1
|
Ali H, Bitar MS, Al Madhoun A, Marafie M, Al-Mulla F. Functionally-focused algorithmic analysis of high resolution microarray-CGH genomic landscapes demonstrates comparable genomic copy number aberrations in MSI and MSS sporadic colorectal cancer. PLoS One 2017; 12:e0171690. [PMID: 28231327 PMCID: PMC5322957 DOI: 10.1371/journal.pone.0171690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 01/23/2017] [Indexed: 12/25/2022] Open
Abstract
Array-based comparative genomic hybridization (aCGH) emerged as a powerful technology for studying copy number variations at higher resolution in many cancers including colorectal cancer. However, the lack of standardized systematic protocols including bioinformatic algorithms to obtain and analyze genomic data resulted in significant variation in the reported copy number aberration (CNA) data. Here, we present genomic aCGH data obtained using highly stringent and functionally relevant statistical algorithms from 116 well-defined microsatellites instable (MSI) and microsatellite stable (MSS) colorectal cancers. We utilized aCGH to characterize genomic CNAs in 116 well-defined sets of colorectal cancer (CRC) cases. We further applied the significance testing for aberrant copy number (STAC) and Genomic Identification of Significant Targets in Cancer (GISTIC) algorithms to identify functionally relevant (nonrandom) chromosomal aberrations in the analyzed colorectal cancer samples. Our results produced high resolution genomic landscapes of both, MSI and MSS sporadic CRC. We found that CNAs in MSI and MSS CRCs are heterogeneous in nature but may be divided into 3 distinct genomic patterns. Moreover, we show that although CNAs in MSI and MSS CRCs differ with respect to their size, number and chromosomal distribution, the functional copy number aberrations obtained from MSI and MSS CRCs were in fact comparable but not identical. These unifying CNAs were verified by MLPA tumor-loss gene panel, which spans 15 different chromosomal locations and contains 50 probes for at least 20 tumor suppressor genes. Consistently, deletion/amplification in these frequently cancer altered genes were identical in MSS and MSI CRCs. Our results suggest that MSI and MSS copy number aberrations driving CRC may be functionally comparable.
Collapse
Affiliation(s)
- Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Jabriya, Kuwait
- Research Division, Immunology Unit, Dasman Diabetes Institute (DDI), Dasman, Kuwait
- * E-mail: (HA); (FA)
| | - Milad S. Bitar
- Research Division, Immunology Unit, Dasman Diabetes Institute (DDI), Dasman, Kuwait
- Department of Pharmacology & Toxicology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ashraf Al Madhoun
- Research Division, Immunology Unit, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | | | - Fahd Al-Mulla
- Molecular Pathology Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- Research Division, Genomics Unit, Dasman Diabetes Institute (DDI), Dasman, Kuwait
- * E-mail: (HA); (FA)
| |
Collapse
|
2
|
Martelotto LG, Baslan T, Kendall J, Geyer FC, Burke KA, Spraggon L, Piscuoglio S, Chadalavada K, Nanjangud G, Ng CKY, Moody P, D'Italia S, Rodgers L, Cox H, da Cruz Paula A, Stepansky A, Schizas M, Wen HY, King TA, Norton L, Weigelt B, Hicks JB, Reis-Filho JS. Whole-genome single-cell copy number profiling from formalin-fixed paraffin-embedded samples. Nat Med 2017; 23:376-385. [PMID: 28165479 PMCID: PMC5608257 DOI: 10.1038/nm.4279] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/09/2017] [Indexed: 12/16/2022]
Abstract
A substantial proportion of tumors consist of genotypically distinct subpopulations of cancer cells. This intratumor genetic heterogeneity poses a substantial challenge for the implementation of precision medicine. Single-cell genomics constitutes a powerful approach to resolve complex mixtures of cancer cells by tracing cell lineages and discovering cryptic genetic variations that would otherwise be obscured in tumor bulk analyses. Because of the chemical alterations that result from formalin fixation, single-cell genomic approaches have largely remained limited to fresh or rapidly frozen specimens. Here we describe the development and validation of a robust and accurate methodology to perform whole-genome copy-number profiling of single nuclei obtained from formalin-fixed paraffin-embedded clinical tumor samples. We applied the single-cell sequencing approach described here to study the progression from in situ to invasive breast cancer, which revealed that ductal carcinomas in situ show intratumor genetic heterogeneity at diagnosis and that these lesions may progress to invasive breast cancer through a variety of evolutionary processes.
Collapse
Affiliation(s)
- Luciano G Martelotto
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Timour Baslan
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA.,Department of Molecular and Cellular Biology, Stony Brook University, New York, New York, USA
| | - Jude Kendall
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA
| | - Felipe C Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Kathleen A Burke
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Lee Spraggon
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Kalyani Chadalavada
- Molecular Cytogenetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gouri Nanjangud
- Molecular Cytogenetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Pamela Moody
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA
| | - Sean D'Italia
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA
| | - Linda Rodgers
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA
| | - Hilary Cox
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA
| | - Arnaud da Cruz Paula
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Instituto Português de Oncologia, Porto, Portugal
| | - Asya Stepansky
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA
| | - Michail Schizas
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Tari A King
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - James B Hicks
- Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, New York, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| |
Collapse
|
3
|
Identification of 42 Genes Linked to Stage II Colorectal Cancer Metastatic Relapse. Int J Mol Sci 2016; 17:ijms17050598. [PMID: 27136531 PMCID: PMC4881437 DOI: 10.3390/ijms17050598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer mortality. Metastasis remains the primary cause of CRC death. Predicting the possibility of metastatic relapse in early-stage CRC is of paramount importance to target therapy for patients who really need it and spare those with low-potential of metastasis. Ninety-six stage II CRC cases were stratified using high-resolution array comparative genomic hybridization (aCGH) data based on a predictive survival algorithm and supervised clustering. All genes included within the resultant copy number aberrations were each interrogated independently at mRNA level using CRC expression datasets available from public repositories, which included 1820 colon cancers, and 167 normal colon tissues. Reduced mRNA expression driven by copy number losses and increased expression driven by copy number gains revealed 42 altered transcripts (29 reduced and 13 increased transcripts) associated with metastatic relapse, short disease-free or overall survival, and/or epithelial to mesenchymal transition (EMT). Resultant genes were classified based on gene ontology (GO), which identified four functional enrichment groups involved in growth regulation, genomic integrity, metabolism, and signal transduction pathways. The identified 42 genes may be useful for predicting metastatic relapse in stage II CRC. Further studies are necessary to validate these findings.
Collapse
|
4
|
Al-Temaimi R, Kapila K, Al-Mulla FR, Francis IM, Al-Waheeb S, Al-Ayadhy B. Epidermal growth factor receptor mutations in nonsmall cell lung carcinoma patients in Kuwait. J Cytol 2016; 33:1-6. [PMID: 27011433 PMCID: PMC4782395 DOI: 10.4103/0970-9371.175476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CONTEXT Nonsmall cell lung carcinoma (NSCLC) is the most frequently diagnosed form of lung cancer in Kuwait. NSCLC samples from Kuwait have never been screened for epidermal growth factor receptor (EGFR) gene aberration, which is known to affect treatment options. AIMS This study investigated the feasibility of using fine-needle aspiration (FNA) material for mutational screening, and whether common EGFR mutations are present in NSCLC samples from Kuwait. SETTINGS AND DESIGN Eighteen NSCLC samples from five Kuwaitis and 13 non-Kuwaitis were included in this study. MATERIALS AND METHODS DNA was extracted from FNA cell blocks and screened for EGFR gene mutations using peptide nucleic acid (PNA)-clamp assay, and EGFR gene amplification using fluorescent in situ hybridization (EGFR-FISH). EGFR protein expression was assessed using immunohistochemistry. RESULTS Five EGFR mutations were detected in five non-Kuwaiti NSCLC patients (27.8%). EGFR gene amplification was evident in 10 samples (55.5%) by direct amplification or under the influence of chromosomal polysomy. Four samples had EGFR mutations and EGFR gene amplification, out of which only one sample had coexisting EGFR overexpression. CONCLUSIONS Given the evidence of EGFR gene alterations occurring in NSCLC patients in Kuwait, there is a need to incorporate EGFR gene mutational screen for NSCLC patients to implement its consequent use in patient treatment.
Collapse
Affiliation(s)
- Rabeah Al-Temaimi
- Department of Pathology, Human Genetics Unit, Kuwait University, Safat, Kuwait
| | | | | | | | | | | |
Collapse
|
5
|
Siegel EM, Berglund AE, Riggs BM, Eschrich SA, Putney RM, Ajidahun AO, Coppola D, Shibata D. Expanding epigenomics to archived FFPE tissues: an evaluation of DNA repair methodologies. Cancer Epidemiol Biomarkers Prev 2015; 23:2622-31. [PMID: 25472669 DOI: 10.1158/1055-9965.epi-14-0464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Epigenome-wide association studies are emerging in the field of cancer epidemiology with the rapid development of large-scale methylation array platforms. Until recently, these methods were only valid for DNA from flash frozen (FF) tissues. Novel techniques for repairing DNA from formalin-fixed paraffin-embedded (FFPE) tissues have emerged; however, a direct comparison of FFPE DNA repair methods before analysis on genome-wide methylation array to matched FF tissues has not been conducted. METHODS We conducted a systematic performance comparison of two DNA repair methods (REPLI-g Ligase vs. Infinium HD Restore Kit) on FFPE-DNA compared with matched FF tissues on the Infinium 450K array. A threshold of discordant methylation between FF-FFPE pairs was set at Δβ > 0.3. The correlations of β-values from FF-FFPE pairs were compared across methods and experimental conditions. RESULTS The Illumina Restore kit outperformed the REPLI-g ligation method with respect to reproducibility of replicates (R(2) > 0.970), highly correlated β-values between FF-FFPE (R(2) > 0.888), and fewest discordant loci between FF-FFPE (≤0.61%). The performance of the Restore kit was validated in an independent set of 121 FFPE tissues. CONCLUSIONS The Restore kit outperformed RELPI-g ligation in restoring FFPE-derived DNA before analysis on the Infinium 450K methylation array. Our findings provide critical guidance that may significantly enhance the breadth of diseases that can be studied by methylomic profiling. IMPACT Epigenomic studies using FFPE tissues should now be considered among cancers that have not been fully characterized from an epigenomic standpoint. These findings promote novel epigenome-wide studies focused on cancer etiology, identification of novel biomarkers, and developing targeted therapies. See all the articles in this CEBP Focus section, "Biomarkers, Biospecimens, and New Technologies in Molecular Epidemiology."
Collapse
Affiliation(s)
- Erin M Siegel
- Department of Cancer Epidemiology, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Bridget M Riggs
- Department of Cancer Epidemiology, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Steven A Eschrich
- Department of Biostatistics and Bioinformatics, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ryan M Putney
- Department of Biostatistics and Bioinformatics, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Abidemi O Ajidahun
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Domenico Coppola
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - David Shibata
- Department of Cancer Epidemiology, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
6
|
Emad A, Lamoureux J, Ouellet A, Drouin R. Rapid Aneuploidy Detection of Chromosomes 13, 18, 21, X and Y Using Quantitative Fluorescent Polymerase Chain Reaction with Few Microdissected Fetal Cells. Fetal Diagn Ther 2015; 38:65-76. [DOI: 10.1159/000365810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/07/2014] [Indexed: 11/19/2022]
Abstract
Objectives: Analysis of DNA from small numbers of cells, such as fetal cells in maternal blood, is a major limiting factor for their use in clinical applications. Traditional methods of single-cells whole genome amplification (SCs-WGA) and accurate analysis have been challenging to date. Our purpose was to assess the feasibility of using a few fetal cells to determine fetal sex and major chromosomal abnormalities by quantitative fluorescent polymerase chain reaction (QF-PCR). Methods: Cultured cells from 26 amniotic fluid samples were used for standard DNA extraction and recovery of 5 fetal cells by laser-capture microdissection. SCs-WGA was performed using the DNA from the microdissected cells. PCR amplification of short tandem repeats specific for chromosomes 13, 18, 21, X and Y was performed on extracted and amplified DNA. Allele dosage and sexing were quantitatively analyzed following separation by capillary electrophoresis. Results: Microsatellite QF-PCR analysis showed high concordance in chromosomal copy number between extracted and amplified DNA when 5 or more cells were used. Results were in concordance with that of conventional cytogenetic analysis. Conclusion: Satisfactory genomic coverage can be obtained from SCs-WGA. Clinically, SCs-WGA coupled with QF-PCR can provide a reliable, accurate, rapid and cost-effective method for detection of major fetal chromosome abnormalities.
Collapse
|
7
|
Abstract
This chapter describes a simple and inexpensive multiplex PCR-based method to assess the quality of whole genome amplification (WGA) products generated from heat-induced random fragmented DNA. A set of four primer pairs is used to amplify DNA sequences of WGA products in and downstream of GAPDH gene in yielding 100, 200, 300, and 400 bp fragments. PCR products are analyzed by agarose gel electrophoresis and the respective WGA quality is classified according to the number of obtained PCR bands. WGA products that yield three or four PCR bands are considered to be of high quality and yield good results when analyzed by means of array comparative genome hybridization (CGH).
Collapse
|
8
|
Li Q, Li M, Ma L, Li W, Wu X, Richards J, Fu G, Xu W, Bythwood T, Li X, Wang J, Song Q. A method to evaluate genome-wide methylation in archival formalin-fixed, paraffin-embedded ovarian epithelial cells. PLoS One 2014; 9:e104481. [PMID: 25133528 PMCID: PMC4136734 DOI: 10.1371/journal.pone.0104481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/08/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The use of DNA from archival formalin and paraffin embedded (FFPE) tissue for genetic and epigenetic analyses may be problematic, since the DNA is often degraded and only limited amounts may be available. Thus, it is currently not known whether genome-wide methylation can be reliably assessed in DNA from archival FFPE tissue. METHODOLOGY/PRINCIPAL FINDINGS Ovarian tissues, which were obtained and formalin-fixed and paraffin-embedded in either 1999 or 2011, were sectioned and stained with hematoxylin-eosin (H&E).Epithelial cells were captured by laser micro dissection, and their DNA subjected to whole genomic bisulfite conversion, whole genomic polymerase chain reaction (PCR) amplification, and purification. Sequencing and software analyses were performed to identify the extent of genomic methylation. We observed that 31.7% of sequence reads from the DNA in the 1999 archival FFPE tissue, and 70.6% of the reads from the 2011 sample, could be matched with the genome. Methylation rates of CpG on the Watson and Crick strands were 32.2% and 45.5%, respectively, in the 1999 sample, and 65.1% and 42.7% in the 2011 sample. CONCLUSIONS/SIGNIFICANCE We have developed an efficient method that allows DNA methylation to be assessed in archival FFPE tissue samples.
Collapse
Affiliation(s)
- Qiling Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Min Li
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Li Ma
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Wenzhi Li
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Xuehong Wu
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Jendai Richards
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Guoxing Fu
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Wei Xu
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Tameka Bythwood
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Xu Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianxin Wang
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Qing Song
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
9
|
The tissue is the issue: improved methylome analysis from paraffin-embedded tissues by application of the HOPE technique. J Transl Med 2014; 94:927-33. [PMID: 24933424 DOI: 10.1038/labinvest.2014.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/25/2014] [Accepted: 05/14/2014] [Indexed: 01/07/2023] Open
Abstract
Alterations in the DNA methylome are characteristic for numerous diseases and a typical hallmark of cancer. Therefore, DNA methylation is currently under investigation in research labs and has also entered diagnostics. Recently, protocols like the BeadChip technology have become commercially available to study DNA methylation in an array format and semiquantitative fashion. However, it is known that fixation of the sample material with formalin prior to BeadChip analysis can affect the results. In this study we compared the influence of fixation on the outcome of BeadChip analysis. From six patients each a lung cancer tissue sample and a corresponding tumor-free lung tissue sample were collected. The samples were separated into three pieces. One piece of each sample was fixed with formalin, another one by the non-cross-linking HOPE technique (Hepes-glutamic acid buffer mediated Organic solvent Protection Effect). Subsequently, both became paraffin embedded. As a reference, the remaining third piece was cryopreserved. In addition we used three adenocarcinoma cell lines (H838, A549, and H1650) to validate the results from patient tissues. We show that using the HOPE technique instead of formalin largely prevents the introduction of formalin-fixation related artifacts. An ANOVA analysis significantly separated HOPE- and cryopreserved from formalin-fixed samples (FDR<0.05), while differences in the methylation data obtained from HOPE-fixed and cryopreserved material were minor. Consequently, HOPE fixation is superior to formalin fixation if a subsequent BeadChip analysis of paraffin-embedded sample material is intended.
Collapse
|
10
|
Al-Temaimi RA, Jacob S, Al-Ali W, Thomas DA, Al-Mulla F. Reduced FHIT expression is associated with mismatch repair deficient and high CpG island methylator phenotype colorectal cancer. J Histochem Cytochem 2013; 61:627-38. [PMID: 23797051 DOI: 10.1369/0022155413497367] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease and a major contributor to world cancer mortality rates. Molecular subtypes of CRC have become standards for CRC classification and have established prognostic potential. Here, we attempt to corroborate and provide further insight pertinent to the fragile histidine triad (FHIT) gene in microsatellite instable (MSI), microsatellite stable (MSS), and CpG island methylator phenotype (CIMP) CRC subtypes. We employed array comparative genomic hybridization and multiplex ligation-dependent probe amplification (MLPA) techniques to survey genomic aberrations in FHIT gene and their effects on FHIT protein expression using immunohistochemistry (IHC) in a CRC cohort. We further studied FHIT protein expression by IHC in a larger CRC cohort defined for its mismatch repair (MMR) protein expression and genomic methylation profiles. Our results show FHIT genomic deletions centered in exons 4 and 5 in most of MSI-CRC samples. Moreover, we confirmed the significant association of FHIT protein expression diminution (p=0.035) with MSI-CRC. In the larger cohort, reduced FHIT protein expression was significantly associated with CIMP-high subtype of CRC (p=0.009) and loss of PMS2 protein expression (p=0.017). We conclude that FHIT expression may be a valuable marker for CRC subtyping, and its diagnostic, prognostic, and therapeutic potential should be perused.
Collapse
Affiliation(s)
- Rabeah Abbas Al-Temaimi
- Human Genetics Unit, Pathology Department, Faculty of Medicine, Health Sciences Center, Kuwait University, State of Kuwait
| | | | | | | | | |
Collapse
|
11
|
Hirsch D, Camps J, Varma S, Kemmerling R, Stapleton M, Ried T, Gaiser T. A new whole genome amplification method for studying clonal evolution patterns in malignant colorectal polyps. Genes Chromosomes Cancer 2012; 51:490-500. [PMID: 22334367 PMCID: PMC3535186 DOI: 10.1002/gcc.21937] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/05/2012] [Indexed: 11/08/2022] Open
Abstract
To identify the genetic drivers of colorectal tumorigenesis, we applied array comparative genomic hybridization (aCGH) to 13 formalin-fixed paraffin-embedded (FFPE) samples of early, localized human colon adenocarcinomas arising in high-grade adenomas (so-called "malignant polyps"). These lesions are small and hence the amount of DNA is limited. Additionally, the quality of DNA is compromised due to the fragmentation as a consequence of formalin fixation. To overcome these problems, we optimized a newly developed isothermal whole genome amplification system (NuGEN Ovation® WGA FFPE System). Starting with 100 ng of FFPE DNA, the amplification system produced 4.01 ± 0.29 μg (mean ± standard deviation) of DNA. The excellent quality of amplified DNA was further indicated by a high signal-to-noise ratio and a low derivative log(2) ratio spread. Both, the amount of amplified DNA and aCGH performance were independent of the age of the FFPE blocks and the associated degradation of the extracted DNA. We observed losses of chromosome arms 5q and 18q in the adenoma components of the malignant polyp samples, while the embedded early carcinomas revealed losses of 8p, 17p, and 18, and gains of 7, 13, and 20. Aberrations detected in the adenoma components were invariably maintained in the embedded carcinomas. This approach demonstrates that using isothermally whole genome amplified FFPE DNA is technically suitable for aCGH. In addition to demonstrating the clonal origin of the adenoma and carcinoma part within a malignant polyp, the gain of chromosome arm 20q was an indicator for progression from adenoma to carcinoma.
Collapse
Affiliation(s)
- Daniela Hirsch
- Section of Cancer Genomics, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jordi Camps
- Section of Cancer Genomics, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Ralf Kemmerling
- Institute of Pathology, Paracelsus Medical University, Salzburg, Austria
| | | | - Thomas Ried
- Section of Cancer Genomics, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Timo Gaiser
- Section of Cancer Genomics, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
12
|
Jasmine F, Rahaman R, Roy S, Raza M, Paul R, Rakibuz-Zaman M, Paul-Brutus R, Dodsworth C, Kamal M, Ahsan H, Kibriya MG. Interpretation of genome-wide infinium methylation data from ligated DNA in formalin-fixed, paraffin-embedded paired tumor and normal tissue. BMC Res Notes 2012; 5:117. [PMID: 22357164 PMCID: PMC3309956 DOI: 10.1186/1756-0500-5-117] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/22/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Formalin-fixed, paraffin-embedded (FFPE) samples are a highly desirable resource for epigenetic studies, but there is no suitable platform to assay genome-wide methylation in these widely available resources. Recently, Thirlwell et al. (2010) have reported a modified ligation-based DNA repair protocol to prepare FFPE DNA for the Infinium methylation assay. In this study, we have tested the accuracy of methylation data obtained with this modification by comparing paired fresh-frozen (FF) and FFPE colon tissue (normal and tumor) from colorectal cancer patients. We report locus-specific correlation and concordance of tumor-specific differentially methylated loci (DML), both of which were not previously assessed. METHODS We used Illumina's Infinium Methylation 27K chip for 12 pairs of FF and 12 pairs of FFPE tissue from tumor and surrounding healthy tissue from the resected colon of the same individual, after repairing the FFPE DNA using Thirlwell's modified protocol. RESULTS For both tumor and normal tissue, overall correlation of β values between all loci in paired FF and FFPE was comparable to previous studies. Tissue storage type (FF or FFPE) was found to be the most significant source of variation rather than tissue type (normal or tumor). We found a large number of DML between FF and FFPE DNA. Using ANOVA, we also identified DML in tumor compared to normal tissue in both FF and FFPE samples, and out of the top 50 loci in both groups only 7 were common, indicating poor concordance. Likewise, while looking at the correlation of individual loci between FFPE and FF across the patients, less than 10% of loci showed strong correlation (r ≥ 0.6). Finally, we checked the effect of the ligation-based modification on the Infinium chemistry for SNP genotyping on an independent set of samples, which also showed poor performance. CONCLUSION Ligation of FFPE DNA prior to the Infinium genome-wide methylation assay may detect a reasonable number of loci, but the numbers of detected loci are much fewer than in FF samples. More importantly, the concordance of DML detected between FF and FFPE DNA is suboptimal, and DML from FFPE tissues should be interpreted with great caution.
Collapse
Affiliation(s)
- Farzana Jasmine
- Department of Health Studies, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chang LJ, Chen SU, Tsai YY, Hung CC, Fang MY, Su YN, Yang YS. An update of preimplantation genetic diagnosis in gene diseases, chromosomal translocation, and aneuploidy screening. Clin Exp Reprod Med 2011; 38:126-34. [PMID: 22384431 PMCID: PMC3283069 DOI: 10.5653/cerm.2011.38.3.126] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 11/06/2022] Open
Abstract
Preimplantation genetic diagnosis (PGD) is gradually widely used in prevention of gene diseases and chromosomal abnormalities. Much improvement has been achieved in biopsy technique and molecular diagnosis. Blastocyst biopsy can increase diagnostic accuracy and reduce allele dropout. It is cost-effective and currently plays an important role. Whole genome amplification permits subsequent individual detection of multiple gene loci and screening all 23 pairs of chromosomes. For PGD of chromosomal translocation, fluorescence in-situ hybridization (FISH) is traditionally used, but with technical difficulty. Array comparative genomic hybridization (CGH) can detect translocation and 23 pairs of chromosomes that may replace FISH. Single nucleotide polymorphisms array with haplotyping can further distinguish between normal chromosomes and balanced translocation. PGD may shorten time to conceive and reduce miscarriage for patients with chromosomal translocation. PGD has a potential value for mitochondrial diseases. Preimplantation genetic haplotyping has been applied for unknown mutation sites of single gene disease. Preimplantation genetic screening (PGS) using limited FISH probes in the cleavage-stage embryo did not increase live birth rates for patients with advanced maternal age, unexplained recurrent abortions, and repeated implantation failure. Polar body and blastocyst biopsy may circumvent the problem of mosaicism. PGS using blastocyst biopsy and array CGH is encouraging and merit further studies. Cryopreservation of biopsied blastocysts instead of fresh transfer permits sufficient time for transportation and genetic analysis. Cryopreservation of embryos may avoid ovarian hyperstimulation syndrome and possible suboptimal endometrium.
Collapse
Affiliation(s)
- Li-Jung Chang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yi-Yi Tsai
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chia-Cheng Hung
- Department of Medical Genetics, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Genomics, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Mei-Ya Fang
- Department of Medical Genetics, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yi-Ning Su
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Genomics, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yu-Shih Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|