1
|
Peng D, Kakani EG, Mameli E, Vidoudez C, Mitchell SN, Merrihew GE, MacCoss MJ, Adams K, Rinvee TA, Shaw WR, Catteruccia F. A male steroid controls female sexual behaviour in the malaria mosquito. Nature 2022; 608:93-97. [PMID: 35794471 PMCID: PMC9352575 DOI: 10.1038/s41586-022-04908-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Abstract
Insects, unlike vertebrates, are widely believed to lack male-biased sex steroid hormones1. In the malaria mosquito Anopheles gambiae, the ecdysteroid 20-hydroxyecdysone (20E) appears to have evolved to both control egg development when synthesized by females2 and to induce mating refractoriness when sexually transferred by males3. Because egg development and mating are essential reproductive traits, understanding how Anopheles females integrate these hormonal signals can spur the design of new malaria control programs. Here we reveal that these reproductive functions are regulated by distinct sex steroids through a sophisticated network of ecdysteroid-activating/inactivating enzymes. We identify a male-specific oxidized ecdysteroid, 3-dehydro-20E (3D20E), which safeguards paternity by turning off female sexual receptivity following its sexual transfer and activation by dephosphorylation. Notably, 3D20E transfer also induces expression of a reproductive gene that preserves egg development during Plasmodium infection, ensuring fitness of infected females. Female-derived 20E does not trigger sexual refractoriness but instead licenses oviposition in mated individuals once a 20E-inhibiting kinase is repressed. Identifying this male-specific insect steroid hormone and its roles in regulating female sexual receptivity, fertility and interactions with Plasmodium parasites suggests the possibility for reducing the reproductive success of malaria-transmitting mosquitoes.
Collapse
Affiliation(s)
- Duo Peng
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Evdoxia G Kakani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Verily Life Sciences, South San Francisco, CA, USA
| | - Enzo Mameli
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | - Sara N Mitchell
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Verily Life Sciences, South San Francisco, CA, USA
| | | | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Kelsey Adams
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tasneem A Rinvee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - W Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Vinaiphat A, Low JK, Yeoh KW, Chng WJ, Sze SK. Application of Advanced Mass Spectrometry-Based Proteomics to Study Hypoxia Driven Cancer Progression. Front Oncol 2021; 11:559822. [PMID: 33708620 PMCID: PMC7940826 DOI: 10.3389/fonc.2021.559822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the largest contributors to the burden of chronic disease in the world and is the second leading cause of death globally. It is associated with episodes of low-oxygen stress (hypoxia or ischemia/reperfusion) that promotes cancer progression and therapeutic resistance. Efforts have been made in the past using traditional proteomic approaches to decipher oxygen deprivation stress-related mechanisms of the disease initiation and progression and to identify key proteins as a therapeutic target for the treatment and prevention. Despite the potential benefits of proteomic in translational research for the discovery of new drugs, the therapeutic outcome with this approach has not met expectations in clinical trials. This is mainly due to the disease complexity which possess a multifaceted molecular pathology. Therefore, novel strategies to identify and characterize clinically important sets of modulators and molecular events for multi-target drug discovery are needed. Here, we review important past and current studies on proteomics in cancer with an emphasis on recent pioneered labeling approaches in mass spectrometry (MS)-based systematic quantitative analysis to improve clinical success. We also discuss the results of the selected innovative publications that integrate advanced proteomic technologies (e.g. MALDI-MSI, pSILAC/SILAC/iTRAQ/TMT-LC-MS/MS, MRM-MS) for comprehensive analysis of proteome dynamics in different biosystems, including cell type, cell species, and subcellular proteome (i.e. secretome and chromatome). Finally, we discuss the future direction and challenges in the application of these technological advancements in mass spectrometry within the context of cancer and hypoxia.
Collapse
Affiliation(s)
- Arada Vinaiphat
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jee Keem Low
- Department of Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kheng Wei Yeoh
- Department of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Muthubharathi BC, Gowripriya T, Balamurugan K. Metabolomics: small molecules that matter more. Mol Omics 2021; 17:210-229. [PMID: 33598670 DOI: 10.1039/d0mo00176g] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolomics, an analytical study with high-throughput profiling, helps to understand interactions within a biological system. Small molecules, called metabolites or metabolomes with the size of <1500 Da, depict the status of a biological system in a different manner. Currently, we are in need to globally analyze the metabolome and the pathways involved in healthy, as well as diseased conditions, for possible therapeutic applications. Metabolome analysis has revealed high-abundance molecules during different conditions such as diet, environmental stress, microbiota, and disease and treatment states. As a result, it is hard to understand the complete and stable network of metabolites of a biological system. This review helps readers know the available techniques to study metabolomics in addition to other major omics such as genomics, transcriptomics, and proteomics. This review also discusses the metabolomics in various pathological conditions and the importance of metabolomics in therapeutic applications.
Collapse
|
4
|
Cheng G, Reisinger SA, Shields PG, Hatsukami DK, Balbo S, Hecht SS. Quantitation by liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry of DNA adducts derived from methyl glyoxal and carboxyethylating agents in leukocytes of smokers and non-smokers. Chem Biol Interact 2020; 327:109140. [PMID: 32442416 PMCID: PMC7682731 DOI: 10.1016/j.cbi.2020.109140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022]
Abstract
A liquid chromatograpy-nanoelectrospray ionization-high resolution tandem mass spectrometry (LC-NSI-HRMS/MS) method was developed for quantitation of the DNA adducts 7-(2'-carboxyethyl)guanine (7-2'-CEG) and N2-(1'-carboxyethyl)guanine (N2-1'-CEG), as their methyl esters, in human leukocyte DNA from smokers and non-smokers. 7-2'-CEG has been previously identified in all human liver samples analyzed and is formed from an unknown carboxyethylating agent while N2-1'-CEG is formed from the advanced glycation endproduct methyl glyoxal. The method was applied for the analysis of these two DNA adducts in leukocyte DNA from 20 smokers and 20 non-smokers, in part to test the hypothesis that 7-2'-CEG could be formed by endogenous nitrosation, as previously observed in rats treated with nitrosodihydrouracil and nitrite. Levels of 7-2'-CEG (mean ± S.D.) were 0.6 ± 0.2 pmol/μmol dG in smokers and 0.5 ± 0.2 pmol/μmol dG in non-smokers, while those of N2-1'-CEG were 4.5 ± 1.9 pmol/μmol dG in smokers and 4.6 ± 2 pmol/μmol dG in non-smokers. These results did not support our hypothesis that endogenous nitrosation of dihydrouracil in smokers leads to higher levels of 7-2'-CEG in leukocyte DNA than in non-smokers. However the study provides the first data on levels of these DNA adducts in human leukocyte DNA, and the LC-NSI-HRMS/MS method developed for their quantitation could be important for future studies of DNA damage by methyl glyoxal.
Collapse
Affiliation(s)
- Guang Cheng
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sarah A Reisinger
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Peter G Shields
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | | | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Deuterium and its impact on living organisms. Folia Microbiol (Praha) 2019; 64:673-681. [DOI: 10.1007/s12223-019-00740-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
|
6
|
Li YH, Liu X, Vanselow JT, Zheng H, Schlosser A, Chiu JC. O-GlcNAcylation of PERIOD regulates its interaction with CLOCK and timing of circadian transcriptional repression. PLoS Genet 2019; 15:e1007953. [PMID: 30703153 PMCID: PMC6372208 DOI: 10.1371/journal.pgen.1007953] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/12/2019] [Accepted: 01/10/2019] [Indexed: 11/18/2022] Open
Abstract
Circadian clocks coordinate time-of-day-specific metabolic and physiological processes to maximize organismal performance and fitness. In addition to light and temperature, which are regarded as strong zeitgebers for circadian clock entrainment, metabolic input has now emerged as an important signal for clock entrainment and modulation. Circadian clock proteins have been identified to be substrates of O-GlcNAcylation, a nutrient sensitive post-translational modification (PTM), and the interplay between clock protein O-GlcNAcylation and other PTMs is now recognized as an important mechanism by which metabolic input regulates circadian physiology. To better understand the role of O-GlcNAcylation in modulating clock protein function within the molecular oscillator, we used mass spectrometry proteomics to identify O-GlcNAcylation sites of PERIOD (PER), a repressor of the circadian transcriptome and a critical biochemical timer of the Drosophila clock. In vivo functional characterization of PER O-GlcNAcylation sites indicates that O-GlcNAcylation at PER(S942) reduces interactions between PER and CLOCK (CLK), the key transcriptional activator of clock-controlled genes. Since we observe a correlation between clock-controlled daytime feeding activity and higher level of PER O-GlcNAcylation, we propose that PER(S942) O-GlcNAcylation during the day functions to prevent premature initiation of circadian repression phase. This is consistent with the period-shortening behavioral phenotype of per(S942A) flies. Taken together, our results support that clock-controlled feeding activity provides metabolic signals to reinforce light entrainment to regulate circadian physiology at the post-translational level. The interplay between O-GlcNAcylation and other PTMs to regulate circadian physiology is expected to be complex and extensive, and reach far beyond the molecular oscillator.
Collapse
Affiliation(s)
- Ying H. Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States of America
| | - Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States of America
| | - Jens T. Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ, United States of America
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Selective permeability of mouse blood-aqueous barrier as determined by 15N-heavy isotope tracing and mass spectrometry. Proc Natl Acad Sci U S A 2018; 115:9032-9037. [PMID: 30127000 DOI: 10.1073/pnas.1807982115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The blood-aqueous barrier plays a key role in regulating aqueous humor homeostasis by selectively restricting passage of proteins into the eye. The kinetics of aqueous flow are traditionally measured using artificial markers; however, these marker molecules do not address the barrier's selective permeability to plasma proteins. Here we applied stable isotope labeling of all serum proteins with nitrogen-15 (15N) atoms. Following systemic injection of this "heavy" serum in mice, the 15N-to-endogenous nitrogen-14 (14N) ratio of each protein in aqueous was measured by mass spectrometry. By monitoring the kinetic changes in these ratios, we determined the permeability profiles of hundreds of serum proteins. Meanwhile, we subjected one of the eyes to neoangiogenic wound healing by inflicting injury to the corneal limbus and compared the 15N proteomes between the normal eyes and the recovering eyes at 2 weeks after injury. In the injured eye, we detected markedly enhanced permeability to inhibitory complement regulator proteins, such as Cfh, Cfhr, Cfb, Cfi, Cfd, and Vtn. Many of the proteins in this group are implicated in age-related macular degeneration associated with leakage of the blood-retinal barrier due to inflammation. To rule out the possibility that the observed leakage was due simply to physical damage of the blood vessels, we separately created a neovascularization model using an alkali burn of the avascular cornea. In this latter model, elevated levels of Cfh and Cfb were evident. These findings suggest that ocular neovascularization is associated with enhanced permeability to serum complement regulators.
Collapse
|
8
|
Li S, Yang Y, Ding X, Yang M, She S, Peng H, Xu X, Ran X, Li S, Hu P, Hu H, Zhang D, Ren H. LHBs can elevate the expression of MDR1 through HIF-1α in patients with CHB infection: a comparative proteomic study. Oncotarget 2018; 8:4549-4562. [PMID: 27999186 PMCID: PMC5354853 DOI: 10.18632/oncotarget.13941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
Background and Aims Hepatitis B virus (HBV) infection is a major risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). To gain a better understanding of the pathogenesis of HBV infection, this study aimed to investigate the differentially expressed proteins (DEPs) in liver tissues from patients with chronic hepatitis B (CHB) infection. Results Seventy-one DEPs were identified. Overexpression of multi-drug resistance protein 1 (MDR1) was validated by RT-qPCR and western blot analyses. Moreover, its expression was increased at both the mRNA and protein levels in response to overexpression of HBV large surface protein (LHBs). Furthermore, screening of transcription factors suggested the possible involvement of hypoxia-inducible factor 1α (HIF-1α) in the interaction between LHBs and MDR1. The function of HIF-1α in the MDR1 activation was confirmed by EMSA and reporter gene analyses. Materials And Methods Liver samples from CHB patients and controls without HBV infection were collected and subjected to isobaric tags for relative and absolute quantitation (iTRAQ) and mass spectrometric analysis. Conclusions These results imply that LHBs, in association with HIF-1α, induces MDR1 overexpression, which may contribute to the pathogenic changes in CHB infection.
Collapse
Affiliation(s)
- Shiying Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Yixuan Yang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Xiangchun Ding
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Min Yang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Sha She
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Hong Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Xiaoming Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Xiaoping Ran
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Sanglin Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Huaidong Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Dazhi Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
9
|
Zachleder V, Vítová M, Hlavová M, Moudříková Š, Mojzeš P, Heumann H, Becher JR, Bišová K. Stable isotope compounds - production, detection, and application. Biotechnol Adv 2018; 36:784-797. [PMID: 29355599 DOI: 10.1016/j.biotechadv.2018.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
Stable isotopes are used in wide fields of application from natural tracers in biology, geology and archeology through studies of metabolic fluxes to their application as tracers in quantitative proteomics and structural biology. We review the use of stable isotopes of biogenic elements (H, C, N, O, S, Mg, Se) with the emphasis on hydrogen and its heavy isotope deuterium. We will discuss the limitations of enriching various compounds in stable isotopes when produced in living organisms. Finally, we overview methods for measuring stable isotopes, focusing on methods for detection in single cells in situ and their exploitation in modern biotechnologies.
Collapse
Affiliation(s)
- Vilém Zachleder
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Milada Vítová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Monika Hlavová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Šárka Moudříková
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
| | | | | | - Kateřina Bišová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic.
| |
Collapse
|
10
|
Kunz TO, Chen J, Wegener C. Metabolic Labeling to Quantify Drosophila Neuropeptides and Peptide Hormones. Methods Mol Biol 2018; 1719:175-185. [PMID: 29476511 DOI: 10.1007/978-1-4939-7537-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neuropeptides and peptide hormones are involved in the regulation of most if not all body functions, ranging from physiology to neuronal processing and the control of behavior. To assess their functions, it is often vital to determine when and in which quantities they are produced, stored, and released. The latter is especially difficult to assess in small insects, such as the genetically amenable fruit fly Drosophila melanogaster, and cannot be achieved merely by quantifying mRNA transcripts. We have adapted and optimized methods to quantify neuropeptides and peptide hormones by metabolic labeling followed by LC-MS. In this chapter, we describe the labeling protocols used in our laboratory and discuss problems and pitfalls that we encountered.
Collapse
Affiliation(s)
- Thomas Otto Kunz
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jiangtian Chen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
11
|
Stastna M, Gottlieb RA, Van Eyk JE. Exploring ribosome composition and newly synthesized proteins through proteomics and potential biomedical applications. Expert Rev Proteomics 2017; 14:529-543. [PMID: 28532181 DOI: 10.1080/14789450.2017.1333424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Protein synthesis is the outcome of tightly regulated gene expression which is responsive to a variety of conditions. Efforts are ongoing to monitor individual stages of protein synthesis to ensure maximum efficiency and accuracy. Due to post-transcriptional regulation mechanisms, the correlation between translatome and proteome is higher than between transcriptome and proteome. However, the most accurate approach to assess the key modulators and final protein expression is directly by using proteomics. Areas covered: This review covers various proteomic strategies that were used to better understand post-transcriptional regulation, specifically during and early after translation. The methods that identify both regulatory proteins associated with translational components and newly synthesized proteins are discussed. Expert commentary: Emerging proteomic approaches make it possible to monitor protein dynamics in cells, tissues and whole animals. The ability to detect alteration in protein abundance soon after their synthesis enables earlier recognition of disease causing factors and candidates to prevent/rectify disease phenotype.
Collapse
Affiliation(s)
- Miroslava Stastna
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA.,b Advanced Clinical BioSystems Research Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA.,c Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i ., Brno , Czech Republic
| | - Roberta A Gottlieb
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Jennifer E Van Eyk
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA.,b Advanced Clinical BioSystems Research Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| |
Collapse
|
12
|
Gorokhova E. Shifts in rotifer life history in response to stable isotope enrichment: testing theories of isotope effects on organismal growth. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160810. [PMID: 28405367 PMCID: PMC5383824 DOI: 10.1098/rsos.160810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/01/2017] [Indexed: 06/07/2023]
Abstract
In ecology, stable isotope labelling is commonly used for tracing material transfer in trophic interactions, nutrient budgets and biogeochemical processes. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism growth and metabolism. This assumption is, however, challenged by theoretical considerations and experimental studies on kinetic isotope effects in vivo. Here, I demonstrate profound changes in life histories of the rotifer Brachionus plicatilis fed 15N-enriched algae (0.4-5.0 at%); i.e. at the enrichment levels commonly used in ecological studies. These findings support theoretically predicted effects of heavy isotope enrichment on growth, metabolism and ageing in biological systems and underline the importance of accounting for such effects when using stable isotope labelling in experimental studies.
Collapse
Affiliation(s)
- Elena Gorokhova
- Department of Environmental Science and Analytical Chemistry , Stockholm University , Svante Arrhenius väg 8, 10691 Stockholm , Sweden
| |
Collapse
|
13
|
Mueller SJ, Hoernstein SNW, Reski R. Approaches to Characterize Organelle, Compartment, or Structure Purity. Methods Mol Biol 2017; 1511:13-28. [PMID: 27730599 DOI: 10.1007/978-1-4939-6533-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The function of subcellular structures is defined by their specific sets of proteins, making subcellular protein localization one of the most important topics in organelle research. To date, many organelle proteomics workflows involve the (partial) purification of the desired subcellular structure and the subsequent analysis of the proteome using tandem mass spectrometry (MS/MS). This chapter gives an overview of the methods that have been used to assay the purity and enrichment of subcellular structures, with an emphasis on quantitative proteomics using differently enriched subcellular fractions. We introduce large-scale-based criteria for assignment of proteins to subcellular structures and describe in detail the use of 15N metabolic labeling in moss to characterize plastid and mitochondrial proteomes.
Collapse
Affiliation(s)
- Stefanie J Mueller
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany.
- TIP Trinational Institute for Plant Research, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Lehmann WD. A timeline of stable isotopes and mass spectrometry in the life sciences. MASS SPECTROMETRY REVIEWS 2017; 36:58-85. [PMID: 26919394 DOI: 10.1002/mas.21497] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
This review retraces the role of stable isotopes and mass spectrometry in the life sciences. The timeline is divided into four segments covering the years 1920-1950, 1950-1980, 1980-2000, and 2000 until today. For each period methodic progress and typical applications are discussed. Application of stable isotopes is driven by improvements of mass spectrometry, chromatography, and related fields in sensitivity, mass accuracy, structural specificity, complex sample handling ability, data output, and data evaluation. We currently experience the vision of omics-type analyses, that is, the comprehensive identification and quantification of a complete compound class within one or a few analytical runs. This development is driven by stable isotopes without competition by radioisotopes. In metabolic studies as classic field of isotopic tracer experiments, stable isotopes and radioisotopes were competing solutions, with stable isotopes as the long-term junior partner. Since the 1990s the number of metabolic studies with radioisotopes decreases, whereas stable isotope studies retain their slow but stable upward tendency. Unique fields of stable isotopes are metabolic tests in newborns, metabolic experiments in healthy controls, newborn screening for inborn errors, quantification of drugs and drug metabolites in doping control, natural isotope fractionation in geology, ecology, food authentication, or doping control, and more recently the field of quantitative omics-type analyses. There, cells or whole organisms are systematically labeled with stable isotopes to study proteomic differences or specific responses to stimuli or genetic manipulation. The duo of stable isotopes and mass spectrometry will probably continue to grow in the life sciences, since it delivers reference-quality quantitative data with molecular specificity, often combined with informative isotope effects. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:58-85, 2017.
Collapse
Affiliation(s)
- Wolf D Lehmann
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
15
|
Kern T, Kutzner E, Eisenreich W, Fuchs TM. Pathogen-nematode interaction: Nitrogen supply of Listeria monocytogenes during growth in Caenorhabditis elegans. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:20-29. [PMID: 26478569 DOI: 10.1111/1758-2229.12344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Listeria monocytogenes is a Gram-positive facultatively intracellular human pathogen. Due to its saprophytic lifestyle, L. monocytogenes is assumed to infect and proliferate within soil organisms such as Caenorhabditis elegans. However, little is known about the nutrient usages and metabolite fluxes in this bacterium-nematode interaction. Here, we established a nematode colonization model for L. monocytogenes and a method for the efficient separation of the pathogen from the nematodal gut. Following (15)N labelling of C. elegans and gas chromatography-mass spectrometry-based (15)N isotopologue analysis, we detected a high basal metabolic rate of the nematode, and observed a significant metabolic flux from nitrogenous compounds of the nematode to listerial proteins during proliferation of the pathogen in the worm's intestine. For comparison, we also measured the N fluxes from the gut content into listerial proteins using completely (15)N-labelled Escherichia coli OP50 as food for C. elegans. In both settings, L. monocytogenes prefers the direct incorporation of histidine, arginine and lysine over their de novo biosynthesis. Our data suggest that colonization of nematodes is a strategy of L. monocytogenes to increase its access to N-rich nutrients.
Collapse
Affiliation(s)
- Tanja Kern
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Erika Kutzner
- Lehrstuhl für Biochemie, Technische Universität München, D-85747, Garching, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Technische Universität München, D-85747, Garching, Germany
| | - Thilo M Fuchs
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| |
Collapse
|
16
|
Husson SJ, Moyson S, Valkenborg D, Baggerman G, Mertens I. Proteomics applications in Caenorhabditis elegans research. Biochem Biophys Res Commun 2015; 468:519-24. [DOI: 10.1016/j.bbrc.2015.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/04/2023]
|
17
|
Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans. Genetics 2015; 200:443-54. [PMID: 25903497 PMCID: PMC4492371 DOI: 10.1534/genetics.115.175851] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/16/2015] [Indexed: 12/19/2022] Open
Abstract
Caenorhabditiselegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bacterial clearing assay that measures food intake by quantifying the change in the optical density of bacteria over time. The second method, termed pulse feeding, measures the absorption of food by tracking de novo protein synthesis using a novel metabolic pulse-labeling strategy. Using the bacterial clearance assay, we compare the bacterial food intake of various C. elegans strains and show that long-lived eat mutants eat substantially more than previous estimates. To demonstrate the applicability of the pulse-feeding assay, we compare the assimilation of food for two C. elegans strains in response to serotonin. We show that serotonin-increased feeding leads to increased protein synthesis in a SER-7-dependent manner, including proteins known to promote aging. Protein content in the food has recently emerged as critical factor in determining how food composition affects aging and health. The pulse-feeding assay, by measuring de novo protein synthesis, represents an ideal method to unequivocally establish how the composition of food dictates protein synthesis. In combination, these two assays provide new and powerful tools for C. elegans research to investigate feeding and how food intake affects the proteome and thus the physiology and health of an organism.
Collapse
|
18
|
Soufi B, Krug K, Harst A, Macek B. Characterization of the E. coli proteome and its modifications during growth and ethanol stress. Front Microbiol 2015; 6:103. [PMID: 25741329 PMCID: PMC4332353 DOI: 10.3389/fmicb.2015.00103] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/27/2015] [Indexed: 12/31/2022] Open
Abstract
We set out to provide a resource to the microbiology community especially with respect to systems biology based endeavors. To this end, we generated a comprehensive dataset monitoring the changes in protein expression, copy number, and post translational modifications in a systematic fashion during growth and ethanol stress in E. coli. We utilized high-resolution mass spectrometry (MS) combined with the Super-SILAC approach. In a single experiment, we have identified over 2300 proteins, which represent approximately 88% of the estimated expressed proteome of E. coli and estimated protein copy numbers using the Intensity Based Absolute Quantitation (iBAQ). The dynamic range of protein expression spanned up to six orders of magnitude, with the highest protein copy per cell estimated at approximately 300,000. We focused on the proteome dynamics involved during stationary phase growth. A global up-regulation of proteins related to stress response was detected in later stages of growth. We observed the down-regulation of the methyl directed mismatch repair system containing MutS and MutL of E. coli growing in long term growth cultures, confirming that higher incidence of mutations presents an important mechanism in the increase in genetic diversity and stationary phase survival in E. coli. During ethanol stress, known markers such as alcohol dehydrogenase and aldehyde dehydrogenase were induced, further validating the dataset. Finally, we performed unbiased protein modification detection and revealed changes of many known and unknown protein modifications in both experimental conditions. Data are available via ProteomeXchange with identifier PXD001648.
Collapse
Affiliation(s)
- Boumediene Soufi
- Proteome Center Tuebingen, University of Tuebingen Tuebingen, Germany
| | - Karsten Krug
- Proteome Center Tuebingen, University of Tuebingen Tuebingen, Germany
| | - Andreas Harst
- Proteome Center Tuebingen, University of Tuebingen Tuebingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, University of Tuebingen Tuebingen, Germany
| |
Collapse
|
19
|
Sap KA, Bezstarosti K, Dekkers DHW, van den Hout M, van Ijcken W, Rijkers E, Demmers JAA. Global quantitative proteomics reveals novel factors in the ecdysone signaling pathway in Drosophila melanogaster. Proteomics 2015; 15:725-38. [PMID: 25403936 DOI: 10.1002/pmic.201400308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/19/2014] [Accepted: 11/12/2014] [Indexed: 01/06/2023]
Abstract
The ecdysone signaling pathway plays a major role in various developmental transitions in insects. Recent advances in the understanding of ecdysone action have relied to a large extent on the application of molecular genetic tools in Drosophila. Here, we used a comprehensive quantitative SILAC MS-based approach to study the global, dynamic proteome of a Drosophila cell line to investigate how hormonal signals are transduced into specific cellular responses. Global proteome data after ecdysone treatment after various time points were then integrated with transcriptome data. We observed a substantial overlap in terms of affected targets between the dynamic proteome and transcriptome, although there were some clear differences in timing effects. Also, downregulation of several specific mRNAs did not always correlate with downregulation of their corresponding protein counterparts, and in some cases there was no correlation between transcriptome and proteome dynamics whatsoever. In addition, we performed a comprehensive interactome analysis of EcR, the major target of ecdysone. Proteins copurified with EcR include factors involved in transcription, chromatin remodeling, ecdysone signaling, ecdysone biosynthesis, and other signaling pathways. Novel ecdysone-responsive proteins identified in this study might link previously unknown proteins to the ecdysone signaling pathway and might be novel targets for developmental studies. To our knowledge, this is the first time that ecdysone signaling is studied by global quantitative proteomics. All MS data have been deposited in the ProteomeXchange with identifier PXD001455 (http://proteomecentral.proteomexchange.org/dataset/PXD001455).
Collapse
Affiliation(s)
- Karen A Sap
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands; Netherlands Proteomics Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Soufi B, Krug K, Harst A, Macek B. Characterization of the E. coli proteome and its modifications during growth and ethanol stress. Front Microbiol 2015. [PMID: 25741329 DOI: 10.3389/fpls.2018.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
We set out to provide a resource to the microbiology community especially with respect to systems biology based endeavors. To this end, we generated a comprehensive dataset monitoring the changes in protein expression, copy number, and post translational modifications in a systematic fashion during growth and ethanol stress in E. coli. We utilized high-resolution mass spectrometry (MS) combined with the Super-SILAC approach. In a single experiment, we have identified over 2300 proteins, which represent approximately 88% of the estimated expressed proteome of E. coli and estimated protein copy numbers using the Intensity Based Absolute Quantitation (iBAQ). The dynamic range of protein expression spanned up to six orders of magnitude, with the highest protein copy per cell estimated at approximately 300,000. We focused on the proteome dynamics involved during stationary phase growth. A global up-regulation of proteins related to stress response was detected in later stages of growth. We observed the down-regulation of the methyl directed mismatch repair system containing MutS and MutL of E. coli growing in long term growth cultures, confirming that higher incidence of mutations presents an important mechanism in the increase in genetic diversity and stationary phase survival in E. coli. During ethanol stress, known markers such as alcohol dehydrogenase and aldehyde dehydrogenase were induced, further validating the dataset. Finally, we performed unbiased protein modification detection and revealed changes of many known and unknown protein modifications in both experimental conditions. Data are available via ProteomeXchange with identifier PXD001648.
Collapse
Affiliation(s)
- Boumediene Soufi
- Proteome Center Tuebingen, University of Tuebingen Tuebingen, Germany
| | - Karsten Krug
- Proteome Center Tuebingen, University of Tuebingen Tuebingen, Germany
| | - Andreas Harst
- Proteome Center Tuebingen, University of Tuebingen Tuebingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, University of Tuebingen Tuebingen, Germany
| |
Collapse
|
21
|
Sha XM, Tu ZC, Wang H, Huang T, Duan DL, He N, Li DJ, Xiao H. Gelatin quantification by oxygen-18 labeling and liquid chromatography-high-resolution mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11840-11853. [PMID: 25404505 DOI: 10.1021/jf503876a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Combined with high-performance liquid chromatography (HPLC) and linear-ion trap/Orbitrap high-resolution mass spectrometry, trypsin-catalyzed (16)O-to-(18)O exchange was used to establish an accurate quantitative method for bovine or porcine gelatin. The sophisticated modifications for these two mammalian gelatins were unambiguously identified by accurate mass and tandem mass spectrometry. Eighteen marker peptides were successfully identified for the bovine and porcine gelatin, respectively. The gelatins were subjected to (18)O or (16)O labeling in the presence of trypsin and mixed together in various ratios for quantification. All of the (18)O-labeled peptides were also confirmed by accurate mass and tandem mass spectrometry. The 10 marker peptides with the strongest signals were chosen to calculate the average ratios of (18)O-labeled and (16)O-labeled gelatin. The measured ratios of (18)O-labeled and (16)O-labeled peptides were very close to the mixing ratios of 20:1, 5:1, 1:1, and 1:5 with low standard deviation values. The samples with a mixing ratio of 1:1 (18)O-labeled and (16)O-labeled peptides were determined to 1.00 and 0.99 with standard deviations of 0.02 and 0.04 for bovine and porcine gelatins, respectively, indicating the high accuracy of this method. Trypsin-catalyzed (18)O labeling was proved to be an excellent internal calibrant for gelatins. When combined with HPLC and high-resolution mass spectrometry, it is an accurate and sensitive quantitative method for gelatin in the food industry.
Collapse
Affiliation(s)
- Xiao-Mei Sha
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang, Jiangxi 330047, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pauls D, Chen J, Reiher W, Vanselow JT, Schlosser A, Kahnt J, Wegener C. Peptidomics and processing of regulatory peptides in the fruit fly Drosophila. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Gonzalez D, Hamidi N, Del Sol R, Benschop JJ, Nancy T, Li C, Francis L, Tzouros M, Krijgsveld J, Holstege FCP, Conlan RS. Suppression of Mediator is regulated by Cdk8-dependent Grr1 turnover of the Med3 coactivator. Proc Natl Acad Sci U S A 2014; 111:2500-5. [PMID: 24550274 PMCID: PMC3932902 DOI: 10.1073/pnas.1307525111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mediator, an evolutionary conserved large multisubunit protein complex with a central role in regulating RNA polymerase II-transcribed genes, serves as a molecular switchboard at the interface between DNA binding transcription factors and the general transcription machinery. Mediator subunits include the Cdk8 module, which has both positive and negative effects on activator-dependent transcription through the activity of the cyclin-dependent kinase Cdk8, and the tail module, which is required for positive and negative regulation of transcription, correct preinitiation complex formation in basal and activated transcription, and Mediator recruitment. Currently, the molecular mechanisms governing Mediator function remain largely undefined. Here we demonstrate an autoregulatory mechanism used by Mediator to repress transcription through the activity of distinct components of different modules. We show that the function of the tail module component Med3, which is required for transcription activation, is suppressed by the kinase activity of the Cdk8 module. Med3 interacts with, and is phosphorylated by, Cdk8; site-specific phosphorylation triggers interaction with and degradation by the Grr1 ubiquitin ligase, thereby preventing transcription activation. This active repression mechanism involving Grr1-dependent ubiquitination of Med3 offers a rationale for the substoichiometric levels of the tail module that are found in purified Mediator and the corresponding increase in tail components seen in cdk8 mutants.
Collapse
Affiliation(s)
- Deyarina Gonzalez
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Nurul Hamidi
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Ricardo Del Sol
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Joris J. Benschop
- Molecular Cancer Research, University Medical Centre Utrecht, 3508 AB, Utrecht, The Netherlands
| | - Thomas Nancy
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Chao Li
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
- Suzhou School of Nano-Science and Nano-Engineering, X’ian Jaotong University, Suzhou Industrial Park 215123, People’s Republic of China
| | - Lewis Francis
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Manuel Tzouros
- Translational Technologies and Bioinformatics, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; and
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Centre Utrecht, 3508 AB, Utrecht, The Netherlands
| | - R. Steven Conlan
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| |
Collapse
|
24
|
Clatterbuck Soper SF, Dator RP, Limbach PA, Woodson SA. In vivo X-ray footprinting of pre-30S ribosomes reveals chaperone-dependent remodeling of late assembly intermediates. Mol Cell 2013; 52:506-16. [PMID: 24207057 DOI: 10.1016/j.molcel.2013.09.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/20/2013] [Accepted: 09/19/2013] [Indexed: 12/27/2022]
Abstract
Assembly of 30S ribosomal subunits from their protein and RNA components requires extensive refolding of the 16S rRNA and is assisted by 10-20 assembly factors in bacteria. We probed the structures of 30S assembly intermediates in E. coli cells, using a synchrotron X-ray beam to generate hydroxyl radical in the cytoplasm. Widespread differences between mature and pre-30S complexes in the absence of assembly factors RbfA and RimM revealed global reorganization of RNA-protein interactions prior to maturation of the 16S rRNA and showed how RimM reduces misfolding of the 16S 3' domain during transcription in vivo. Quantitative (14)N/(15)N mass spectrometry of affinity-purified pre-30S complexes confirmed the absence of tertiary assembly proteins and showed that N-terminal acetylation of proteins S18 and S5 correlates with correct folding of the platform and central pseudoknot. Our results indicate that cellular factors delay specific RNA folding steps to ensure the quality of assembly.
Collapse
Affiliation(s)
- Sarah F Clatterbuck Soper
- Cell, Molecular, and Developmental Biology and Biophysics Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | | | | | | |
Collapse
|
25
|
Webhofer C, Zhang Y, Brusis J, Reckow S, Landgraf R, Maccarrone G, Turck CW, Filiou MD. 15N metabolic labeling: Evidence for a stable isotope effect on plasma protein levels and peptide chromatographic retention times. J Proteomics 2013; 88:27-33. [DOI: 10.1016/j.jprot.2012.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 12/20/2022]
|
26
|
Zhang H, Li H, Yang Y, Li S, Ren H, Zhang D, Hu H. Differential regulation of host genes including hepatic fatty acid synthase in HBV-transgenic mice. J Proteome Res 2013; 12:2967-79. [PMID: 23675653 DOI: 10.1021/pr400247f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) is the most common of the hepatitis viruses that cause chronic liver infections in humans, and it is considered to be a major global health problem. To gain a better understanding of HBV pathogenesis, and identify novel putative targets for anti-HBV therapy, this study was designed to elucidate the differential expression of host proteins in liver tissue from HBV-transgenic mice. Liver samples from two groups, (1) HBV-transgenic (Tg) mice, (2) corresponding background normal mice, wild-type (WT) mice, were collected and subjected to iTRAQ and mass spectrometry analysis. In total, 1950 unique proteins were identified, and 68 proteins were found to be differentially expressed in HBV-Tg mice as compared with that in WT mice. Several differentially expressed proteins were further validated by real-time quantitative RT-PCR, Western blot and immunohistochemical analysis. Furthermore, the association of HBV replication with fatty acid synthase (FASN), one of the highly expressed proteins in HBV-Tg mice, was verified. Silencing of FASN expression in HepG2.2.15 cells suppressed viral replication through the IFN signaling pathway, and some downstream antiviral effectors. The implicated role of FASN in HBV replication provides an opportunity to test existing compounds against FASN for adjuvant therapy and/or treatment of HBV replication.
Collapse
Affiliation(s)
- Hongmin Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
27
|
An YJ, Xu WJ, Jin X, Wen H, Kim H, Lee J, Park S. Metabotyping of the C. elegans sir-2.1 mutant using in vivo labeling and (13)C-heteronuclear multidimensional NMR metabolomics. ACS Chem Biol 2012; 7:2012-8. [PMID: 23043523 DOI: 10.1021/cb3004226] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The roles of sir-2.1 in C. elegans lifespan extension have been subjects of recent public and academic debates. We applied an efficient workflow for in vivo(13)C-labeling of C. elegans and (13)C-heteronuclear NMR metabolomics to characterizing the metabolic phenotypes of the sir-2.1 mutant. Our method delivered sensitivity 2 orders of magnitude higher than that of the unlabeled approach, enabling 2D and 3D NMR experiments. Multivariate analysis of the NMR data showed distinct metabolic profiles of the mutant, represented by increases in glycolysis, nitrogen catabolism, and initial lipolysis. The metabolomic analysis defined the sir-2.1 mutant metabotype as the decoupling between enhanced catabolic pathways and ATP generation. We also suggest the relationship between the metabotypes, especially the branched chain amino acids, and the roles of sir-2.1 in the worm lifespan. Our results should contribute to solidifying the roles of sir-2.1, and the described workflow can be applied to studying many other proteins in metabolic perspectives.
Collapse
Affiliation(s)
- Yong Jin An
- Department of Biochemistry,
College of Medicine, Inha University, Incheon,
400-712, Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Poskar CH, Huege J, Krach C, Franke M, Shachar-Hill Y, Junker BH. iMS2Flux--a high-throughput processing tool for stable isotope labeled mass spectrometric data used for metabolic flux analysis. BMC Bioinformatics 2012; 13:295. [PMID: 23146204 PMCID: PMC3563546 DOI: 10.1186/1471-2105-13-295] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 11/02/2012] [Indexed: 12/31/2022] Open
Abstract
Background Metabolic flux analysis has become an established method in systems biology and functional genomics. The most common approach for determining intracellular metabolic fluxes is to utilize mass spectrometry in combination with stable isotope labeling experiments. However, before the mass spectrometric data can be used it has to be corrected for biases caused by naturally occurring stable isotopes, by the analytical technique(s) employed, or by the biological sample itself. Finally the MS data and the labeling information it contains have to be assembled into a data format usable by flux analysis software (of which several dedicated packages exist). Currently the processing of mass spectrometric data is time-consuming and error-prone requiring peak by peak cut-and-paste analysis and manual curation. In order to facilitate high-throughput metabolic flux analysis, the automation of multiple steps in the analytical workflow is necessary. Results Here we describe iMS2Flux, software developed to automate, standardize and connect the data flow between mass spectrometric measurements and flux analysis programs. This tool streamlines the transfer of data from extraction via correction tools to 13C-Flux software by processing MS data from stable isotope labeling experiments. It allows the correction of large and heterogeneous MS datasets for the presence of naturally occurring stable isotopes, initial biomass and several mass spectrometry effects. Before and after data correction, several checks can be performed to ensure accurate data. The corrected data may be returned in a variety of formats including those used by metabolic flux analysis software such as 13CFLUX, OpenFLUX and 13CFLUX2. Conclusion iMS2Flux is a versatile, easy to use tool for the automated processing of mass spectrometric data containing isotope labeling information. It represents the core framework for a standardized workflow and data processing. Due to its flexibility it facilitates the inclusion of different experimental datasets and thus can contribute to the expansion of flux analysis applications.
Collapse
Affiliation(s)
- C Hart Poskar
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research-IPK, 06466 Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Filiou MD, Varadarajulu J, Teplytska L, Reckow S, Maccarrone G, Turck CW. The 15N isotope effect in Escherichia coli: a neutron can make the difference. Proteomics 2012; 12:3121-8. [PMID: 22887715 DOI: 10.1002/pmic.201200209] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/25/2012] [Accepted: 08/04/2012] [Indexed: 12/22/2022]
Abstract
Several techniques based on stable isotope labeling are used for quantitative MS. These include stable isotope metabolic labeling methods for cells in culture as well as live organisms with the assumption that the stable isotope has no effect on the proteome. Here, we investigate the (15) N isotope effect on Escherichia coli cultures that were grown in either unlabeled ((14) N) or (15) N-labeled media by LC-ESI-MS/MS-based relative protein quantification. Consistent protein expression level differences and altered growth rates were observed between (14) N and (15) N-labeled cultures. Furthermore, targeted metabolite analyses revealed altered metabolite levels between (14) N and (15) N-labeled bacteria. Our data demonstrate for the first time that the introduction of the (15) N isotope affects protein and metabolite levels in E. coli and underline the importance of implementing controls for unbiased protein quantification using stable isotope labeling techniques.
Collapse
Affiliation(s)
- Michaela D Filiou
- Max Planck Institute of Psychiatry, Proteomics and Biomarkers, Munich, Germany
| | | | | | | | | | | |
Collapse
|