1
|
Zamora Alvarado JE, McCloskey KE, Gopinathan A. Migration and proliferation drive the emergence of patterns in co-cultures of differentiating vascular progenitor cells. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6731-6757. [PMID: 39483091 PMCID: PMC11556463 DOI: 10.3934/mbe.2024295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Vascular cells self-organize into unique structures guided by cell proliferation, migration, and/or differentiation from neighboring cells, mechanical factors, and/or soluble signals. However, the relative contribution of each of these factors remains unclear. Our objective was to develop a computational model to explore the different factors affecting the emerging micropatterns in 2D. This was accomplished by developing a stochastic on-lattice population-based model starting with vascular progenitor cells with the potential to proliferate, migrate, and/or differentiate into either endothelial cells or smooth muscle cells. The simulation results yielded patterns that were qualitatively and quantitatively consistent with experimental observations. Our results suggested that post-differentiation cell migration and proliferation when balanced could generate between 30-70% of each cell type enabling the formation of vascular patterns. Moreover, the cell-to-cell sensing could enhance the robustness of this patterning. These findings computationally supported that 2D patterning is mechanistically similar to current microfluidic platforms that take advantage of the migration-directed self-assembly of mature endothelial and mural cells to generate perfusable 3D vasculature in permissible hydrogel environments and suggest that stem or progenitor cells may not be fully necessary components in many tissue formations like those formed by vasculogenesis.
Collapse
Affiliation(s)
- Jose E. Zamora Alvarado
- School of Engineering, University of California Merced, Merced, CA 95343, USA
- Graduate Program in Materials and Biomaterials Science and Engineering, University of California Merced, Merced, CA 95343, USA
| | - Kara E. McCloskey
- School of Engineering, University of California Merced, Merced, CA 95343, USA
- Graduate Program in Materials and Biomaterials Science and Engineering, University of California Merced, Merced, CA 95343, USA
| | - Ajay Gopinathan
- Graduate Program in Materials and Biomaterials Science and Engineering, University of California Merced, Merced, CA 95343, USA
- Department of Physics, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
2
|
Park H, Kim IG, Wu Y, Cho H, Shin J, Park SA, Chung E. Experimental investigation of esophageal reconstruction with electrospun polyurethane nanofiber and
3D
printing polycaprolactone scaffolds using a rat model. Head Neck 2020; 43:833-848. [DOI: 10.1002/hed.26540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/01/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022] Open
Affiliation(s)
- Hanaro Park
- Department of Otorhinolaryngology‐Head & Neck Surgery Samsung Changwon Hospital, Sungkyunkwan University School of Medicine Changwon South Korea
| | - In Gul Kim
- Department of Otorhinolaryngology‐Head and Neck Surgery Seoul National University Hospital Seoul South Korea
| | - Yanru Wu
- Department of Biomedical Engineering Inje University Gimhae, Gyeongnam South Korea
| | - Hana Cho
- Department of Otorhinolaryngology‐Head and Neck Surgery Seoul National University Hospital Seoul South Korea
| | - Jung‐Woog Shin
- Department of Biomedical Engineering Inje University Gimhae, Gyeongnam South Korea
| | - Su A Park
- Department of Nature‐Inspired Nanoconvergence Systems Korea Institute of Machinery and Materials Daejeon Republic of Korea
| | - Eun‐Jae Chung
- Department of Otorhinolaryngology‐Head and Neck Surgery Seoul National University Hospital Seoul South Korea
| |
Collapse
|
3
|
Lee W, Hong Y, Dai G. 3D bioprinting of vascular conduits for pediatric congenital heart repairs. Transl Res 2019; 211:35-45. [PMID: 31034816 PMCID: PMC6702035 DOI: 10.1016/j.trsl.2019.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 12/27/2022]
Abstract
In children with congenital heart defects, surgical correction often involves the use of valves, patches or vascular conduits to establish anatomic continuity. Due to the differences between the pediatric and adult populations, tissue reconstruction in pediatric patients requires a substantially different approach from those in adults. Cardiovascular anatomy of children with congenital heart defect vary, which requires tailored surgical operations for each patient. Since grafts used in these palliative surgeries are sensitive to the local hemodynamic environments, their geometries need to be precisely designed to ensure long-term performance. Tissue engineered vascular grafts (TEVGs) have made tremendous progress over the past decade, but it remains difficult to fabricate patient- and operation-specific vascular grafts. This review summarizes historical milestones of TEVG development for repairing pediatric congenital defects and current clinical outcomes. We also highlight ongoing works on 3D bioprinting of TEVGs with complex geometries and address the current limitations of each technique. Although 3D bioprinted vascular grafts with appropriate functions are yet to be developed, some of the current researches are promising to create better patient specific tissue engineered vascular grafts in the future.
Collapse
Affiliation(s)
- Wenhan Lee
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
4
|
Directional Topography Influences Adipose Mesenchymal Stromal Cell Plasticity: Prospects for Tissue Engineering and Fibrosis. Stem Cells Int 2019; 2019:5387850. [PMID: 31191675 PMCID: PMC6525798 DOI: 10.1155/2019/5387850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/24/2018] [Accepted: 02/11/2019] [Indexed: 01/17/2023] Open
Abstract
Introduction Progenitor cells cultured on biomaterials with optimal physical-topographical properties respond with alignment and differentiation. Stromal cells from connective tissue can adversely differentiate to profibrotic myofibroblasts or favorably to smooth muscle cells (SMC). We hypothesized that myogenic differentiation of adipose tissue-derived stromal cells (ASC) depends on gradient directional topographic features. Methods Polydimethylsiloxane (PDMS) samples with nanometer and micrometer directional topography gradients (wavelength (w) = 464-10, 990 nm; amplitude (a) = 49-3, 425 nm) were fabricated. ASC were cultured on patterned PDMS and stimulated with TGF-β1 to induce myogenic differentiation. Cellular alignment and adhesion were assessed by immunofluorescence microscopy after 24 h. After seven days, myogenic differentiation was examined by immunofluorescence microscopy, gene expression, and immunoblotting. Results Cell alignment occurred on topographies larger than w = 1758 nm/a = 630 nm. The number and total area of focal adhesions per cell were reduced on topographies from w = 562 nm/a = 96 nm to w = 3919 nm/a = 1430 nm. Focal adhesion alignment was increased on topographies larger than w = 731 nm/a = 146 nm. Less myogenic differentiation of ASC occurred on topographies smaller than w = 784 nm/a = 209 nm. Conclusion ASC adherence, alignment, and differentiation are directed by topographical cues. Our evidence highlights a minimal topographic environment required to facilitate the development of aligned and differentiated cell layers from ASC. These data suggest that nanotopography may be a novel tool for inhibiting fibrosis.
Collapse
|
5
|
Deriving vascular smooth muscle cells from mesenchymal stromal cells: Evolving differentiation strategies and current understanding of their mechanisms. Biomaterials 2017; 145:9-22. [PMID: 28843066 DOI: 10.1016/j.biomaterials.2017.08.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle cells (VSMCs) play essential roles in regulating blood vessel form and function. Regeneration of functional vascular smooth muscle tissue to repair vascular diseases is an area of intense research in tissue engineering and regenerative medicine. For functional vascular smooth muscle tissue regeneration to become a practical therapy over the next decade, the field will need to have access to VSMC sources that are effective, robust and safe. While pluripotent stem cells hold good future promise to this end, more immediate translation is expected to come from approaches that generate functional VSMCs from adult sources of multipotent adipose-derived and bone marrow-derived mesenchymal stromal cells (ASCs and BMSCs). The research to this end is extensive and is dominated by studies relating to classical biochemical signalling molecules used to induce differentiation of ASCs and BMSCs. However, prolonged use of the biochemical induction factors is costly and can cause potential endotoxin contamination in the culture. Over recent years several non-traditional differentiation approaches have been devised to mimic defined aspects of the native micro-environment in which VSMCs reside to contribute to the differentiation of VSMC-like cells from ASCs and BMSCs. In this review, the promises and limitations of several non-traditional culture approaches (e.g., co-culture, biomechanical, and biomaterial stimuli) targeting VSMC differentiation are discussed. The extensive crosstalk between the underlying signalling cascades are delineated and put into a translational context. It is expected that this review will not only provide significant insight into VSMC differentiation strategies for vascular smooth muscle tissue engineering applications, but will also highlight the fundamental importance of engineering the cellular microenvironment on multiple scales (with consideration of different combinatorial pathways) in order to direct cell differentiation fate and obtain cells of a desired and stable phenotype. These strategies may ultimately be applied to different sources of stem cells in the future for a range of biomaterial and tissue engineering disciplines.
Collapse
|
6
|
Hsia K, Yao CL, Chen WM, Chen JH, Lee H, Lu JH. Scaffolds and Cell-Based Tissue Engineering for Blood Vessel Therapy. Cells Tissues Organs 2016; 202:281-295. [PMID: 27548610 DOI: 10.1159/000448169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
The increasing morbidity of cardiovascular diseases in modern society has made it crucial to develop a small-caliber blood vessel. In the absence of appropriate autologous vascular grafts, an alternative prosthesis must be constructed for cardiovascular disease patients. The aim of this article is to describe the advances in making cell-seeded cardiovascular prostheses. It also discusses the combinations of types of scaffolds and cells, especially autologous stem cells, which are suitable for application in tissue-engineered vessels with the favorable properties of mechanical strength, antithrombogenicity, biocompliance, anti-inflammation, fatigue resistance and long-term durability. This article highlights the advancements in cellular tissue-engineered vessels in recent years.
Collapse
|
7
|
Park SY, Choi JW, Park JK, Song EH, Park SA, Kim YS, Shin YS, Kim CH. Tissue-engineered artificial oesophagus patch using three-dimensionally printed polycaprolactone with mesenchymal stem cells: a preliminary report. Interact Cardiovasc Thorac Surg 2016; 22:712-7. [PMID: 26969739 DOI: 10.1093/icvts/ivw048] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/26/2016] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES There has been a recent focus on 3D printing with regard to tissue engineering. We evaluated the efficacy of a 3D-printed (3DP) scaffold coated with mesenchymal stem cells (MSCs) seeded in fibrin for the repair of partial oesophageal defects. METHODS MSCs from rabbit bone marrow were cultured, and a 3DP polycaprolactone (PCL) scaffold was coated with the MSCs seeded in fibrin. The fibrin/MSC-coated 3DP PCL scaffold was implanted on a 5 × 10 mm artificial oesophageal defect in three rabbits (3DP/MSC group) and 3DP PCL-only scaffolds were implanted in three rabbits (3DP-only group). Three weeks post-procedure, the implanted sites were evaluated radiologically and histologically. RESULTS None of the rabbits showed any infection, stenosis or granulation on computed tomography. In the 3DP/MSC group, the replaced scaffolds were completely covered with regenerating mucosal epithelium and smooth muscle cells as determined by haematoxylin and eosin and Desmin staining. However, mucosal epithelium and smooth muscle cell regeneration was not evident in the 3DP-only group. CONCLUSIONS Use of the 3DP scaffold coated with MSCs seeded in fibrin resulted in successful restoration of the shape and histology of the cervical oesophagus without any graft rejection; thus, this is a promising material for use as an artificial oesophagus.
Collapse
Affiliation(s)
- Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Ajou University, Suwon, Republic of Korea
| | - Jae Won Choi
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Ju-Kyeong Park
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea Department of Molecular Science & Technology, Ajou University, Suwon, Republic of Korea
| | - Eun Hye Song
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Su A Park
- Nature-Inspired Mechanical System Team, Nano Convergence & Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Yeon Soo Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea Department of Molecular Science & Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
8
|
Rammal H, Harmouch C, Lataillade JJ, Laurent-Maquin D, Labrude P, Menu P, Kerdjoudj H. Stem cells: a promising source for vascular regenerative medicine. Stem Cells Dev 2015; 23:2931-49. [PMID: 25167472 DOI: 10.1089/scd.2014.0132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rising and diversity of many human vascular diseases pose urgent needs for the development of novel therapeutics. Stem cell therapy represents a challenge in the medicine of the twenty-first century, an area where tissue engineering and regenerative medicine gather to provide promising treatments for a wide variety of diseases. Indeed, with their extensive regeneration potential and functional multilineage differentiation capacity, stem cells are now highlighted as promising cell sources for regenerative medicine. Their multilineage differentiation involves environmental factors such as biochemical, extracellular matrix coating, oxygen tension, and mechanical forces. In this review, we will focus on human stem cell sources and their applications in vascular regeneration. We will also discuss the different strategies used for their differentiation into both mature and functional smooth muscle and endothelial cells.
Collapse
Affiliation(s)
- Hassan Rammal
- 1 UMR 7365, Biopôle, Faculté de Médecine, CNRS-Université de Lorraine , Vandœuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Scarritt ME, Pashos NC, Bunnell BA. A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol 2015; 3:43. [PMID: 25870857 PMCID: PMC4378188 DOI: 10.3389/fbioe.2015.00043] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/16/2015] [Indexed: 12/22/2022] Open
Abstract
With the advent of whole organ decellularization, extracellular matrix scaffolds suitable for organ engineering were generated from numerous tissues, including the heart, lung, liver, kidney, and pancreas, for use as alternatives to traditional organ transplantation. Biomedical researchers now face the challenge of adequately and efficiently recellularizing these organ scaffolds. Herein, an overview of whole organ decellularization and a thorough review of the current literature for whole organ recellularization are presented. The cell types, delivery methods, and bioreactors employed for recellularization are discussed along with commercial and clinical considerations, such as immunogenicity, biocompatibility, and Food and Drug Administartion regulation.
Collapse
Affiliation(s)
- Michelle E Scarritt
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine , New Orleans, LA , USA
| | - Nicholas C Pashos
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine , New Orleans, LA , USA ; Bioinnovation PhD Program, Tulane University , New Orleans, LA , USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine , New Orleans, LA , USA ; Department of Pharmacology, Tulane University School of Medicine , New Orleans, LA , USA
| |
Collapse
|
10
|
Jana S, Tranquillo RT, Lerman A. Cells for tissue engineering of cardiac valves. J Tissue Eng Regen Med 2015; 10:804-824. [DOI: 10.1002/term.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 01/12/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Soumen Jana
- Division of Cardiovascular Diseases; Mayo Clinic; Rochester MN USA
| | - Robert T. Tranquillo
- Department of Biomedical Engineering; University of Minnesota; Minneapolis MN USA
| | - Amir Lerman
- Division of Cardiovascular Diseases; Mayo Clinic; Rochester MN USA
| |
Collapse
|
11
|
Munoz-Pinto DJ, Jimenez-Vergara AC, Gharat TP, Hahn MS. Characterization of sequential collagen-poly(ethylene glycol) diacrylate interpenetrating networks and initial assessment of their potential for vascular tissue engineering. Biomaterials 2015; 40:32-42. [PMID: 25433604 PMCID: PMC5469296 DOI: 10.1016/j.biomaterials.2014.10.051] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/19/2014] [Indexed: 12/13/2022]
Abstract
Collagen hydrogels have been widely investigated as scaffolds for vascular tissue engineering due in part to the capacity of collagen to promote robust cell adhesion and elongation. However, collagen hydrogels display relatively low stiffness and strength, are thrombogenic, and are highly susceptible to cell-mediated contraction. In the current work, we develop and characterize a sequentially-formed interpenetrating network (IPN) that retains the benefits of collagen, but which displays enhanced mechanical stiffness and strength, improved thromboresistance, high physical stability and resistance to contraction. In this strategy, we first form a collagen hydrogel, infuse this hydrogel with poly(ethylene glycol) diacrylate (PEGDA), and subsequently crosslink the PEGDA by exposure to longwave UV light. These collagen-PEGDA IPNs allow for cell encapsulation during the fabrication process with greater than 90% cell viability via inclusion of cells within the collagen hydrogel precursor solution. Furthermore, the degree of cell spreading within the IPNs can be tuned from rounded to fully elongated by varying the time delay between the formation of the cell-laden collagen hydrogel and the formation of the PEGDA network. We also demonstrate that these collagen-PEGDA IPNs are able to support the initial stages of smooth muscle cell lineage progression by elongated human mesenchymal stems cells.
Collapse
Affiliation(s)
- Dany J Munoz-Pinto
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street Troy, NY, 12180, USA
| | | | - Tanmay P Gharat
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street Troy, NY, 12180, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street Troy, NY, 12180, USA.
| |
Collapse
|
12
|
Yao R, Wong JY. The effects of mechanical stimulation on controlling and maintaining marrow stromal cell differentiation into vascular smooth muscle cells. J Biomech Eng 2015; 137:020907. [PMID: 25429403 DOI: 10.1115/1.4029255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Indexed: 12/21/2022]
Abstract
For patients suffering from severe coronary heart disease (CHD), the development of a cell-based tissue engineered blood vessel (TEBV) has great potential to overcome current issues with synthetic graft materials. While marrow stromal cells (MSCs) are a promising source of vascular smooth muscle cells (VSMCs) for TEBV construction, they have been shown to differentiate into both the VSMC and osteoblast lineages under different rates of dynamic strain. Determining the permanence of strain-induced MSC differentiation into VSMCs is therefore a significant step toward successful TEBV development. In this study, initial experiments where a cyclic 10% strain was imposed on MSCs for 24 h at 0.1 Hz, 0.5 Hz, and 1 Hz determined that cells stretched at 1 Hz expressed significantly higher levels of VSMC-specific genetic and protein markers compared to samples stretched at 0.1 Hz. Conversely, samples stretched at 0.1 Hz expressed higher levels of osteoblast-specific genetic and protein markers compared to the samples stretched at 1 Hz. More importantly, sequential application of 24-48 h periods of 0.1 Hz and 1 Hz strain-induced genetic and protein marker expression levels similar to the VSMC profile seen with 1 Hz alone. This effect was observed regardless of whether the cells were first strained at 0.1 Hz followed by strain at 1 Hz, or vice versa. Our results suggest that the strain-induced VSMC phenotype is a more terminally differentiated state than the strain-induced osteoblast phenotype, and as result, VSMC obtained from strain-induced differentiation would have potential uses in TEBV construction.
Collapse
|
13
|
Calle EA, Vesuna S, Dimitrievska S, Zhou K, Huang A, Zhao L, Niklason LE, Levene MJ. The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs. Tissue Eng Part C Methods 2014; 20:570-7. [PMID: 24251630 PMCID: PMC4074743 DOI: 10.1089/ten.tec.2013.0538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/05/2013] [Indexed: 01/14/2023] Open
Abstract
Recent advances in three-dimensional (3D) tissue engineering have concomitantly generated a need for new methods to visualize and assess the tissue. In particular, methods for imaging intact volumes of whole tissue, rather than a single plane, are required. Herein, we describe the use of multiphoton microscopy, combined with optical clearing, to noninvasively probe decellularized lung extracellular matrix scaffolds and decellularized, tissue-engineered blood vessels. We also evaluate recellularized lung tissue scaffolds. In addition to nondestructive imaging of tissue volumes greater than 4 mm(3), the lung tissue can be visualized using three distinct signals, combined or singly, that allow for simple separation of cells and different components of the extracellular matrix. Because the 3D volumes are not reconstructions, they do not require registration algorithms to generate digital volumes, and maintenance of isotropic resolution is not required when acquiring stacks of images. Once a virtual volume of tissue is generated, structures that have innate 3D features, such as the lumens of vessels and airways, are easily animated and explored in all dimensions. In blood vessels, individual collagen fibers can be visualized at the micron scale and their alignment assessed at various depths through the tissue, potentially providing some nondestructive measure of vessel integrity and mechanics. Finally, both the lungs and vessels assayed here were optically cleared, imaged, and visualized in a matter of hours, such that the added benefits of these techniques can be achieved with little more hassle or processing time than that associated with traditional histological methods.
Collapse
Affiliation(s)
- Elizabeth A. Calle
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Sam Vesuna
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Sashka Dimitrievska
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Kevin Zhou
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Angela Huang
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Liping Zhao
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Anesthesiology, Yale University, New Haven, Connecticut
| | - Michael J. Levene
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| |
Collapse
|
14
|
Sundaram S, Echter A, Sivarapatna A, Qiu C, Niklason L. Small-diameter vascular graft engineered using human embryonic stem cell-derived mesenchymal cells. Tissue Eng Part A 2014; 20:740-50. [PMID: 24125588 PMCID: PMC3926168 DOI: 10.1089/ten.tea.2012.0738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 09/25/2013] [Indexed: 12/22/2022] Open
Abstract
Despite the progress made thus far in the generation of small-diameter vascular grafts, cell sourcing still remains a problem. Human embryonic stem cells (hESCs) present an exciting new cell source for the regeneration applications due to their high proliferative and differentiation capabilities. In this study, the feasibility of creating small-diameter vascular constructs using smooth muscle cells (SMCs) differentiated from hESC-derived mesenchymal cells was evaluated. In vitro experiments confirmed the ability of these cells to differentiate into smooth muscle actin- and calponin-expressing SMCs in the presence of known inducers, such as transforming growth factor beta. Human vessel walls were constructed by culturing these cells in a bioreactor system under pulsatile conditions for 8 weeks. Histological analysis showed that vessel grafts had similarities to their native counterparts in terms of cellularity and SMC marker expression. However, markers of cartilage and bone tissue were also detected, thus raising questions about stable lineage commitment during differentiation and calling for more stringent analysis of differentiating cell populations.
Collapse
Affiliation(s)
- Sumati Sundaram
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Andreana Echter
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Amogh Sivarapatna
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Caihong Qiu
- Yale Stem Cell Center, Yale University, New Haven, Connecticut
| | - Laura Niklason
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
15
|
Yan J, Tie G, Xu TY, Cecchini K, Messina LM. Mesenchymal stem cells as a treatment for peripheral arterial disease: current status and potential impact of type II diabetes on their therapeutic efficacy. Stem Cell Rev Rep 2014; 9:360-72. [PMID: 23475434 DOI: 10.1007/s12015-013-9433-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs), due to their paracrine, transdifferentiation, and immunosuppressive effects, hold great promise as a therapy for peripheral arterial disease. Diabetes is an important risk factor for peripheral arterial disease; however, little is known of how type II diabetes affects the therapeutic function of MSCs. This review summarizes the current status of preclinical and clinical studies that have been performed to determine the efficacy of MSCs in the treatment of peripheral arterial disease. We also present findings from our laboratory regarding the impact of type II diabetes on the therapeutic efficacy of MSCs neovascularization after the induction of hindlimb ischemia. In our studies, we documented that experimental type II diabetes in db/db mice impaired MSCs' therapeutic function by favoring their differentiation towards adipocytes, while limiting their differentiation towards endothelial cells. Moreover, type II diabetes impaired the capacity of MSCs to promote neovascularization in the ischemic hindlimb. We further showed that these impairments of MSC function and multipotency were secondary to hyperinsulinemia-induced, Nox4-dependent oxidant stress in db/db MSCs. Should human MSCs display similar oxidant stress-induced impairment of function, these findings might permit greater leverage of the potential of MSC transplantation, particularly in the setting of diabetes or other cardiovascular risk factors, as well as provide a therapeutic approach by reversing the oxidant stress of MSCs prior to transplantation.
Collapse
Affiliation(s)
- Jinglian Yan
- Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
16
|
Huang Y, Nguyen NT, Lok KS, Lee PPF, Su M, Wu M, Kocgozlu L, Ladoux B. Multiarray cell stretching platform for high-magnification real-time imaging. Nanomedicine (Lond) 2013; 8:543-53. [PMID: 23560406 DOI: 10.2217/nnm.13.45] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM This article reports the development of a multiarray microchip with real-time imaging capability to apply mechanical strains onto monolayered cell cultures. MATERIALS & METHODS Cells were cultured on an 8-µm thick membrane that was positioned in the microscope focal plane throughout the stretching process. Each stretching unit was assembled from three elastomeric layers and a glass coverslip. A programmable pneumatic control system was developed to actuate this platform. Multiple stretching experiments were conducted with various cell lines. RESULTS The platform provides a maximum uniform strain of 69%. Acute and long-term cell morphological changes were observed. The supreme imaging capability was verified by real-time imaging of transfected COS-7 stretching and poststretching imaging of immunofluorescence-stained PTK2. CONCLUSION The platform reported here is a powerful tool for studying mechanically induced physiological changes in cells. Such a device could be used in tissue regeneration for maintaining essential cell growth conditions.
Collapse
Affiliation(s)
- Yuli Huang
- Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Toonkel RL, Hare JM, Matthay MA, Glassberg MK. Mesenchymal Stem Cells and Idiopathic Pulmonary Fibrosis. Potential for Clinical Testing. Am J Respir Crit Care Med 2013; 188:133-40. [DOI: 10.1164/rccm.201207-1204pp] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
18
|
Böer U, Spengler C, Jonigk D, Klingenberg M, Schrimpf C, Lützner S, Harder M, Kreipe HH, Haverich A, Wilhelmi M. Coating decellularized equine carotid arteries with CCN1 improves cellular repopulation, local biocompatibility, and immune response in sheep. Tissue Eng Part A 2013; 19:1829-42. [PMID: 23521030 DOI: 10.1089/ten.tea.2012.0558] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Decellularized equine carotid arteries (dEAC) are potential alternatives to alloplastic vascular grafts although there are certain limitations in biocompatibility and immunogenicity. Here, dEAC were coated with the matricellular protein CCN1 and evaluated in vitro for its cytotoxic and angiogenic effects and in vivo for cellular repopulation, local biocompatibility, neovascularization, and immunogenicity in a sheep model. CCN1 coating resulted in nontoxic matrices not compromising viability of L929 fibroblasts and endothelial cells (ECs) assessed by WST-8 assay. Functionality of CCN1 was maintained as it induced typical changes in fibroblast morphology and MMP3 secretion. For in vivo testing, dEAC±CCN1 (n=3 each) and polytetrafluoroethylene (PTFE) protheses serving as controls (n=6) were implanted as cervical arteriovenous shunts. After 14 weeks, grafts were harvested and evaluated immunohistologically. PTFE grafts showed a patency rate of only 33% and lacked cellular repopulation. Both groups of bioartificial grafts were completely patent and repopulated with ECs and smooth muscle cells (SMCs). However, whereas dEAC contained only patch-like aggregates of SMCs and a partial luminal lining with ECs, CCN1-coated grafts showed multiple layers of SMCs and a complete endothelialization. Likewise, CCN1 coating reduced leukocyte infiltration and fibrosis and supported neovascularization. In addition, in a three-dimensional assay, CCN1 coating increased vascular tube formation in apposition to the matrix 1.6-fold. Graft-specific serum antibodies were increased by CCN1 up to 6 weeks after implantation (0.89±0.03 vs. 1.08±0.04), but were significantly reduced after 14 weeks (0.85±0.04 vs. 0.69±0.02). Likewise, restimulated lymphocyte proliferation was significantly lower after 14 weeks (1.78±0.09 vs. 1.32±0.09-fold of unstimulated). Thus, CCN1 coating of biological scaffolds improves local biocompatibility and accelerates scaffold remodeling by enhancing cellular repopulation and immunologic tolerance, making it a promising tool for generation of bioartificial vascular prostheses.
Collapse
Affiliation(s)
- Ulrike Böer
- GMP Model Laboratory for Tissue Engineering, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
El-Mounayri O, Mihic A, Shikatani EA, Gagliardi M, Steinbach SK, Dubois N, DaCosta R, Li RK, Keller G, Husain M. Serum-free differentiation of functional human coronary-like vascular smooth muscle cells from embryonic stem cells. Cardiovasc Res 2012; 98:125-35. [DOI: 10.1093/cvr/cvs357] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Szebeni GJ, Kriston-Pál É, Blazsó P, Katona RL, Novák J, Szabó E, Czibula Á, Fajka-Boja R, Hegyi B, Uher F, Krenács L, Joó G, Monostori É. Identification of galectin-1 as a critical factor in function of mouse mesenchymal stromal cell-mediated tumor promotion. PLoS One 2012; 7:e41372. [PMID: 22844466 PMCID: PMC3402504 DOI: 10.1371/journal.pone.0041372] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/20/2012] [Indexed: 01/01/2023] Open
Abstract
Bone marrow derived mesenchymal stromal cells (MSCs) have recently been implicated as one source of the tumor-associated stroma, which plays essential role in regulating tumor progression. In spite of the intensive research, the individual factors in MSCs controlling tumor progression have not been adequately defined. In the present study we have examined the role of galectin-1 (Gal-1), a protein highly expressed in tumors with poor prognosis, in MSCs in the course of tumor development. Co-transplantation of wild type MSCs with 4T1 mouse breast carcinoma cells enhances the incidence of palpable tumors, growth, vascularization and metastasis. It also reduces survival compared to animals treated with tumor cells alone or in combination with Gal-1 knockout MSCs. In vitro studies show that the absence of Gal-1 in MSCs does not affect the number of migrating MSCs toward the tumor cells, which is supported by the in vivo migration of intravenously injected MSCs into the tumor. Moreover, differentiation of endothelial cells into blood vessel-like structures strongly depends on the expression of Gal-1 in MSCs. Vital role of Gal-1 in MSCs has been further verified in Gal-1 knockout mice. By administering B16F10 melanoma cells into Gal-1 deficient animals, tumor growth is highly reduced compared to wild type animals. Nevertheless, co-injection of wild type but not Gal-1 deficient MSCs results in dramatic tumor growth and development.These results confirm that galectin-1 is one of the critical factors in MSCs regulating tumor progression.
Collapse
Affiliation(s)
- Gábor János Szebeni
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Éva Kriston-Pál
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Péter Blazsó
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Róbert László Katona
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Julianna Novák
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Enikő Szabó
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ágnes Czibula
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Roberta Fajka-Boja
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Beáta Hegyi
- Stem Cell Biology, National Blood Service, Budapest, Hungary
| | - Ferenc Uher
- Stem Cell Biology, National Blood Service, Budapest, Hungary
| | - László Krenács
- Tumor Pathology and Molecular Diagnostics Laboratory, Szeged, Hungary
| | - Gabriella Joó
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Éva Monostori
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| |
Collapse
|
21
|
Zhao ZK, Yu HL, Xiao F, Li SW, Liao WB, Zhao KL. Muscle-derived stem cells differentiate into functional smooth muscle cells for ureter tissue engineering: An experimental study. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0525-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Peck M, Gebhart D, Dusserre N, McAllister TN, L'Heureux N. The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs 2011; 195:144-58. [PMID: 21996786 DOI: 10.1159/000331406] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dacron® (polyethylene terephthalate) and Goretex® (expanded polytetrafluoroethylene) vascular grafts have been very successful in replacing obstructed blood vessels of large and medium diameters. However, as diameters decrease below 6 mm, these grafts are clearly outperformed by transposed autologous veins and, particularly, arteries. With approximately 8 million individuals with peripheral arterial disease, over 500,000 patients diagnosed with end-stage renal disease, and over 250,000 patients per year undergoing coronary bypass in the USA alone, there is a critical clinical need for a functional small-diameter conduit [Lloyd-Jones et al., Circulation 2010;121:e46-e215]. Over the last decade, we have witnessed a dramatic paradigm shift in cardiovascular tissue engineering that has driven the field away from biomaterial-focused approaches and towards more biology-driven strategies. In this article, we review the preclinical and clinical efforts in the quest for a tissue-engineered blood vessel that is free of permanent synthetic scaffolds but has the mechanical strength to become a successful arterial graft. Special emphasis is given to the tissue engineering by self-assembly (TESA) approach, which has been the only one to reach clinical trials for applications under arterial pressure.
Collapse
Affiliation(s)
- Marissa Peck
- Cytograft Tissue Engineering Inc., Novato, Calif., USA
| | | | | | | | | |
Collapse
|
23
|
Zhang WY, Ebert AD, Narula J, Wu JC. Imaging cardiac stem cell therapy: translations to human clinical studies. J Cardiovasc Transl Res 2011; 4:514-22. [PMID: 21538182 PMCID: PMC3657500 DOI: 10.1007/s12265-011-9281-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/14/2011] [Indexed: 12/21/2022]
Abstract
Stem cell therapy promises to open exciting new options in the treatment of cardiovascular diseases. Although feasible and clinically safe, the in vivo behavior and integration of stem cell transplants still remain largely unknown. Thus, the development of innovative non-invasive imaging techniques capable of effectively tracking such therapy in vivo is vital for a more in-depth investigation into future clinical applications. Such imaging modalities will not only generate further insight into the mechanisms behind stem cell-based therapy, but also address some major concerns associated with translational cardiovascular stem cell therapy. In the present review, we summarize the principles underlying three major stem cell tracking methods: (1) radioactive labeling for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging, (2) iron particle labeling for magnetic resonance imaging (MRI), and (3) reporter gene labeling for bioluminescence, fluorescence, MRI, SPECT, and PET imaging. We then discuss recent clinical studies that have utilized these modalities to gain biological insights into stem cell fate.
Collapse
Affiliation(s)
- Wendy Y. Zhang
- Department of Medicine (Division of Cardiology), Stanford University School of Medicine
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine
| | - Antje D. Ebert
- Department of Medicine (Division of Cardiology), Stanford University School of Medicine
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine
| | - Jagat Narula
- Division of Cardiology, UC Irvine Medical Center, Orange, California, USA
| | - Joseph C. Wu
- Department of Medicine (Division of Cardiology), Stanford University School of Medicine
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine
| |
Collapse
|