1
|
Doyğacı Y, Boztepe Ö, Kandilli GG, Atak A. Embryo recovery(rescue) studies in different Vitis species. BMC PLANT BIOLOGY 2024; 24:822. [PMID: 39218879 PMCID: PMC11367743 DOI: 10.1186/s12870-024-05539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKROUND In recent years, with the increasing demand for seedless grape varieties that have lower production costs, are disease resistant/tolerant and require less chemical pesticides, the embryo recovery technique has begun to be used more in table grape breeding studies. However, the desired high success rate has not yet been achieved in these studies. Although there are different reasons for this, especially the grape varieties selected for cross-breeding and the timing of transferring the embryos to medium are among the most important reasons. In this study, focusing on these two important factors, the embryos obtained from different hybridization combinations were transferred to agar medium at different weeks for 4 years and the most successful combination and time were determined. In addition, seedless and large berry grape varieties and some seeded varieties that are resistant/tolerant to fungal diseases were selected as parents because they can provide resistance to disease infections in vitro and thus increase the success rate. RESULTS The results obtained from the study showed that the selected variety and combination significantly affected the success rate in embryo rescue. Especially in combinations with the 'Yalova Seedless' variety as the female parent, more successful results were obtained compared to combinations of other varieties. When 'Yalova Seedless' variety was pollinated with pollen of 'Red Globe', 'Muscat Bailey A' and 'Exalta' varieties, more seedlings were obtained with the help of embryo rescue. The results obtained over four years showed that the best sampling time after pollination was the eighth week and then the seventh week. CONCLUSIONS According to the results obtained, it has been shown that the selected varieties and the sampling time significantly affect the success rate in embryo rescue studies. Therefore, higher success rates can be achieved in comprehensive breeding studies in which they will be included as pollinators, especially in different seeded varieties that are resistant to diseases and have larger berry size.
Collapse
Affiliation(s)
- Yeşim Doyğacı
- Department of Viticulture, Atatürk Horticulture Central Research Institute, Yalova, 77102, Turkey
- Graduate School of Natural and Applied Sciences, Bursa Uludağ University, Bursa, 16059, Turkey
| | - Özlem Boztepe
- Department of Viticulture, Atatürk Horticulture Central Research Institute, Yalova, 77102, Turkey
| | - Gülhan Gülbasar Kandilli
- Department of Viticulture, Atatürk Horticulture Central Research Institute, Yalova, 77102, Turkey
| | - Arif Atak
- Department of Horticulture, Agriculture Faculty, Bursa Uludağ University, Bursa, 16059, Turkey.
| |
Collapse
|
2
|
Rogo U, Fambrini M, Pugliesi C. Embryo Rescue in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3106. [PMID: 37687352 PMCID: PMC10489947 DOI: 10.3390/plants12173106] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, or intergeneric crosses allow the introgression of important alleles of agricultural interest from wild species, such as resistance or tolerance to abiotic and biotic stresses or morphological traits in crops. However, pre-zygotic and post-zygotic reproductive barriers often present challenges in achieving successful hybridization. Pre-zygotic barriers manifest as incompatibility reactions that hinder pollen germination, pollen tube growth, or penetration into the ovule occurring in various tissues, such as the stigma, style, or ovary. To overcome these barriers, several strategies are employed, including cut-style or graft-on-style techniques, the utilization of mixed pollen from distinct species, placenta pollination, and in vitro ovule pollination. On the other hand, post-zygotic barriers act at different tissues and stages ranging from early embryo development to the subsequent growth and reproduction of the offspring. Many crosses among different genera result in embryo abortion due to the failure of endosperm development. In such cases, ER techniques are needed to rescue these hybrids. ER holds great promise for not only facilitating successful crosses but also for obtaining haploids, doubled haploids, and manipulating the ploidy levels for chromosome engineering by monosomic and disomic addition as well substitution lines. Furthermore, ER can be used to shorten the reproductive cycle and for the propagation of rare plants. Additionally, it has been repeatedly used to study the stages of embryonic development, especially in embryo-lethal mutants. The most widely used ER procedure is the culture of immature embryos taken and placed directly on culture media. In certain cases, the in vitro culture of ovule, ovaries or placentas enables the successful development of young embryos from the zygote stage to maturity.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (U.R.); (M.F.)
| |
Collapse
|
3
|
Mehbub H, Akter A, Akter MA, Mandal MSH, Hoque MA, Tuleja M, Mehraj H. Tissue Culture in Ornamentals: Cultivation Factors, Propagation Techniques, and Its Application. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233208. [PMID: 36501247 PMCID: PMC9736077 DOI: 10.3390/plants11233208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 05/13/2023]
Abstract
Ornamentals come in a variety of shapes, sizes, and colors to suit a wide range of climates, landscapes, and gardening needs. Compared to demand, a shortage of plant materials and diversity force the search for solutions for their constant acquisition and improvement to increase their commercial value, respectively. In vitro cultures are a suitable solution to meet expectations using callus culture, somatic embryogenesis, protoplast culture, and the organogenesis of protocorm-like bodies; many of these techniques are commercially practiced. Factors such as culture media, explants, carbohydrates, plant growth regulators, and light are associated with the success of in vitro propagation. Techniques, especially embryo rescue and somatic hybridization, are widely used to improve ornamentals. The development of synthetic seed allows season-independent seed production and preservation in the long term. Despite the advantages of propagation and the improvement of ornamentals, many barriers still need to be resolved. In contrast to propagation and crop developmental studies, there is also a high scope for molecular studies, especially epigenetic changes caused by plant tissue culture of ornamentals. In this review, we have accumulated and discussed an overall update on cultivation factors, propagation techniques in ornamental plant tissue culture, in vitro plant improvement techniques, and future perspectives.
Collapse
Affiliation(s)
- Hasan Mehbub
- The United Graduate School of Agricultural Science, Ehime University, Matsuyama 790-8556, Japan
| | - Ayasha Akter
- Department of Horticulture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mst. Arjina Akter
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | | | - Md. Ashraful Hoque
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Monika Tuleja
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Hasan Mehraj
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Correspondence: or
| |
Collapse
|
4
|
Orbović V, Ravanfar SA, Acanda Y, Narvaez J, Merritt BA, Levy A, Lovatt CJ. Stress-inducible Arabidopsis thaliana RD29A promoter constitutively drives Citrus sinensis APETALA1 and LEAFY expression and precocious flowering in transgenic Citrus spp. Transgenic Res 2021; 30:687-699. [PMID: 34053006 DOI: 10.1007/s11248-021-00260-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
Transgenic 'Duncan' grapefruit (Citrus paradisi Macf.) and 'Valencia' sweet orange (Citrus sinensis [L.] Osbeck) plants ectopically expressing C. sinensis (cv. Washington navel orange) APETALA1 (CsAP1) or LEAFY (CsLFY) genes under control of the Arabidopsis thaliana stress-inducible promoter AtRD29A flowered under non-inductive (warm temperature, well-watered) greenhouse conditions, whereas their wild-type (WT) counterparts did not. The transgenic plants that flowered exhibited no altered morphological features, except the lack of thorns characteristic of juvenile WT plants. The most precocious T0 line, 'Duncan' grapefruit (Dun134-3) expressing the CsAP1 gene, flowered and fruited when it was 4.5 years old and the T1 siblings from this line flowered and fruited when they were just over 18 months old. In contrast, T1 seedlings from three lines of 'Duncan' grapefruit expressing the CsLFY gene flowered within 3 months after germination, but were unable to support fruit development. Transcript levels of corresponding transgenes in leaves were not correlated with earliness of flowering. To further study the activity of AtRD29A, leaves from three 'Carrizo' citrange (C. sinensis × Poncirus trifoliata) rootstock seedlings transformed with the green fluorescent protein (GFP) gene under regulation of the AtRD29A promoter were subjected to drought stress or well-watered conditions. Expression of GFP was not stress-dependent, consistent with the observation of flowering of CsAP1 and CsLFY transgenic plants under non-inductive conditions. Taken together, the results suggest that AtRD29A is constitutively expressed in a citrus background. Despite the loss of control over flowering time, transgenic citrus lines ectopically expressing C. sinensis AP1 or LFY genes under control of the A. thaliana RD29A promoter exhibit precocious flowering, fruit development and viable transgenic seed formation. These transformed lines can be useful tools to reduce the time between generations to accelerate breeding.
Collapse
Affiliation(s)
- Vladimir Orbović
- Citrus Research and Education Center, University of Florida/IFAS, Lake Alfred, FL, 33850, USA.
| | - Seyed Ali Ravanfar
- Citrus Research and Education Center, University of Florida/IFAS, Lake Alfred, FL, 33850, USA
| | - Yosvanis Acanda
- Citrus Research and Education Center, University of Florida/IFAS, Lake Alfred, FL, 33850, USA
| | - Javier Narvaez
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Benjamin A Merritt
- Citrus Research and Education Center, University of Florida/IFAS, Lake Alfred, FL, 33850, USA
| | - Amit Levy
- Citrus Research and Education Center, University of Florida/IFAS, Lake Alfred, FL, 33850, USA
| | - Carol J Lovatt
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
5
|
Ballesfin MLE, Vinarao RB, Sapin J, Kim SR, Jena KK. Development of an intergeneric hybrid between Oryza sativa L. and Leersia perrieri (A. Camus) Launert. BREEDING SCIENCE 2018; 68:474-480. [PMID: 30369822 PMCID: PMC6198897 DOI: 10.1270/jsbbs.18045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
An intergeneric hybrid was successfully developed between Oryza sativa L. (IRRI 154) and Leersia perrieri (A. Camus) Launert using embryo rescue technique in this study. A low crossability value (0.07%) implied that there was high incompatibility between the two species of the hybrid. The F1 hybrid showed intermediate phenotypic characteristics between the parents but the plant height was very short. The erect plant type resembled the female parent IRRI 154 but the leaves were similar to L. perrieri. Cytological analysis revealed highly non-homology between chromosomes of the two species as the F1 plants showed 24 univalents without any chromosome pairing. The F1 hybrid plant was further confirmed by PCR analysis using the newly designed 11 indel markers showing polymorphism between O. sativa and L. perrieri. This intergeneric hybrid will open up opportunities to transfer novel valuable traits from L. perrieri into cultivated rice.
Collapse
Affiliation(s)
- Ma. LaRue E. Ballesfin
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute,
DAPO Box 7777, Metro Manila,
Philippines
| | - Ricky B. Vinarao
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute,
DAPO Box 7777, Metro Manila,
Philippines
| | - Janice Sapin
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute,
DAPO Box 7777, Metro Manila,
Philippines
| | - Sung-Ryul Kim
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute,
DAPO Box 7777, Metro Manila,
Philippines
| | - Kshirod K. Jena
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute,
DAPO Box 7777, Metro Manila,
Philippines
| |
Collapse
|
6
|
Keil P, Liebsch G, Borisjuk L, Rolletschek H. MultiSense: A Multimodal Sensor Tool Enabling the High-Throughput Analysis of Respiration. Methods Mol Biol 2017; 1670:47-56. [PMID: 28871533 DOI: 10.1007/978-1-4939-7292-0_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The high-throughput analysis of respiratory activity has become an important component of many biological investigations. Here, a technological platform, denoted the "MultiSense tool," is described. The tool enables the parallel monitoring of respiration in 100 samples over an extended time period, by dynamically tracking the concentrations of oxygen (O2) and/or carbon dioxide (CO2) and/or pH within an airtight vial. Its flexible design supports the quantification of respiration based on either oxygen consumption or carbon dioxide release, thereby allowing for the determination of the physiologically significant respiratory quotient (the ratio between the quantities of CO2 released and the O2 consumed). It requires an LED light source to be mounted above the sample, together with a CCD camera system, adjusted to enable the capture of analyte-specific wavelengths, and fluorescent sensor spots inserted into the sample vial. Here, a demonstration is given of the use of the MultiSense tool to quantify respiration in imbibing plant seeds, for which an appropriate step-by-step protocol is provided. The technology can be easily adapted for a wide range of applications, including the monitoring of gas exchange in any kind of liquid culture system (algae, embryo and tissue culture, cell suspensions, microbial cultures).
Collapse
Affiliation(s)
- Peter Keil
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466, Stadt Seeland OT Gatersleben, Germany
| | - Gregor Liebsch
- PreSens Precision Sensing GmbH, Josef-Engert-Strasse 11, 93053, Regensburg, Germany
| | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466, Stadt Seeland OT Gatersleben, Germany
| | - Hardy Rolletschek
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466, Stadt Seeland OT Gatersleben, Germany.
| |
Collapse
|
7
|
van Nocker S, Gardiner SE. Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. HORTICULTURE RESEARCH 2014; 1:14022. [PMID: 26504538 PMCID: PMC4596317 DOI: 10.1038/hortres.2014.22] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 03/16/2014] [Indexed: 05/18/2023]
Abstract
Woody perennial plants, including trees that produce fruits and nuts of horticultural value, typically have long breeding cycles, and development and introduction of improved cultivars by plant breeders may require many breeding cycles and dozens of years. However, recent advances in biotechnologies and genomics have the potential to accelerate cultivar development greatly in all crops. This mini-review summarizes approaches to reduce the number and the duration of breeding cycles for horticultural tree crops, and outlines the challenges that remain to implement these into efficient breeding pipelines.
Collapse
Affiliation(s)
- Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Susan E Gardiner
- The New Zealand Institute for Plant & Food Research Limited Plant and Food Research Palmerston North Private Bag 11030 Manawatu Mail Centre, Palmerston North, 4442, New Zealand
| |
Collapse
|