1
|
Kirby J, Standfest M, Binkley J, Barnes C, Brown E, Cairncross T, Cartwright A, Dadisman D, Mowat C, Wilmot D, Houseman T, Murphy C, Engelsman C, Haller J, Jones D. The dynamin inhibitor, dynasore, prevents zoledronate-induced viability loss in human gingival fibroblasts by partially blocking zoledronate uptake and inhibiting endosomal acidification. J Appl Oral Sci 2024; 32:e20240224. [PMID: 39356951 PMCID: PMC11464084 DOI: 10.1590/1678-7757-2024-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE For treatment of medication-related osteonecrosis of the jaw, one proposed approach is the use of a topical agent to block entry of these medications in oral soft tissues. We tested the ability of phosphonoformic acid (PFA), an inhibitor of bisphosphonate entry through certain sodium-dependent phosphate contransporters (SLC20A1, 20A2, 34A1-3) as well as Dynasore, a macropinocytosis inhibitor, for their abilities to prevent zoledronate-induced (ZOL) death in human gingival fibroblasts (HGFs). METHODOLOGY MTT assay dose-response curves were performed to determine non-cytotoxic levels of both PFA and Dynasore. In the presence of 50 μM ZOL, optimized PFA and Dynasore doses were tested for their ability to restore HGF viability. To determine SLC expression in HGFs, total HGF RNA was subjected to quantitative real-time RT-PCR. Confocal fluorescence microscopy was employed to see if Dynasore inhibited macropinocytotic HGF entry of AF647-ZOL. Endosomal acidification in the presence of Dynasore was measured by live cell imaging utilizing LysoSensor Green DND-189. As a further test of Dynasore's ability to interfere with ZOL-containing endosomal maturation, perinuclear localization of mature endosomes containing AF647-ZOL or TRITC-dextran as a control were assessed via confocal fluorescence microscopy with CellProfiler™ software analysis of the resulting photomicrographs. RESULTS 0.5 mM PFA did not rescue HGFs from ZOL-induced viability loss at 72 hours while 10 and 30 μM geranylgeraniol did partially rescue. HGFs did not express the SLC transporters as compared to the expression in positive control tissues. 10 μM Dynasore completely prevented ZOL-induced viability loss. In the presence of Dynasore, AF647-ZOL and FITC-dextran co-localized in endosomes. Endosomal acidification was inhibited by Dynasore and perinuclear localization of both TRITC-dextran- and AF647-ZOL-containing endosomes was inhibited by 30 μM Dynasore. CONCLUSION Dynasore prevents ZOL-induced viability loss in HGFs by partially interfering with macropinocytosis and by inhibiting the endosomal maturation pathway thought to be needed for ZOL delivery to the cytoplasm.
Collapse
Affiliation(s)
- Jacob Kirby
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Makayla Standfest
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Jessica Binkley
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Charles Barnes
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Evan Brown
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Tyler Cairncross
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Alex Cartwright
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Danielle Dadisman
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Colten Mowat
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Daniel Wilmot
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Theodore Houseman
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Conner Murphy
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Caleb Engelsman
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Josh Haller
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| | - Daniel Jones
- Indiana Wesleyan University, Division of Natural Sciences, Indiana, United States
| |
Collapse
|
2
|
Kazan JM, Pollato-Blanco A, Lukacs GL, Pause A. Measuring EGFR plasma membrane density, stability, internalization, and recycling in alive adherent cells by cell surface ELISA. STAR Protoc 2022; 3:101475. [PMID: 35755125 PMCID: PMC9213824 DOI: 10.1016/j.xpro.2022.101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jalal M Kazan
- Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Ariadna Pollato-Blanco
- Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Gergely L Lukacs
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada.
| | - Arnim Pause
- Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
3
|
Wang BB, Xu H, Isenmann S, Huang C, Elorza-Vidal X, Rychkov GY, Estévez R, Schittenhelm RB, Lukacs GL, Apaja PM. Ubr1-induced selective endophagy/autophagy protects against the endosomal and Ca 2+-induced proteostasis disease stress. Cell Mol Life Sci 2022; 79:167. [PMID: 35233680 PMCID: PMC8888484 DOI: 10.1007/s00018-022-04191-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
The cellular defense mechanisms against cumulative endo-lysosomal stress remain incompletely understood. Here, we identify Ubr1 as a protein quality control (QC) E3 ubiquitin-ligase that counteracts proteostasis stresses by facilitating endosomal cargo-selective autophagy for lysosomal degradation. Astrocyte regulatory cluster membrane protein MLC1 mutations cause endosomal compartment stress by fusion and enlargement. Partial lysosomal clearance of mutant endosomal MLC1 is accomplished by the endosomal QC ubiquitin ligases, CHIP and Ubr1 via ESCRT-dependent route. As a consequence of the endosomal stress, a supportive QC mechanism, dependent on both Ubr1 and SQSTM1/p62 activities, targets ubiquitinated and arginylated MLC1 mutants for selective endosomal autophagy (endophagy). This QC pathway is also activated for arginylated Ubr1-SQSTM1/p62 autophagy cargoes during cytosolic Ca2+-assault. Conversely, the loss of Ubr1 and/or arginylation elicited endosomal compartment stress. These findings underscore the critical housekeeping role of Ubr1 and arginylation-dependent endophagy/autophagy during endo-lysosomal proteostasis perturbations and suggest a link of Ubr1 to Ca2+ homeostasis and proteins implicated in various diseases including cancers and brain disorders.
Collapse
Affiliation(s)
- Ben B Wang
- Lifelong Health, Organelle Proteostasis Diseases, South Australian Health and Medical Research Institute (SAHMRI), 5000 North Terrace, Adelaide, SA, 5000, Australia.,EMBL Australia, Adelaide, South Australia, 5000, Australia
| | - Haijin Xu
- Department of Physiology and Cell Information Systems, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC, H3G 1Y6, Canada
| | - Sandra Isenmann
- Lifelong Health, Organelle Proteostasis Diseases, South Australian Health and Medical Research Institute (SAHMRI), 5000 North Terrace, Adelaide, SA, 5000, Australia.,EMBL Australia, Adelaide, South Australia, 5000, Australia
| | - Cheng Huang
- Monash Biomedical Proteomics Facility, Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Xabier Elorza-Vidal
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Grigori Y Rychkov
- Lifelong Health, Organelle Proteostasis Diseases, South Australian Health and Medical Research Institute (SAHMRI), 5000 North Terrace, Adelaide, SA, 5000, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Raúl Estévez
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility, Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Gergely L Lukacs
- Department of Physiology and Cell Information Systems, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC, H3G 1Y6, Canada. .,Department of Biochemistry, McGill University, Montréal, QC, H3G 1Y6, Canada.
| | - Pirjo M Apaja
- Lifelong Health, Organelle Proteostasis Diseases, South Australian Health and Medical Research Institute (SAHMRI), 5000 North Terrace, Adelaide, SA, 5000, Australia. .,EMBL Australia, Adelaide, South Australia, 5000, Australia. .,Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia. .,College of Public Health and Medicine, Molecular Biosciences Theme, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
4
|
Control of membrane protein homeostasis by a chaperone-like glial cell adhesion molecule at multiple subcellular locations. Sci Rep 2021; 11:18435. [PMID: 34531445 PMCID: PMC8446001 DOI: 10.1038/s41598-021-97777-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 01/17/2023] Open
Abstract
The significance of crosstalks among constituents of plasma membrane protein clusters/complexes in cellular proteostasis and protein quality control (PQC) remains incompletely understood. Examining the glial (enriched) cell adhesion molecule (CAM), we demonstrate its chaperone-like role in the biosynthetic processing of the megalencephalic leukoencephalopathy with subcortical cyst 1 (MLC1)-heteromeric regulatory membrane protein complex, as well as the function of the GlialCAM/MLC1 signalling complex. We show that in the absence of GlialCAM, newly synthesized MLC1 molecules remain unfolded and are susceptible to polyubiquitination-dependent proteasomal degradation at the endoplasmic reticulum. At the plasma membrane, GlialCAM regulates the diffusional partitioning and endocytic dynamics of cluster members, including the ClC-2 chloride channel and MLC1. Impaired folding and/or expression of GlialCAM or MLC1 in the presence of diseases causing mutations, as well as plasma membrane tethering compromise the functional expression of the cluster, leading to compromised endo-lysosomal organellar identity. In addition, the enlarged endo-lysosomal compartments display accelerated acidification, ubiquitinated cargo-sorting and impaired endosomal recycling. Jointly, these observations indicate an essential and previously unrecognized role for CAM, where GliaCAM functions as a PQC factor for the MLC1 signalling complex biogenesis and possess a permissive role in the membrane dynamic and cargo sorting functions with implications in modulations of receptor signalling.
Collapse
|
5
|
Khayat W, Hackett A, Shaw M, Ilie A, Dudding-Byth T, Kalscheuer VM, Christie L, Corbett MA, Juusola J, Friend KL, Kirmse BM, Gecz J, Field M, Orlowski J. A recurrent missense variant in SLC9A7 causes nonsyndromic X-linked intellectual disability with alteration of Golgi acidification and aberrant glycosylation. Hum Mol Genet 2019; 28:598-614. [PMID: 30335141 DOI: 10.1093/hmg/ddy371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
We report two unrelated families with multigenerational nonsyndromic intellectual disability (ID) segregating with a recurrent de novo missense variant (c.1543C>T:p.Leu515Phe) in the alkali cation/proton exchanger gene SLC9A7 (also commonly referred to as NHE7). SLC9A7 is located on human X chromosome at Xp11.3 and has not yet been associated with a human phenotype. The gene is widely transcribed, but especially abundant in brain, skeletal muscle and various secretory tissues. Within cells, SLC9A7 resides in the Golgi apparatus, with prominent enrichment in the trans-Golgi network (TGN) and post-Golgi vesicles. In transfected Chinese hamster ovary AP-1 cells, the Leu515Phe mutant protein was correctly targeted to the TGN/post-Golgi vesicles, but its N-linked oligosaccharide maturation as well as that of a co-transfected secretory membrane glycoprotein, vesicular stomatitis virus G (VSVG) glycoprotein, was reduced compared to cells co-expressing SLC9A7 wild-type and VSVG. This correlated with alkalinization of the TGN/post-Golgi compartments, suggestive of a gain-of-function. Membrane trafficking of glycosylation-deficient Leu515Phe and co-transfected VSVG to the cell surface, however, was relatively unaffected. Mass spectrometry analysis of patient sera also revealed an abnormal N-glycosylation profile for transferrin, a clinical diagnostic marker for congenital disorders of glycosylation. These data implicate a crucial role for SLC9A7 in the regulation of TGN/post-Golgi pH homeostasis and glycosylation of exported cargo, which may underlie the cellular pathophysiology and neurodevelopmental deficits associated with this particular nonsyndromic form of X-linked ID.
Collapse
Affiliation(s)
- Wujood Khayat
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Anna Hackett
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Alina Ilie
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Tracy Dudding-Byth
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Louise Christie
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Kathryn L Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Brian M Kirmse
- Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Single Cell Fluorescence Ratio Image Analysis for Studying ESCRT Function in Receptor Trafficking. Methods Mol Biol 2019; 1998:93-103. [PMID: 31250296 DOI: 10.1007/978-1-4939-9492-2_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The endosomal sorting complexes required for transport (ESCRT) comprise a major trafficking pathway for plasma membrane proteins and are fundamental for ubiquitin-dependent cargo endocytosis. Here, we describe a method for studying the effect of ESCRT complexes on endo-lysosomal membrane trafficking and their role in receptor integrin α5β1 downregulation. Single cell fluorescence ratio image analysis (FRIA), using appropriate fluorescence probes, enables the measurement of dynamics of integrin α5β1 containing vesicles and represents a live cell-based method for studying the role of ESCRTs.
Collapse
|
7
|
A novel fluorescent probe reveals starvation controls the commitment of amyloid precursor protein to the lysosome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [DOI: 10.1016/j.bbamcr.2017.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Ilie A, Gao AYL, Reid J, Boucher A, McEwan C, Barrière H, Lukacs GL, McKinney RA, Orlowski J. A Christianson syndrome-linked deletion mutation (∆(287)ES(288)) in SLC9A6 disrupts recycling endosomal function and elicits neurodegeneration and cell death. Mol Neurodegener 2016; 11:63. [PMID: 27590723 PMCID: PMC5010692 DOI: 10.1186/s13024-016-0129-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/27/2016] [Indexed: 01/19/2023] Open
Abstract
Background Christianson Syndrome, a recently identified X-linked neurodevelopmental disorder, is caused by mutations in the human gene SLC9A6 encoding the recycling endosomal alkali cation/proton exchanger NHE6. The patients have pronounced limitations in cognitive ability, motor skills and adaptive behaviour. However, the mechanistic basis for this disorder is poorly understood as few of the more than 20 mutations identified thus far have been studied in detail. Methods Here, we examined the molecular and cellular consequences of a 6 base-pair deletion of amino acids Glu287 and Ser288 (∆ES) in the predicted seventh transmembrane helix of human NHE6 expressed in established cell lines (CHO/AP-1, HeLa and neuroblastoma SH-SY5Y) and primary cultures of mouse hippocampal neurons by measuring levels of protein expression, stability, membrane trafficking, endosomal function and cell viability. Results In the cell lines, immunoblot analyses showed that the nascent mutant protein was properly synthesized and assembled as a homodimer, but its oligosaccharide maturation and half-life were markedly reduced compared to wild-type (WT) and correlated with enhanced ubiquitination leading to both proteasomal and lysosomal degradation. Despite this instability, a measurable fraction of the transporter was correctly sorted to the plasma membrane. However, the rates of clathrin-mediated endocytosis of the ∆ES mutant as well as uptake of companion vesicular cargo, such as the ligand-bound transferrin receptor, were significantly reduced and correlated with excessive endosomal acidification. Notably, ectopic expression of ∆ES but not WT induced apoptosis when examined in AP-1 cells. Similarly, in transfected primary cultures of mouse hippocampal neurons, membrane trafficking of the ∆ES mutant was impaired and elicited marked reductions in total dendritic length, area and arborization, and triggered apoptotic cell death. Conclusions These results suggest that loss-of-function mutations in NHE6 disrupt recycling endosomal function and trafficking of cargo which ultimately leads to neuronal degeneration and cell death in Christianson Syndrome. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0129-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alina Ilie
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Andy Y L Gao
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Jonathan Reid
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Annie Boucher
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Cassandra McEwan
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Hervé Barrière
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - John Orlowski
- Department of Physiology, McGill University, Bellini Life Sciences Bldg., Rm, 166, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
9
|
Amaral MD, Balch WE. Hallmarks of therapeutic management of the cystic fibrosis functional landscape. J Cyst Fibros 2015; 14:687-99. [PMID: 26526359 PMCID: PMC4644672 DOI: 10.1016/j.jcf.2015.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 01/29/2023]
Abstract
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein does not operate in isolation, rather in a dynamic network of interacting components that impact its synthesis, folding, stability, intracellular location and function, referred to herein as the 'CFTR Functional Landscape (CFFL)'. For the prominent F508del mutation, many of these interactors are deeply connected to a protein fold management system, the proteostasis network (PN). However, CF encompasses an additional 2000 CFTR variants distributed along its entire coding sequence (referred to as CFTR2), and each variant contributes a differential liability to PN management of CFTR and to a protein 'social network' (SN) that directs the probability of the (patho)physiologic events that impact ion transport in each cell, tissue and patient in health and disease. Recognition of the importance of the PN and SN in driving the unique patient CFFL leading to disease highlights the importance of precision medicine in therapeutic management of disease progression. We take the view herein that it is not CFTR, rather the PN/SN, and their impact on the CFFL, that are the key physiologic forces driving onset and clinical progression of CF. We posit that a deep understanding of each patients PN/SN gained by merging genomic, proteomic (mass spectrometry (MS)), and high-content microscopy (HCM) technologies in the context of novel network learning algorithms will lead to a paradigm shift in CF clinical management. This should allow for generation of new classes of patient specific PN/SN directed therapeutics for personalized management of the CFFL in the clinic.
Collapse
Affiliation(s)
- Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal.
| | - William E Balch
- Department of Chemical Physiology, Department of Cell and Molecular Biology, The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
10
|
Veit G, Avramescu RG, Perdomo D, Phuan PW, Bagdany M, Apaja PM, Borot F, Szollosi D, Wu YS, Finkbeiner WE, Hegedus T, Verkman AS, Lukacs GL. Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression. Sci Transl Med 2015; 6:246ra97. [PMID: 25101887 DOI: 10.1126/scitranslmed.3008889] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane regulator (CFTR) that result in reduced anion conductance at the apical membrane of secretory epithelia. Treatment of CF patients carrying the G551D gating mutation with the potentiator VX-770 (ivacaftor) largely restores channel activity and has shown substantial clinical benefit. However, most CF patients carry the ΔF508 mutation, which impairs CFTR folding, processing, function, and stability. Studies in homozygous ΔF508 CF patients indicated little clinical benefit of monotherapy with the investigational corrector VX-809 (lumacaftor) or VX-770, whereas combination clinical trials show limited but significant improvements in lung function. We show that VX-770, as well as most other potentiators, reduces the correction efficacy of VX-809 and another investigational corrector, VX-661. To mimic the administration of VX-770 alone or in combination with VX-809, we examined its long-term effect in immortalized and primary human respiratory epithelia. VX-770 diminished the folding efficiency and the metabolic stability of ΔF508-CFTR at the endoplasmic reticulum (ER) and post-ER compartments, respectively, causing reduced cell surface ΔF508-CFTR density and function. VX-770-induced destabilization of ΔF508-CFTR was influenced by second-site suppressor mutations of the folding defect and was prevented by stabilization of the nucleotide-binding domain 1 (NBD1)-NBD2 interface. The reduced correction efficiency of ΔF508-CFTR, as well as of two other processing mutations in the presence of VX-770, suggests the need for further optimization of potentiators to maximize the clinical benefit of corrector-potentiator combination therapy in CF.
Collapse
Affiliation(s)
- Guido Veit
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Radu G Avramescu
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Doranda Perdomo
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Puay-Wah Phuan
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, CA 94143-0521, USA
| | - Miklos Bagdany
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Pirjo M Apaja
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Florence Borot
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Daniel Szollosi
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, 1444 Budapest, Hungary. Department of Biophysics and Radiation Biology, Semmelweis University, 1444 Budapest P.O. Box 263, Hungary
| | - Yu-Sheng Wu
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Walter E Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143-0511, USA
| | - Tamas Hegedus
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, 1444 Budapest, Hungary. Department of Biophysics and Radiation Biology, Semmelweis University, 1444 Budapest P.O. Box 263, Hungary
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, CA 94143-0521, USA
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Montréal, Quebec H3G 1Y6, Canada. Department of Biochemistry, McGill University, Montréal, Quebec H3G 1Y6, Canada. Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
11
|
Ilie A, Weinstein E, Boucher A, McKinney RA, Orlowski J. Impaired posttranslational processing and trafficking of an endosomal Na+/H+ exchanger NHE6 mutant (Δ370WST372) associated with X-linked intellectual disability and autism. Neurochem Int 2014; 73:192-203. [DOI: 10.1016/j.neuint.2013.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 01/23/2023]
|
12
|
Apaja PM, Foo B, Okiyoneda T, Valinsky WC, Barriere H, Atanasiu R, Ficker E, Lukacs GL, Shrier A. Ubiquitination-dependent quality control of hERG K+ channel with acquired and inherited conformational defect at the plasma membrane. Mol Biol Cell 2013; 24:3787-804. [PMID: 24152733 PMCID: PMC3861077 DOI: 10.1091/mbc.e13-07-0417] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Membrane trafficking in concert with the peripheral quality control machinery plays a critical role in preserving plasma membrane (PM) protein homeostasis. Unfortunately, the peripheral quality control may also dispose of partially or transiently unfolded polypeptides and thereby contribute to the loss-of-expression phenotype of conformational diseases. Defective functional PM expression of the human ether-a-go-go-related gene (hERG) K(+) channel leads to the prolongation of the ventricular action potential that causes long QT syndrome 2 (LQT2), with increased propensity for arrhythmia and sudden cardiac arrest. LQT2 syndrome is attributed to channel biosynthetic processing defects due to mutation, drug-induced misfolding, or direct channel blockade. Here we provide evidence that a peripheral quality control mechanism can contribute to development of the LQT2 syndrome. We show that PM hERG structural and metabolic stability is compromised by the reduction of extracellular or intracellular K(+) concentration. Cardiac glycoside-induced intracellular K(+) depletion conformationally impairs the complex-glycosylated channel, which provokes chaperone- and C-terminal Hsp70-interacting protein-dependent polyubiquitination, accelerated internalization, and endosomal sorting complex required for transport-dependent lysosomal degradation. A similar mechanism contributes to the down-regulation of PM hERG harboring LQT2 missense mutations, with incomplete secretion defect. These results suggest that PM quality control plays a determining role in the loss-of-expression phenotype of hERG in certain hereditary and acquired LTQ2 syndromes.
Collapse
Affiliation(s)
- Pirjo M Apaja
- Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, QC H3E 1Y6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|