá 87020-900, Brazil
| | - Nilton José Santos
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University—UNESP, Botucatu 18618-687, Brazil
- Department of Structural and Functional Biology, University of Campinas–UNICAMP, Campinas 13083-862, Brazil
| | - Julia Calvi Mori
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringa, Maringá 87020-900, Brazil
| | | | - Lynn Birch
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Matheus Bertanha
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University-UNESP, Botucatu 18618-687, Brazil
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University-UNESP, Botucatu 18618-687, Brazil
| |
Collapse
|
3
|
Giger S, Hofer M, Miljkovic-Licina M, Hoehnel S, Brandenberg N, Guiet R, Ehrbar M, Kleiner E, Gegenschatz-Schmid K, Matthes T, Lutolf MP. Microarrayed human bone marrow organoids for modeling blood stem cell dynamics. APL Bioeng 2022; 6:036101. [PMID: 35818479 PMCID: PMC9270995 DOI: 10.1063/5.0092860] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/13/2022] [Indexed: 01/23/2023] Open
Abstract
In many leukemia patients, a poor prognosis is attributed either to the development of chemotherapy resistance by leukemic stem cells (LSCs) or to the inefficient engraftment of transplanted hematopoietic stem/progenitor cells (HSPCs) into the bone marrow (BM). Here, we build a 3D in vitro model system of bone marrow organoids (BMOs) that recapitulate several structural and cellular components of native BM. These organoids are formed in a high-throughput manner from the aggregation of endothelial and mesenchymal cells within hydrogel microwells. Accordingly, the mesenchymal compartment shows partial maintenance of its self-renewal and multilineage potential, while endothelial cells self-organize into an interconnected vessel-like network. Intriguingly, such an endothelial compartment enhances the recruitment of HSPCs in a chemokine ligand/receptor-dependent manner, reminiscent of HSPC homing behavior in vivo. Additionally, we also model LSC migration and nesting in BMOs, thus highlighting the potential of this system as a well accessible and scalable preclinical model for candidate drug screening and patient-specific assays.
Collapse
Affiliation(s)
- Sonja Giger
- Laboratory of Stem Cell Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Moritz Hofer
- Laboratory of Stem Cell Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Sylke Hoehnel
- SUN Bioscience, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Romain Guiet
- Laboratory of Stem Cell Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martin Ehrbar
- Ehrbar Lab, University Hospital Zurich, Zurich, Switzerland
| | - Esther Kleiner
- Ehrbar Lab, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Lizunkova P, Engdahl E, Borbély G, Gennings C, Lindh C, Bornehag CG, Rüegg J. A Mixture of Endocrine Disrupting Chemicals Associated with Lower Birth Weight in Children Induces Adipogenesis and DNA Methylation Changes in Human Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms23042320. [PMID: 35216435 PMCID: PMC8879125 DOI: 10.3390/ijms23042320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Endocrine Disrupting Chemicals (EDCs) are man-made compounds that alter functions of the endocrine system. Environmental mixtures of EDCs might have adverse effects on human health, even though their individual concentrations are below regulatory levels of concerns. However, studies identifying and experimentally testing adverse effects of real-life mixtures are scarce. In this study, we aimed at evaluating an epidemiologically identified EDC mixture in an experimental setting to delineate its cellular and epigenetic effects. The mixture was established using data from the Swedish Environmental Longitudinal Mother and child Asthma and allergy (SELMA) study where it was associated with lower birth weight, an early marker for prenatal metabolic programming. This mixture was then tested for its ability to change metabolic programming of human mesenchymal stem cells. In these cells, we assessed if the mixture induced adipogenesis and genome-wide DNA methylation changes. The mixture increased lipid droplet accumulation already at concentrations corresponding to levels measured in the pregnant women of the SELMA study. Furthermore, we identified differentially methylated regions in genes important for adipogenesis and thermogenesis. This study shows that a mixture reflecting human real-life exposure can induce molecular and cellular changes during development that could underlie adverse outcomes.
Collapse
Affiliation(s)
- Polina Lizunkova
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden; (P.L.); (E.E.)
| | - Elin Engdahl
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden; (P.L.); (E.E.)
| | - Gábor Borbély
- The Swedish Toxicology Sciences Research Center (Swetox), 15257 Södertälje, Sweden;
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.G.); (C.-G.B.)
| | - Christian Lindh
- Occupational and Environmental Medicine, Lund University, 22363 Lund, Sweden;
| | - Carl-Gustaf Bornehag
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.G.); (C.-G.B.)
- Department of Health Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden; (P.L.); (E.E.)
- Correspondence: ; Tel.: +46-73-7121592
| |
Collapse
|
5
|
Rodrigues LDS, Bovolato ALDC, Silva BE, Chizzolini LV, Cruz BLD, Moraes MPDT, Lourenção PLTDA, Bertanha M. Quantification of adhesion of mesenchymal stem cells spread on decellularized vein scaffold. Acta Cir Bras 2021; 36:e361001. [PMID: 34755757 PMCID: PMC8598214 DOI: 10.1590/acb361001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose: To evaluate methods that improve adipose-derived stem cells (ASCs) population
in decellularized biological venous scaffold for tissue engineering in blood
vessels, a model in rabbits. Methods: The ASC was expanded until the third passage. Inferior vena cava (IVC) was
submitted to the decellularization process using 1% sodium dodecyl sulfate
(SDS) or 2% sodium deoxycholate (SD) to compose 12 study groups (G): pure SD
or SDS, exposed or not to 1% TritonX-100 (TX-100) and exposed or not to
poly-l’lysine and laminin (PL). Scaffolds were covered with 1 ×
105 or 1 × 106 ASCs diluted in 10 μL Puramatrix™.
The histological analysis was done by cell counting in hematoxylin and eosin
(HE) and nuclei count in immunofluorescence (IF) with
4’,6-Diamidine-2’-phenylindole dihydrochloride (DAPI). Results: The study of groups in HE and IF showed similar results. For both
analyses,IVC-SD-1 × 106 ASC and IVC-SD-PL-1 × 106 ASC
provided the best results. The IF technique showed better sensitivity than
HE, with a weak agreement between them. Conclusions: Decellularizing agent and the number of ASC influence scaffolds
cellularization response and the best protocols as those ones using SD with
or without the addition of PL.
Collapse
|
6
|
Katti SS, Bhat K, Bogar C. Isolation, Characterization, and Differentiation of Stem Cells From Various Dental Sources: An In Vitro Study. JOURNAL OF ADVANCED ORAL RESEARCH 2021. [DOI: 10.1177/23202068211010768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aim: The aim of the current study was to isolate stem cells from various dental sources such as dental pulp, periodontal ligament (PDL), and apical papilla, and to characterize stem cells by staining for the presence/absence of specific surface markers and also to differentiate stem cells into osteogenic, chondrogenic, and adipogenic cell lineages by exposing them to specific growth factors under the ideal conditions. Materials and Methods: A total of 117 samples were included in the study, consisting of 30 pulp, 50 gingival, 35 PDL, and 2 apical papilla samples. The pulp was extirpated and transported to the Central Research Laboratory. Gingival connective tissue was collected from the participants undergoing any crown lengthening procedure or any gingivectomy procedure from the Department of Periodontology. A similar procedure was also followed for apical papilla and PDL. Isolation was done followed by the identification of the cells by immunocytochemistry using different markers. Once the identity of cells was confirmed, these cells were treated with different culture media to attain 70% to 100% confluency. Then the medium was replaced with a conditioning medium containing specific growth factors for differentiation into osteogenic, chondrogenic, and adipogenic cell lineages. Result: In our study, the number of samples collected and processed was 117. The isolation rate of stem cells from the above-collected samples was 70%. Statistical analysis—no statistical analysis was done as there was no variability expected. Conclusion: Our study showed that stem cells could be isolated, differentiated, and characterized from different dental sources.
Collapse
Affiliation(s)
- Sandeep S. Katti
- Department of Periodontology, Maratha Mandal Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Kishore Bhat
- Central Research Laboratory, Maratha Mandal Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Chetana Bogar
- Central Research Laboratory, Maratha Mandal Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| |
Collapse
|
7
|
Marupanthorn K, Tantrawatpan C, Kheolamai P, Tantikanlayaporn D, Manochantr S. MicroRNA treatment modulates osteogenic differentiation potential of mesenchymal stem cells derived from human chorion and placenta. Sci Rep 2021; 11:7670. [PMID: 33828198 PMCID: PMC8027176 DOI: 10.1038/s41598-021-87298-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/25/2021] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are important in regenerative medicine because of their potential for multi-differentiation. Bone marrow, chorion and placenta have all been suggested as potential sources for clinical application. However, the osteogenic differentiation potential of MSCs derived from chorion or placenta is not very efficient. Bone morphogenetic protein-2 (BMP-2) plays an important role in bone development. Its effect on osteogenic augmentation has been addressed in several studies. Recent studies have also shown a relationship between miRNAs and osteogenesis. We hypothesized that miRNAs targeted to Runt-related transcription factor 2 (Runx-2), a major transcription factor of osteogenesis, are responsible for regulating the differentiation of MSCs into osteoblasts. This study examines the effect of BMP-2 on the osteogenic differentiation of MSCs isolated from chorion and placenta in comparison to bone marrow-derived MSCs and investigates the role of miRNAs in the osteogenic differentiation of MSCs from these sources. MSCs were isolated from human bone marrow, chorion and placenta. The osteogenic differentiation potential after BMP-2 treatment was examined using ALP staining, ALP activity assay, and osteogenic gene expression. Candidate miRNAs were selected and their expression levels during osteoblastic differentiation were examined using real-time RT-PCR. The role of these miRNAs in osteogenesis was investigated by transfection with specific miRNA inhibitors. The level of osteogenic differentiation was monitored after anti-miRNA treatment. MSCs isolated from chorion and placenta exhibited self-renewal capacity and multi-lineage differentiation potential similar to MSCs isolated from bone marrow. BMP-2 treated MSCs showed higher ALP levels and osteogenic gene expression compared to untreated MSCs. All investigated miRNAs (miR-31, miR-106a and miR148) were consistently downregulated during the process of osteogenic differentiation. After treatment with miRNA inhibitors, ALP activity and osteogenic gene expression increased over the time of osteogenic differentiation. BMP-2 has a positive effect on osteogenic differentiation of chorion- and placenta-derived MSCs. The inhibition of specific miRNAs enhanced the osteogenic differentiation capacity of various MSCs in culture and this strategy might be used to promote bone regeneration. However, further in vivo experiments are required to assess the validity of this approach.
Collapse
Affiliation(s)
- Kulisara Marupanthorn
- Department of Agricultural Technology and Development, Faculty of Agricultural Technology, Chiangmai Rajabhat University, Chiangmai, 50330, Thailand
| | - Chairat Tantrawatpan
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Pakpoom Kheolamai
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Duangrat Tantikanlayaporn
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand. .,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
8
|
Mesenchymal stem cells protect against malaria pathogenesis by reprogramming erythropoiesis in the bone marrow. Cell Death Discov 2020; 6:125. [PMID: 33298881 PMCID: PMC7667156 DOI: 10.1038/s41420-020-00363-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Malaria remains a major public health problem worldwide. The immune mechanisms that mediate protection against malaria are still unclear. Previously, we reported that mesenchymal stem cells (MSCs) play a critical role in host protection against malaria by altering the dynamic balance of T regulatory cells and effector T cells producing inflammatory cytokines. Here, we report that MSCs reprogram haematopoiesis in primary (bone marrow) and secondary (spleen) lymphoid organs to provide host protection against malaria. Adoptive transfer of MSCs from malaria-infected mice to naïve recipient mice that were subsequently infected with malaria parasites dramatically accelerated the formation of colony-forming units-erythroid cells in the bone marrow. Adoptively transferred MSCs also induced expression of the key erythroid cell differentiation factor GATA-1 in the spleen of recipient animals. Interestingly, we further observed a subtle increase in the CD34+ hematopoietic stem and progenitor cells in lymphoid organs, including spleen and lymph nodes. Infusion of MSCs also enhanced T cell proliferation, resulting in increased numbers of both CD4+ and CD8+ T cells in the spleen. MSCs also inhibited the induction of the negative co-stimulatory receptor programmed death-1 by T cells in recipient animals upon infection with malaria parasites. Taken together, our findings suggest that MSCs play a critical role in host protection against malaria infection by modulating erythropoiesis and lymphopoiesis.
Collapse
|
9
|
Yu Y, Li M, Zhou Y, Shi Y, Zhang W, Son G, Ge J, Zhao J, Zhang Z, Ye D, Yang C, Wang S. Activation of mesenchymal stem cells promotes new bone formation within dentigerous cyst. Stem Cell Res Ther 2020; 11:476. [PMID: 33168086 PMCID: PMC7653780 DOI: 10.1186/s13287-020-01999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022] Open
Abstract
Background Dentigerous cyst (DC) is a bone destructive disease and remains a challenge for clinicians. Marsupialization enables the bone to regenerate with capsule maintaining, making it a preferred therapeutic means for DC adjacent to vital anatomical structures. Given that capsules of DC are derived from odontogenic epithelium remnants at the embryonic stage, we investigated whether there were mesenchymal stem cells (MSCs) located in DC capsules and the role that they played in the bone regeneration after marsupialization. Methods Samples obtained before and after marsupialization were used for histological detection and cell culture. The stemness of cells isolated from fresh tissues was analyzed by morphology, surface marker, and multi-differentiation assays. Comparison of proliferation ability between MSCs isolated from DC capsules before (Bm-DCSCs) and after (Am-DCSCs) marsupialization was evaluated by Cell Counting Kit-8 (CCK-8), fibroblast colony-forming units (CFU-F), and 5′-ethynyl-2′-deoxyuridine (EdU) assay. Their osteogenic capacity in vitro was detected by alkaline phosphatase (ALP) and Alizarin Red staining (ARS), combined with real-time polymerase chain reaction (RT-PCR) and immunofluorescence (IF) staining. Subcutaneous ectopic osteogenesis as well as cranial bone defect model in nude mice was performed to detect their bone regeneration and bone defect repairability. Results Bone tissue and strong ALP activity were detected in the capsule of DC after marsupialization. Two types of MSCs were isolated from fibrous capsules of DC both before (Bm-DCSCs) and after (Am-DCSCs) marsupialization. These fibroblast-like, colony-forming cells expressed MSC markers (CD44+, CD90+, CD31−, CD34−, CD45−), and they could differentiate into osteoblast-, adipocyte-, and chondrocyte-like cells under induction. Notably, Am-DCSCs performed better in cell proliferation and self-renewal. Moreover, Am-DCSCs showed a greater osteogenic capacity both in vitro and in vivo compared with Bm-DCSCs. Conclusions There are MSCs residing in capsules of DC, and the cell viability as well as the osteogenic capacity of them is largely enhanced after marsupialization. Our findings suggested that MSCs might play a crucial role in the healing process of DC after marsupialization, thus providing new insight into the treatment for DC by promoting the osteogenic differentiation of MSCs inside capsules.
Collapse
Affiliation(s)
- Yejia Yu
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyu Li
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqiong Zhou
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueqi Shi
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Engineering Research Centre of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Geehun Son
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Ge
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhao
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral-maxillofacial Head and Neck Oncology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxia Ye
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chi Yang
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shaoyi Wang
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Centre for Oral Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Tang H, Chu Y, Huang Z, Cai J, Wang Z. The metastatic phenotype shift toward myofibroblast of adipose-derived mesenchymal stem cells promotes ovarian cancer progression. Carcinogenesis 2020; 41:182-193. [PMID: 31046126 DOI: 10.1093/carcin/bgz083] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 04/06/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer metastasizes to organs in the abdominal cavity, such as the omentum that is a rich source of adipose-derived mesenchymal stem cells (ADSCs). In present, ADSCs have received more and more attention for their roles in the development of cancer. In this study, we examined α-smooth muscle actin (α-SMA) expression and carcinoma-associated fibroblast (CAF)-like differentiation capabilities in ADSCs from omentum of different patients. The effects of ADSCs on the proliferation and invasion of epithelial ovarian cancer cells (EOCCs) were also assessed in vitro and in vivo. Our results showed that ADSCs from omentum of ovarian cancer patients, no matter whether metastasis or not, expressed higher levels of α-SMA than ADSCs from patients with benign gynecologic disease. Using direct and indirect co-culture system, we found that EOCCs induced ADSCs to express CAF markers, including α-SMA and fibroblast activation protein, via the transforming growth factor beta 1 (TGF-β1) signaling pathway. Moreover, co-cultured ADSCs exhibited functional properties similar to those of CAFs, including the ability to promote EOCCs proliferation, progression and metastasis both in vitro and in vivo. Furthermore, blocking the TGF-β1 pathway can counteract the CAF-like differentiation and tumor promotion effect of ADSCs. Our results suggest that ADSCs are a source of CAFs and that they participate in the interaction between EOCCs and the omental microenvironment. EOCCs could induce ADSCs in the omentum to differentiate before ovarian cancer metastasis, which participate in the formation of omental metastatic niches and promote the proliferation and invasion of ovarian cancer.
Collapse
Affiliation(s)
- Huijuan Tang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijing Chu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zaiju Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Patterson AL, George JW, Chatterjee A, Carpenter TJ, Wolfrum E, Chesla DW, Teixeira JM. Putative human myometrial and fibroid stem-like cells have mesenchymal stem cell and endometrial stromal cell properties. Hum Reprod 2020; 35:44-57. [PMID: 31913469 PMCID: PMC6993861 DOI: 10.1093/humrep/dez247] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION Can endometrial stromal stem/progenitor cell markers, SUSD2 and CD146/CD140b, enrich for human myometrial and fibroid stem/progenitor cells? SUMMARY ANSWER SUSD2 enriches for myometrial and fibroid cells that have mesenchymal stem cell (MSC) characteristics and can also be induced to decidualise. WHAT IS KNOWN ALREADY Mesenchymal stem-like cells have been separately characterised in the endometrial stroma and myometrium and may contribute to diseases in their respective tissues. STUDY DESIGN, SIZE, DURATION Normal myometrium, fibroids and endometrium were collected from hysterectomies with informed consent. Primary cells or tissues were used from at least three patient samples for each experiment. PARTICIPANTS/MATERIALS, SETTING, METHODS Flow cytometry, immunohistochemistry and immunofluorescence were used to characterise tissues. In vitro colony formation in normoxic and hypoxic conditions, MSC lineage differentiation (osteogenic and adipogenic) and decidualisation were used to assess stem cell activity. Xenotransplantation into immunocompromised mice was used to determine in vivo stem-like activity. Endpoint measures included quantitative PCR, colony formation, trichrome, Oil Red O and alkaline phosphatase activity staining. MAIN RESULTS AND THE ROLE OF CHANCE CD146+CD140b+ and/or SUSD2+ myometrial and fibroid cells were located in the perivascular region and formed more colonies in vitro compared to control cells and differentiated down adipogenic and osteogenic mesenchymal lineages in vitro. SUSD2+ myometrial cells had greater in vitro decidualisation potential, and SUSD2+ fibroid cells formed larger tumours in vivo compared to control cells. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Markers used in this study enrich for cells with stem/progenitor cell activity; however, they do not distinguish stem from progenitor cells. SUSD2+ myometrial cells express markers of decidualisation when treated in vitro, but in vivo assays are needed to fully demonstration their ability to decidualise. WIDER IMPLICATIONS OF THE FINDINGS These results suggest a possible common MSC for the endometrial stroma and myometrium, which could be the tumour-initiating cell for uterine fibroids. STUDY FUNDING/COMPETING INTEREST(S) These studies were supported by NIH grants to JMT (R01OD012206) and to ALP (F32HD081856). The authors certify that we have no conflicts of interest to disclose.
Collapse
Affiliation(s)
- Amanda L Patterson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Division of Animal Sciences and Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO 65203, USA
| | - Jitu W George
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Anindita Chatterjee
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Tyler J Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - David W Chesla
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Office of Research, Spectrum Health, Grand Rapids, MI 49503, USA
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| |
Collapse
|
12
|
Scalzone A, Ferreira AM, Tonda-Turo C, Ciardelli G, Dalgarno K, Gentile P. The interplay between chondrocyte spheroids and mesenchymal stem cells boosts cartilage regeneration within a 3D natural-based hydrogel. Sci Rep 2019; 9:14630. [PMID: 31601910 PMCID: PMC6787336 DOI: 10.1038/s41598-019-51070-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/25/2019] [Indexed: 12/30/2022] Open
Abstract
Articular cartilage (AC) lacks the ability to self-repair and cell-based approaches, primarily based on using chondrocytes and mesenchymal stem cells (MSCs), are emerging as effective technology to restore cartilage functionality, because cells synergic functionality may support the maintenance of chondrogenic phenotype and promote extracellular matrix regeneration. This work aims to develop a more physiologically representative co-culture system to investigate the influence of MSCs on the activity of chondrocytes. A thermo-sensitive chitosan-based hydrogel, ionically crosslinked with β-glycerophosphate, is optimised to obtain sol/gel transition at physiological conditions within 5 minutes, high porosity with pores diameter <30 µm, and in vitro mechanical integrity with compressive and equilibrium Young's moduli of 37 kPa and 17 kPa, respectively. Live/dead staining showed that after 1 and 3 days in culture, the encapsulated MSCs into the hydrogels are viable and characterised by round-like morphology. Furthermore chondrocyte spheroids, seeded on top of gels that contained either MSCs or no cells, show that the encapsulated MSCs stimulate chondrocyte activity within a gel co-culture, both in terms of maintaining the coherence of chondrocyte spheroids, leading to a larger quantity of CD44 (by immunofluorescence) and a higher production of collagen and glycosaminoglycans (by histology) compared with the mono-culture.
Collapse
Affiliation(s)
- Annachiara Scalzone
- School of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Ana M Ferreira
- School of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino Corso Duca degli Abruzzi 29, Turin, 10129, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino Corso Duca degli Abruzzi 29, Turin, 10129, Italy
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| |
Collapse
|
13
|
Pedrosa-Gerasmio IR, Tanaka T, Sumi A, Kondo H, Hirono I. Effects of 5-Aminolevulinic Acid on Gene Expression, Immunity, and ATP Levels in Pacific White Shrimp, Litopenaeus vannamei. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:829-843. [PMID: 30145744 DOI: 10.1007/s10126-018-9852-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
With the emergence of several infectious diseases in shrimp aquaculture, there is a growing interest in the use of feed additives to enhance shrimp immunity. Recently, the use of 5-aminolevulinic acid (5-ALA), a non-protein amino acid that plays a rate-limiting role in heme biosynthesis, has received attention for its positive effect on immunity in livestock animals. To evaluate the effect of 5-ALA in the Pacific white shrimp, Litopenaeus vannamei, we conducted microarray analysis, a Vibrio parahaemolyticus immersion challenge test, an ATP level assay, and gene expression analysis of some hemoproteins and genes associated with heme synthesis and degradation. Out of 15,745 L. vannamei putative genes on the microarray, 101 genes were differentially expressed by more than fourfold (p < 0.05) between 5-ALA-supplemented and control shrimp hepatopancreas. 5-ALA upregulated 99 of the 101 genes, 41 of which were immune- and defense-related genes based on sequence homology. Compared to the control, the 5-ALA-supplemented group had a higher survival rate in the challenge test, higher transcript levels of porphobilinogen synthase, ferrochelatase, catalase, nuclear receptor E75, and heme oxygenase-1 and higher levels of ATP. These findings suggest that dietary 5-ALA enhanced the immune response of L. vannamei to V. parahaemolyticus, upregulated immune- and defense-related genes, and enhanced aerobic energy metabolism, respectively. Further studies are needed to elucidate the extent of 5-ALA use in shrimp culture.
Collapse
Affiliation(s)
- Ivane R Pedrosa-Gerasmio
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | | - Hidehiro Kondo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan.
| |
Collapse
|
14
|
Patterson AL, George JW, Chatterjee A, Carpenter T, Wolfrum E, Pru JK, Teixeira JM. Label-Retaining, Putative Mesenchymal Stem Cells Contribute to Murine Myometrial Repair During Uterine Involution. Stem Cells Dev 2018; 27:1715-1728. [PMID: 30328770 DOI: 10.1089/scd.2018.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Uterine remodeling during pregnancy is a fundamental, dynamic process required for successful propagation of eutherian species. The uterus can increase in size up to 40-fold during pregnancy, which is largely attributed to expansion of the myometrium by hyperplasia and hypertrophy. After pregnancy, the uterus repairs the remodeled or "damaged" tissue during uterine involution (INV). Little is known about this repair process, particularly the role of mesenchymal stem/progenitor cells. The objective of this study was to identify and characterize putative mesenchymal stem/progenitor cells in the murine myometrium using a combination of label retention and mesenchymal stem cell (MSC) marker expression and a pregnancy and uterine INV model. Tet-off transgenic mice with the Cre-lox system were used to specifically label mesenchymal cells (ie, myometrial and endometrial stromal cells) within the uterus while avoiding other cell types (eg, epithelial, immune, and endothelial cells) to identify slowly dividing cells and assess their stem cell qualities. We identified myometrial label-retaining cells (LRCs) that persisted for at least 3 months, expressed CD146 and CD140b (MSC markers), and proliferated at a higher rate during uterine INV compared with nonlabeled cells. The LRCs did not appear to express either estrogen receptor alpha or progesterone receptor, nor did the number of LRCs change at different estrous stages or in response to exogenous estradiol or progesterone administration, suggesting that LRCs were not involved in normal estrous cycling. The results from this study provide important insight into putative stem/progenitor cells in the myometrium and their possible role in uterine physiology.
Collapse
Affiliation(s)
- Amanda L Patterson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Jitu W George
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Anindita Chatterjee
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Tyler Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Emily Wolfrum
- Department of Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - James K Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| |
Collapse
|
15
|
Kusuma GD, Barabadi M, Tan JL, Morton DAV, Frith JE, Lim R. To Protect and to Preserve: Novel Preservation Strategies for Extracellular Vesicles. Front Pharmacol 2018; 9:1199. [PMID: 30420804 PMCID: PMC6215815 DOI: 10.3389/fphar.2018.01199] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs)-based therapeutics are based on the premise that EVs shed by stem cells exert similar therapeutic effects and these have been proposed as an alternative to cell therapies. EV-mediated delivery is an effective and efficient system of cell-to-cell communication which can confer therapeutic benefits to their target cells. EVs have been shown to promote tissue repair and regeneration in various animal models such as, wound healing, cardiac ischemia, diabetes, lung fibrosis, kidney injury, and many others. Given the unique attributes of EVs, considerable thought must be given to the preservation, formulation and cold chain strategies in order to effectively translate exciting preclinical observations to clinical and commercial success. This review summarizes current understanding around EV preservation, challenges in maintaining EV quality, and also bioengineering advances aimed at enhancing the long-term stability of EVs.
Collapse
Affiliation(s)
- Gina D. Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Mehri Barabadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Jean L. Tan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Jessica E. Frith
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
16
|
The Effects of BMP-2, miR-31, miR-106a, and miR-148a on Osteogenic Differentiation of MSCs Derived from Amnion in Comparison with MSCs Derived from the Bone Marrow. Stem Cells Int 2017; 2017:7257628. [PMID: 29348760 PMCID: PMC5733904 DOI: 10.1155/2017/7257628] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/13/2017] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) offering valuable anticipations for the treatment of degenerative diseases. They can be found in many tissues including amnion. MSCs from amnion (AM-MSCs) can differentiate into osteoblast similar to that of bone marrow-derived MSCs (BM-MSCs). However, the ability is not much efficient compared to BM-MSCs. This study aimed to examine the effects of BMP-2 and miRNAs on osteogenic differentiation of AM-MSCs compared to those of BM-MSCs. The osteogenic differentiation capacity after miRNA treatment was assessed by ALP expression, ALP activity, and osteogenic marker gene expression. The results showed that the osteogenic differentiation capacity increased after BMP-2 treatment both in AM-MSCs and BM-MSCs. MiR-31, miR-106a, and miR-148a were downregulated during the osteogenic differentiation. After transfection with anti-miRNAs, ALP activity and osteogenic genes were increased over the time of differentiation. The data lead to the potential for using AM-MSCs as an alternative source for bone regeneration. Moreover, the information of miRNA expression and function during osteogenic differentiation may be useful for the development of new therapeutics or enhanced an in vitro culture technique required for stem cell-based therapies in the bone regeneration.
Collapse
|
17
|
Shen EM, McCloskey KE. Development of Mural Cells: From In Vivo Understanding to In Vitro Recapitulation. Stem Cells Dev 2017; 26:1020-1041. [DOI: 10.1089/scd.2017.0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Edwin M. Shen
- Graduate Program in Biological Engineering and Small-scale Technologies
| | - Kara E. McCloskey
- Graduate Program in Biological Engineering and Small-scale Technologies
- School of Engineering, University of California, Merced, Merced, California
| |
Collapse
|
18
|
Földes A, Kádár K, Kerémi B, Zsembery Á, Gyires K, S Zádori Z, Varga G. Mesenchymal Stem Cells of Dental Origin-Their Potential for Antiinflammatory and Regenerative Actions in Brain and Gut Damage. Curr Neuropharmacol 2017; 14:914-934. [PMID: 26791480 PMCID: PMC5333580 DOI: 10.2174/1570159x14666160121115210] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/14/2015] [Accepted: 01/20/2016] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease, Parkinson’s disease, traumatic brain and spinal cord injury and neuroinflammatory multiple sclerosis are diverse disorders of the central nervous system. However, they are all characterized by various levels of inappropriate inflammatory/immune response along with tissue destruction. In the gastrointestinal system, inflammatory bowel disease (IBD) is also a consequence of tissue destruction resulting from an uncontrolled inflammation. Interestingly, there are many similarities in the immunopathomechanisms of these CNS disorders and the various forms of IBD. Since it is very hard or impossible to cure them by conventional manner, novel therapeutic approaches such as the use of mesenchymal stem cells, are needed. Mesenchymal stem cells have already been isolated from various tissues including the dental pulp and periodontal ligament. Such cells possess transdifferentiating capabilities for different tissue specific cells to serve as new building blocks for regeneration. But more importantly, they are also potent immunomodulators inhibiting proinflammatory processes and stimulating anti-inflammatory mechanisms. The present review was prepared to compare the immunopathomechanisms of the above mentioned neurodegenerative, neurotraumatic and neuroinflammatory diseases with IBD. Additionally, we considered the potential use of mesenchymal stem cells, especially those from dental origin to treat such disorders. We conceive that such efforts will yield considerable advance in treatment options for central and peripheral disorders related to inflammatory degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gábor Varga
- Departments of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
19
|
Takagi C, Yagi H, Hieda M, Tajima K, Hibi T, Abe Y, Kitago M, Shinoda M, Itano O, Kitagawa Y. Mesenchymal Stem Cells Contribute to Hepatic Maturation of Human Induced Pluripotent Stem Cells. Eur Surg Res 2017; 58:27-39. [DOI: 10.1159/000448516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
<b><i>Background:</i></b> Induced pluripotent stem cells (iPSCs) are human somatic cells that have been reprogrammed to a pluripotent state. Several methods have been used to generate hepatocyte-like cells from iPSCs. However, these hepatic cells have limited clinical application because of their immature function compared to primary hepatocytes. Mesenchymal stem cells (MSCs) have been reported to inhibit apoptosis of hepatic cells and to improve hepatic regeneration in acute liver injury. Therefore, we expected that MSCs had the potential to positively contribute to the maturation of hepatic cells. Here we demonstrate the effect of MSCs on the maturation of hepatoblasts derived from human iPSCs. <b><i>Methods:</i></b> MSCs were isolated from human bone marrow and cultured to 70-80% confluence. MSC-conditioned medium (MSC-CM) was collected 48 h after culture in hepatic maturation medium. Human iPSC-derived hepatoblasts were then cultured for 6 days with MSC-CM. Hepatic functions were analyzed and compared to those from cells cultured in general maturation medium. <b><i>Results:</i></b> Cells in both groups had a cuboidal morphology typical of hepatocytes. The proportion of Oct4-positive cells was decreased and those of albumin- and alpha-fetoprotein-positive cells were increased in the MSC-CM group. Albumin secretion and urea synthesis as well as cytochrome P450 (CYP) 3A4 activity were enhanced in the MSC-CM group. The gene expressions of some CYP enzymes were upregulated as demonstrated by RT-PCR. <b><i>Conclusion:</i></b> Secreted molecules from human MSCs could enhance the hepatic function of human iPSC-derived hepatocyte-like cells. Although more technological innovations are needed, MSC-CM will be useful as a novel efficient strategy for clinically relevant hepatic cell maturation.
Collapse
|
20
|
Ribeiro A, Ritter T, Griffin M, Ceredig R. Development of a flow cytometry-based potency assay for measuring the in vitro immunomodulatory properties of mesenchymal stromal cells. Immunol Lett 2016; 177:38-46. [PMID: 27451032 DOI: 10.1016/j.imlet.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/04/2016] [Accepted: 07/19/2016] [Indexed: 01/14/2023]
Abstract
Human bone marrow-derived mesenchymal stromal/stem cells (MSC) have well-documented modulatory effects on multiple immune cell types. Although these effects are linked to their therapeutic benefit in diverse diseases, a reliable, quantitative assay of the immunomodulatory potency of individual human MSC preparations is lacking. The aims of this study were to develop an optimised rapid turnaround, flow cytometry-based whole-blood assay to monitor MSC potency and to validate its application to MSC immunomodulation. A protocol for short-term LPS stimulation of anti-coagulated whole blood samples followed by combined surface CD45/CD14 and intracellular TNF-α staining was initially developed for analysis on a 4 colour desktop cytometer. Optimal monocyte activation was dependent on the presence of extracellular calcium ions thereby precluding the use of EDTA and sodium citrate as anticoagulants. Optimal assay conditions proved to be 1ng/mL ultrapure-LPS added to 10-fold diluted, heparin anti-coagulated whole blood incubated for 6h at 37°C. Under these conditions, addition of human bone marrow-derived MSC (hBM-MSC) from multiple donors resulted in a reproducible, dose-dependent inhibition of LPS-stimulated monocyte TNF-α expression. We conclude that this protocol represents a practical, quantitative assay of a clinically relevant functional effect of hBM-MSCs as well as other immunomodulatory agents.
Collapse
Affiliation(s)
- Andreia Ribeiro
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and School of Medicine, National University of Ireland, Galway, Ireland.
| | - Thomas Ritter
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and School of Medicine, National University of Ireland, Galway, Ireland.
| | - Matthew Griffin
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and School of Medicine, National University of Ireland, Galway, Ireland.
| | - Rhodri Ceredig
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Science and School of Medicine, National University of Ireland, Galway, Ireland.
| |
Collapse
|
21
|
Raphel J, Karlsson J, Galli S, Wennerberg A, Lindsay C, Haugh MG, Pajarinen J, Goodman SB, Jimbo R, Andersson M, Heilshorn SC. Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants. Biomaterials 2016; 83:269-82. [PMID: 26790146 PMCID: PMC4771523 DOI: 10.1016/j.biomaterials.2015.12.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/19/2015] [Accepted: 12/29/2015] [Indexed: 01/10/2023]
Abstract
Here we present the design of an engineered, elastin-like protein (ELP) that is chemically modified to enable stable coatings on the surfaces of titanium-based dental and orthopaedic implants by novel photocrosslinking and solution processing steps. The ELP includes an extended RGD sequence to confer bio-signaling and an elastin-like sequence for mechanical stability. ELP thin films were fabricated on cp-Ti and Ti6Al4V surfaces using scalable spin and dip coating processes with photoactive covalent crosslinking through a carbene insertion mechanism. The coatings withstood procedures mimicking dental screw and hip replacement stem implantations, a key metric for clinical translation. They promoted rapid adhesion of MG63 osteoblast-like cells, with over 80% adhesion after 24 h, compared to 38% adhesion on uncoated Ti6Al4V. MG63 cells produced significantly more mineralization on ELP coatings compared to uncoated Ti6Al4V. Human bone marrow mesenchymal stem cells (hMSCs) had an earlier increase in alkaline phosphatase activity, indicating more rapid osteogenic differentiation and mineral deposition on adhesive ELP coatings. Rat tibia and femur in vivo studies demonstrated that cell-adhesive ELP-coated implants increased bone-implant contact area and interfacial strength after one week. These results suggest that ELP coatings withstand surgical implantation and promote rapid osseointegration, enabling earlier implant loading and potentially preventing micromotion that leads to aseptic loosening and premature implant failure.
Collapse
Affiliation(s)
- Jordan Raphel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Johan Karlsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Silvia Galli
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Ann Wennerberg
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Christopher Lindsay
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Matthew G Haugh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ryo Jimbo
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Evaluation of Tissue Homogenization to Support the Generation of GMP-Compliant Mesenchymal Stromal Cells from the Umbilical Cord. Stem Cells Int 2016; 2016:3274054. [PMID: 27034683 PMCID: PMC4806688 DOI: 10.1155/2016/3274054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Recent studies have demonstrated that the umbilical cord (UC) is an excellent source of mesenchymal stromal cells (MSCs). However, current protocols for extracting and culturing UC-MSCs do not meet current good manufacturing practice (cGMP) standards, in part due to the use of xenogeneic reagents. To support the development of a cGMP-compliant method, we have examined an enzyme-free isolation method utilizing tissue homogenization (t-H) followed by culture in human platelet lysate (PL) supplemented media. The yield and viability of cells after t-H were comparable to those obtained after collagenase digestion (Col-D). Importantly, kinetic analysis of cultured cells showed logarithmic growth over 10 tested passages, although the rate of cell division was lower for t-H as compared to Col-D. This slower growth of t-H-derived cells was also reflected in their longer population doubling time. Interestingly, there was no difference in the expression of mesenchymal markers and trilineage differentiation potential of cells generated using either method. Finally, t-H-derived cells had greater clonogenic potential compared to Col-D/FBS but not Col-D/PL and were able to maintain CFU-F capacity through P7. This bench scale study demonstrates the possibility of generating therapeutic doses of good quality UC-MSCs within a reasonable length of time using t-H and PL.
Collapse
|
23
|
Choi SY, Song MS, Ryu PD, Lam ATN, Joo SW, Lee SY. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway. Int J Nanomedicine 2015; 10:4383-92. [PMID: 26185441 PMCID: PMC4500612 DOI: 10.2147/ijn.s78775] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gold nanoparticles (AuNPs) are attractive materials for use in biomedicine due to their physical properties. Increasing evidence suggests that several nanoparticles induce the differentiation of human mesenchymal stem cells into osteoblasts and adipocytes. In this study, we hypothesized that chitosan-conjugated AuNPs promote the osteogenic differentiation of human adipose-derived mesenchymal stem cells. For the evaluation of osteogenic differentiation, alizarin red staining, an alamarBlue(®) assay, and a quantitative real-time polymerase chain reaction analysis were performed. In order to examine specific signaling pathways, immunofluorescence and a western blotting assay were performed. Our results demonstrate that chitosan-conjugated AuNPs increase the deposition of calcium content and the expression of marker genes related to osteogenic differentiation in human adipose-derived mesenchymal stem cells at nontoxic concentrations. These results indicate that chitosan-conjugated AuNPs promote osteogenesis through the Wnt/β-catenin signaling pathway. Therefore, chitosan-conjugated AuNPs can be used as a reagent for promoting bone formation.
Collapse
Affiliation(s)
- Seon Young Choi
- Laboratory of Veterinary Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Min Seok Song
- Laboratory of Veterinary Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Pan Dong Ryu
- Laboratory of Veterinary Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Anh Thu Ngoc Lam
- Department of Chemistry, Soongsil University, Seoul, South Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, South Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
24
|
Alcayaga-Miranda F, Cuenca J, Luz-Crawford P, Aguila-Díaz C, Fernandez A, Figueroa FE, Khoury M. Characterization of menstrual stem cells: angiogenic effect, migration and hematopoietic stem cell support in comparison with bone marrow mesenchymal stem cells. Stem Cell Res Ther 2015; 6:32. [PMID: 25889741 PMCID: PMC4404686 DOI: 10.1186/s13287-015-0013-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 12/24/2022] Open
Abstract
Introduction Stem cells isolated from menstrual fluid (MenSCs) exhibit mesenchymal stem cell (MSCs)-like properties including multi-lineage differentiation capacity. Besides, menstrual fluid has important advantages over other sources for the isolation of MSCs, including ease of access and repeated sampling in a noninvasive manner. Such attributes allow the rapid culture of MenSCs in numbers that are sufficient for therapeutical doses, at lower cell passages. Methods In this study, we advance the characterization of MenSC populations in comparison to bone marrow derived mesenchymal stem cells (BM-MSCs) with regards to proliferation, lineage differentiation, migration potential, secretion profile and angiogenic properties in vitro and in a matrigel plug assay in mice. We additionally tested their ability to support hematopoietic stem cell (HSC) expansion in vitro. Results The phenotypic analysis of MenSCs revealed a profile largely similar to the BM-MSCs with the exception of a higher expression of the adhesion molecule CD49a (alpha1-integrin). Furthermore, the fibroblast colony forming units (CFU-F) from MenSCs yielded a 2 to 4 fold higher frequency of progenitors and their in vitro migration capacity was superior to BM-MSCs. In addition, MenSCs evidenced a superior paracrine response to hypoxic conditions as evidenced by the secretion of vascular endothelial growth factor and basic fibroblast growth factor and also improved angiogenic effect of conditioned media on endothelial cells. Furthermore, MenSCs were able to induce angiogenesis in a matrigel plug assay in vivo. Thus, an 8-fold increase in hemoglobin content was observed in implanted plugs containing MenSCs compared to BM-MSCs. Finally, we demonstrated, for the first time, the capacity of MenSCs to support the ex-vivo expansion of HSCs, since higher expansion rates of the CD34 + CD133+ population as well as higher numbers of early progenitor (CFU-GEMM) colonies were observed in comparison to the BM source. Conclusions We present evidence showing superiority of MenSCs with respect to several functional aspects, in comparison with BM-MSCs. However, the impact of such properties in their use as adult-derived stem cells for regenerative3 medicine remains to be clarified. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0013-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile. .,Cells for Cells, Santiago, Chile.
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile. .,Cells for Cells, Santiago, Chile.
| | | | | | | | - Fernando E Figueroa
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile. .,Cells for Cells, Santiago, Chile.
| |
Collapse
|
25
|
Yadav NK, Shukla P, Omer A, Singh P, Singh RK. Alternative methods in toxicology: CFU assays application, limitation and future prospective. Drug Chem Toxicol 2015; 39:1-12. [PMID: 25678196 DOI: 10.3109/01480545.2014.994217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood is a fluid connective tissue which plays a vital role for normal body function. It consist different type of blood cells which is continuously reproduce inside the bone marrow from hematopoietic system. Xenobiotics could be specifically toxic to the hematopoietic system and they can cause hematological disorders by disturbing the normal functions. In vitro hematopoietic colony-forming cell assays play a crucial role to evaluate potential toxic effects of new xenobiotics and also helpful in bridging the gap between preclinical toxicology studies in animal models and clinical investigations. Use of these assays in conjunction with, high-throughput screening reduces the cost and time associated with these assays. This article provides a critical view over in vitro hematopoietic colony-forming cell assays in assessment of hematotoxicity.
Collapse
Affiliation(s)
- Navneet Kumar Yadav
- a Hematological Facility, Division of Toxicology , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India and
| | - Pooja Shukla
- a Hematological Facility, Division of Toxicology , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India and.,b Academy of Scientific and Innovative Research , New Delhi , India
| | - Ankur Omer
- a Hematological Facility, Division of Toxicology , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India and.,b Academy of Scientific and Innovative Research , New Delhi , India
| | - Poonam Singh
- a Hematological Facility, Division of Toxicology , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India and.,b Academy of Scientific and Innovative Research , New Delhi , India
| | - R K Singh
- a Hematological Facility, Division of Toxicology , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India and.,b Academy of Scientific and Innovative Research , New Delhi , India
| |
Collapse
|
26
|
|
27
|
Nemeth K. Mesenchymal stem cell therapy for immune-modulation: the donor, the recipient, and the drugs in-between. Exp Dermatol 2014; 23:625-8. [PMID: 24863432 DOI: 10.1111/exd.12459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
Abstract
Adoptive transfer of cultured bone marrow stromal cells (mesenchymal stem cells also known as MSCs) is a promising new way to aid tissue regeneration and treat a wide variety of diseases where regulation of inflammatory responses is derailed. Although significant advances have been made in the field, pinpointing important mechanistic details about how MSCs function in vitro and in vivo, there are still many unanswered questions that need to be addressed before welcoming MSCs in the therapeutic arsenal of immune mediated diseases. In this viewpoint, we highlight and discuss a few factors that we believe are critical in terms of therapeutic success employing cultured MSCs. Selecting the right donor population, choosing the best culture conditions and picking the patient population that is most likely to give a favourable therapeutic response is just as important as considering interactions between MSCs and the combination of drugs in the recipient's body. Given the complexity of MSC-host interactions, it is also imperative to develop screening tools that account for as many variables as possible and predict precisely the in vivo response rates before MSCs enter the body. To achieve this, a multidisciplinary approach is required with comprehensive knowledge of basic MSC biology, immunology, pharmacology and good clinical practice.
Collapse
Affiliation(s)
- Krisztian Nemeth
- Department of Dermatology, Dermatooncology, and Venerology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Manilay JO, Zouali M. Tight relationships between B lymphocytes and the skeletal system. Trends Mol Med 2014; 20:405-12. [DOI: 10.1016/j.molmed.2014.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/06/2014] [Accepted: 03/13/2014] [Indexed: 02/06/2023]
|
29
|
Wang K, Long Q, Jia C, Liu Y, Yi X, Yang H, Fei Z, Liu W. Over-expression of Mash1 improves the GABAergic differentiation of bone marrow mesenchymal stem cells in vitro. Brain Res Bull 2013; 99:84-94. [PMID: 24144723 DOI: 10.1016/j.brainresbull.2013.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 01/11/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have been shown to be a promising cell type for the study of neuronal differentiation; however, few attempts had been made to differentiate these cells into inhibitory gamma-aminobutyric acid (GABA)ergic neurons. In this study, we over-expressed mammalian achaete-scute homologue-1 (Mash1), a basic helix-loop-helix (bHLH) transcription factor, in Sprague-Dawley rat BMSCs via lentiviral vectors, and then induced neuronal differentiation of these cells using conditioned medium. Our Western blot results show that, under conditions of differentiation, Mash1-overexpressing BMSCs exhibit an increased expression of neuronal markers and a greater degree of neuronal morphology compared to control, non-Mash1-overexpressing cells. Using immunocytochemistry, we observed increased expression of glutamic acid decarboxylase 67 (GAD67), as well as neuron-specific nuclear protein (NeuN) and β3-tubulin, in Mash1-overexpressing BMSCs compared to control cells. Moreover, we also found the differentiated cells showed representative traces of action potentials in electrophysiological characterization. In conclusion, our study demonstrated that over-expression of Mash1 can improve GABAergic differentiation of BMSCs in vitro.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Fourth Military Medical University, No.17 Chang-le West Road, Xi'an 710032, China; Department of Neurosurgery, Qingdao 401 Hospital of PLA, No. 22 Minjiang Road, Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bertanha M, Moroz A, Almeida R, Alves FC, Acorci Valério MJ, Moura R, Domingues MAC, Sobreira ML, Deffune E. Tissue-engineered blood vessel substitute by reconstruction of endothelium using mesenchymal stem cells induced by platelet growth factors. J Vasc Surg 2013; 59:1677-85. [PMID: 23830317 DOI: 10.1016/j.jvs.2013.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/02/2013] [Accepted: 05/10/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cardiovascular diseases remain leaders as the major causes of mortality in Western society. Restoration of the circulation through construction of bypass surgical treatment is regarded as the gold standard treatment of peripheral vascular diseases, and grafts are necessary for this purpose. The great saphenous vein is often not available and synthetic grafts have their limitations. Therefore, new techniques to produce alternative grafts have been developed and, in this sense, tissue engineering is a promising alternative to provide biocompatible grafts. This study objective was to reconstruct the endothelium layer of decellularized vein scaffolds, using mesenchymal stem cells (MSCs) and growth factors obtained from platelets. METHODS Fifteen nonpregnant female adult rabbits were used for all experiments. Adipose tissue and vena cava were obtained and subjected to MSCs isolation and tissue decellularization, respectively. MSCs were subjected to differentiation using endothelial inductor growth factor (EIGF) obtained from human platelet lysates. Immunofluorescence, histological and immunohistochemical analyses were employed for the final characterization of the obtained blood vessel substitute. RESULTS The scaffolds were successfully decellularized with sodium dodecyl sulfate. MSCs actively adhered at the scaffolds, and through stimulation with EIGF were differentiated into functional endothelial cells, secreting significantly higher quantities of von Willebrand factor (0.85 μg/mL; P < .05) than cells cultivated under the same conditions, without EIGF (0.085 μg/mL). Cells with evident morphologic characteristics of endothelium were seen at the lumen of the scaffolds. These cells also stained positive for fascin protein, which is highly expressed by differentiated endothelial cells. CONCLUSIONS Taken together, the use of decellularized bioscaffold and subcutaneous MSCs seems to be a potential approach to obtain bioengineered blood vessels, in the presence of EIGF supplementation.
Collapse
Affiliation(s)
- Matheus Bertanha
- Department of Surgery and Orthopedics, Vascular Laboratory, Botucatu Medical School, UNESP-Paulista State University, Botucatu, Brazil; Cell Engineering Laboratory, Blood Transfusion Center, Botucatu Medical School, UNESP-Paulista State University, Botucatu, Brazil.
| | - Andrei Moroz
- Cell Engineering Laboratory, Blood Transfusion Center, Botucatu Medical School, UNESP-Paulista State University, Botucatu, Brazil; Department of Morphology, Extracellular Matrix Laboratory, Botucatu Biosciences Institute, UNESP-Paulista State University, Botucatu, Brazil
| | - Rodrigo Almeida
- Cell Engineering Laboratory, Blood Transfusion Center, Botucatu Medical School, UNESP-Paulista State University, Botucatu, Brazil
| | - Flavia Cilene Alves
- Cell Engineering Laboratory, Blood Transfusion Center, Botucatu Medical School, UNESP-Paulista State University, Botucatu, Brazil
| | - Michele Janegitz Acorci Valério
- Cell Engineering Laboratory, Blood Transfusion Center, Botucatu Medical School, UNESP-Paulista State University, Botucatu, Brazil
| | - Regina Moura
- Department of Surgery and Orthopedics, Vascular Laboratory, Botucatu Medical School, UNESP-Paulista State University, Botucatu, Brazil
| | | | - Marcone Lima Sobreira
- Department of Surgery and Orthopedics, Vascular Laboratory, Botucatu Medical School, UNESP-Paulista State University, Botucatu, Brazil
| | - Elenice Deffune
- Cell Engineering Laboratory, Blood Transfusion Center, Botucatu Medical School, UNESP-Paulista State University, Botucatu, Brazil; Department of Urology, Botucatu Medical School, UNESP-Paulista State University, Botucatu, Brazil
| |
Collapse
|
31
|
Ginis I, Weinreb M, Abramov N, Shinar D, Merchav S, Schwartz A, Shirvan M. Bone progenitors produced by direct osteogenic differentiation of the unprocessed bone marrow demonstrate high osteogenic potential in vitro and in vivo. Biores Open Access 2013; 1:69-78. [PMID: 23514783 PMCID: PMC3559218 DOI: 10.1089/biores.2012.9904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tissue-engineered bone grafts seeded with mesenchymal stem cells (MSCs) have been sought as a replacement for bone grafts currently used for bone repair. For production of osteogenic constructs, MSCs are isolated from bone marrow (BM) or other tissues, expanded in culture, then trypsinized, and seeded on a scaffold. Predifferentiation of seeded cells is often desired. We describe here bone progenitor cells (BPCs) obtained by direct osteogenic differentiation of unprocessed BM bypassing isolation of MSCs. Human BM aspirates were incubated for 2 weeks with a commonly used osteogenic medium (OM), except no fetal calf serum, serum substitutes, or growth factors were added, because responding stem and/or progenitor cells were present in the BM milieu. The adherent cells remaining after the culture medium and residual BM were washed out, expressed high levels of bone-specific alkaline phosphatase (ALP) on their surface, demonstrated high ALP activity, were capable of mineralization of the intercellular space, and expressed genes associated with osteogenesis. These parameters in BPCs were similar and even at higher levels compared to MSCs subjected to osteogenic differentiation for 2 weeks. The yield of BPCs per 1 mL BM was 0.71±0.39×10(6). In comparison, the yield of MSCs produced by adhesion of mononuclear cells derived from the same amount of BM and cultured in a commercial growth medium for 2 weeks was 0.3±0.17×10(6). When a scaffold was added to the BM-OM mixture, and the mixture was cultured in a simple rotational bioreactor; the resulting BPCs were obtained already seeded on the scaffold. BPCs seeded on scaffolds were capable of proliferation for at least 6 weeks, keeping high levels of ALP activity, expressing osteogenic genes, and mineralizing the scaffolds. Autologous rat BPCs seeded on various scaffolds were transplanted into critical-size calvarial defects. Six weeks after transplantation of polylactic acid/polyglycolic acid scaffolds, 76.1%±18.3% of the defects were filled with a new bone, compared to 37.9%±28.4% in the contralateral defects transplanted with the scaffolds without cells.
Collapse
Affiliation(s)
- Irene Ginis
- Teva Pharmaceutical Industries LTD , Petach Tikva, Israel
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Stem cells are emerging as therapeutic candidates in a variety of diseases because of their multipotent capacities. Among these, mesenchymal stem cells (MSCs) derived from bone marrow, umbilical cord blood or adipose tissue, comprise a population of cells that exhibit extensive proliferative potential and retain the ability to differentiate into multiple tissue-specific lineage cells including osteoblasts, chondrocytes, and adipocytes. MSCs have also been shown to enhance neurological recovery, although the therapeutic effects seem to be derived from an indirect paracrine effect rather than direct cell replacement. MSCs secrete neurotrophic factors, promote endogenous neurogenesis and angiogenesis, encourage synaptic connection and remyelination of damaged axons, decrease apoptosis, and regulate inflammation primarily through paracrine actions. Accordingly, MSCs may prevail as a promising cell source for cell-based therapy in neurological diseases.
Collapse
Affiliation(s)
- Jung Hwa Seo
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea.
| | | |
Collapse
|
33
|
Abstract
The search for more accessible mesenchymal stem cells than those found in bone marrow has propelled interest in dental tissues. Human dental stem/progenitor cells (collectively termed dental stem cells [DSCs]) that have been isolated and characterized include dental pulp stem cells, stem cells from exfoliated deciduous teeth, stem cells from apical papilla, periodontal ligament stem cells, and dental follicle progenitor cells. Common characteristics of these cell populations are the capacity for self-renewal and the ability to differentiate into multiple lineages. In vitro and animal studies have shown that DSCs can differentiate into osseous, odontogenic, adipose, endothelial, and neural-like tissues.
Collapse
Affiliation(s)
- Christine M Sedgley
- Department of Endodontology, School of Dentistry, Oregon Health and Science University, 611 Southwest Campus Drive, Portland, OR 97239, USA.
| | | |
Collapse
|
34
|
Functional recovery and neuronal regeneration of a rat model of epilepsy by transplantation of Hes1-down regulated bone marrow stromal cells. Neuroscience 2012; 212:214-24. [DOI: 10.1016/j.neuroscience.2012.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/24/2012] [Accepted: 04/05/2012] [Indexed: 01/22/2023]
|
35
|
Kellathur SN, Lou HX. Cell and tissue therapy regulation: Worldwide status and harmonization. Biologicals 2012; 40:222-4. [DOI: 10.1016/j.biologicals.2012.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 01/14/2023] Open
|
36
|
Wu L, Prins HJ, Helder MN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng Part A 2012; 18:1542-51. [PMID: 22429306 DOI: 10.1089/ten.tea.2011.0715] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Earlier, we have shown that the increased cartilage production in pellet co-cultures of chondrocytes and bone marrow-derived mesenchymal stem cells (BM-MSCs) is due to a trophic role of the MSC in stimulating chondrocyte proliferation and matrix production rather than MSCs actively undergoing chondrogenic differentiation. These studies were performed in a culture medium that was not compatible with the chondrogenic differentiation of MSCs. In this study, we tested whether the trophic role of the MSCs is dependent on culturing co-culture pellets in a medium that is compatible with the chondrogenic differentiation of MSCs. In addition, we investigated whether the trophic role of the MSCs is dependent on their origins or is a more general characteristic of MSCs. Human BM-MSCs and bovine primary chondrocytes were co-cultured in a medium that was compatible with the chondrogenic differentiation of MSCs. Enhanced matrix production was confirmed by glycosaminoglycans (GAG) quantification. A species-specific quantitative polymerase chain reaction demonstrated that the cartilage matrix was mainly of bovine origin, indicative of a lack of the chondrogenic differentiation of MSCs. In addition, pellet co-cultures were overgrown by bovine cells over time. To test the influence of origin on MSCs' trophic effects, the MSCs isolated from adipose tissue and the synovial membrane were co-cultured with human primary chondrocytes, and their activity was compared with BM-MSCs, which served as control. GAG quantification again confirmed increased cartilage matrix production, irrespective of the source of the MSCs. EdU staining combined with cell tracking revealed an increased proliferation of chondrocytes in each condition. Irrespective of the MSC source, a short tandem repeat analysis of genomic DNA showed a decrease in MSCs in the co-culture over time. Our results clearly demonstrate that in co-culture pellets, the MSCs stimulate cartilage formation due to a trophic effect on the chondrocytes rather than differentiating into chondrocytes, irrespective of culture condition or origin. This implies that the trophic effect of MSCs in co-cultures is a general phenomenon with potential implications for use in cartilage repair strategies.
Collapse
Affiliation(s)
- Ling Wu
- Department of Tissue Regeneration, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Electric impedance sensing in cell-substrates for rapid and selective multipotential differentiation capacity monitoring of human mesenchymal stem cells. Biosens Bioelectron 2012; 34:63-9. [DOI: 10.1016/j.bios.2012.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 01/18/2023]
|
38
|
Peroni JF, Borjesson DL. Anti-inflammatory and immunomodulatory activities of stem cells. Vet Clin North Am Equine Pract 2012; 27:351-62. [PMID: 21872763 DOI: 10.1016/j.cveq.2011.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The recent interest in equine stem cell biology and the rapid increase in experimental data highlight the growing attention that this topic has been receiving over the past few years. Within the field of stem cell biology, the relevance of immunobiology is of particular intrigue. It appears that optimal and effective stem cell therapy for equine patients will require a thorough analysis of the immune properties of stem cells as well as their response to immune mediators. The main goal of this review is to discuss the biology of adult mesenchymal stem cells in the context of immunology.
Collapse
Affiliation(s)
- John F Peroni
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, H-322, Athens, GA 30602, USA.
| | | |
Collapse
|
39
|
Ishizaka R, Iohara K, Murakami M, Fukuta O, Nakashima M. Regeneration of dental pulp following pulpectomy by fractionated stem/progenitor cells from bone marrow and adipose tissue. Biomaterials 2011; 33:2109-18. [PMID: 22177838 DOI: 10.1016/j.biomaterials.2011.11.056] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 11/21/2011] [Indexed: 12/31/2022]
Abstract
Pulp stem/progenitor cells can induce complete pulp regeneration. However, due to the limited availability of pulp tissue with age, there is a need to examine other sources for fractions of side population (SP) cells. In the present investigation bone marrow and adipose tissues of the same individual were evaluated as alternate sources. Pulp CD31(-) SP cells have higher migration activity and higher expression of angiogenic/neurotrophic factors than bone marrow and adipose CD31(-) SP cells. Adipose tissue CD31(-) SP cell transplantation yielded the same amount of regenerated tissue as pulp derived cells. However, bone marrow CD31(-) SP cell transplantation yielded significantly less regenerated tissue in pulpectomized root canals in dogs. The rate of matrix formation was much higher in adipose CD31(-) SP cell transplantation compared to pulp CD31(-) SP cell transplantation on day 28. Microarray analysis demonstrated similar qualitative and quantitative patterns of mRNA expression characteristic of pulp in the regenerated tissues from all three cell sources. Expression of many angiogenic/neurotrophic factors in the transplanted cells demonstrated trophic effects. Our results demonstrate that bone marrow and adipose CD31(-) SP cells might be suitable alternative cell sources for pulp regeneration.
Collapse
Affiliation(s)
- Ryo Ishizaka
- Department of Dental Regenerative Medicine, Center of Advanced Medicine for Dental and Oral Diseases, National Center for Geriatrics and Gerontology, Research Institute, 35 Gengo, Morioka, Obu, Aichi 474-8511, Japan
| | | | | | | | | |
Collapse
|
40
|
Role of the blood service in cellular therapy. Biologicals 2011; 40:218-21. [PMID: 22063066 DOI: 10.1016/j.biologicals.2011.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/18/2011] [Indexed: 11/21/2022] Open
Abstract
Cellular therapy is a novel form of medical or surgical treatment using cells in place of or in addition to traditional chemical drugs. The preparation of cellular products - called advanced therapy medicinal products - ATMP in Europe, requires compliance with good manufacturing practices (GMP). Based on long-term experience in blood component manufacturing, product traceability and hemovigilance, selected blood services may represent ideal settings for the development and experimental use of ATMP. International harmonization of the protocols and procedures for the preparation of ATMP is of paramount importance to facilitate the development of multicenter clinical trials with adequate sample size, which are urgently needed to determine the clinical efficacy of ATMP. This article describes European regulations on cellular therapy and summarizes the activities of the 'Franco Calori' Cell Factory, a GMP unit belonging to the department of regenerative medicine of a large public university hospital, which acquired a certification for the GMP production of ATMP in 2007 and developed nine experimental clinical protocols during 2003-2011.
Collapse
|
41
|
Zhang H, Chen Z, Bie P. Bone marrow-derived mesenchymal stem cells as immunosuppressants in liver transplantation: a review of current data. Transfus Med Rev 2011; 26:129-41. [PMID: 22015073 DOI: 10.1016/j.tmrv.2011.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This article provides an overview of the current knowledge relating to the potential use of bone marrow-derived mesenchymal stem cells (BM-MSCs) acting as immunosuppressants after liver transplantation. Clinical use of BM-MSCs in liver transplantation remains experimental, as there is uncertainty as to their mechanism of action, conflicting studies in animal models, and the possibility of their cellular fusion with hepatocytes leading to potentially genetically unstable hepatocytes. These obstacles, to their underuse, have been decreasing, and BM-MSCs have elicited great interest for possible use in solid organ transplantation. Bone marrow-derived-MSCs, when transplanted systemically, might positively influence grafted organ outcome through cell-cell contact or the secretion of soluble factors that are immunomodulatory. Thus, the use of BM-MSCs to modulate organ rejection may directly or indirectly influence the survival properties of transplanted livers.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Hepatobiliary Surgery, SouthWestern Hospital, Chongqing, China.
| | | | | |
Collapse
|
42
|
Affiliation(s)
- Johann Peterson
- Department of Pediatrics, Stanford University School of Medicine
| | | |
Collapse
|