1
|
Grigoletto A, Marotti V, Tedeschini T, Campara B, Marigo I, Ingangi V, Pasut G. Improving the Therapeutic Potential of G-CSF through Compact Circular PEGylation Based on Orthogonal Conjugations. Biomacromolecules 2023; 24:4229-4239. [PMID: 37638739 PMCID: PMC10498445 DOI: 10.1021/acs.biomac.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Indexed: 08/29/2023]
Abstract
In this study, a circular conjugate of granulocyte colony-stimulating factor (G-CSF) was prepared by conjugating the two end-chains of poly(ethylene glycol) (PEG) to two different sites of the protein. For the orthogonal conjugation, a heterobifunctional PEG chain was designed and synthesized, bearing the dipeptide ZGln-Gly (ZQG) at one end-chain, for transglutaminase (TGase) enzymatic selective conjugation at Lys41 of G-CSF, and an aldehyde group at the opposite end-chain, for N-terminal selective reductive alkylation of the protein. The cPEG-Nter/K41-G-CSF circular conjugate was characterized by physicochemical methods and compared with native G-CSF and the corresponding linear monoconjugates of G-CSF, PEG-Nter-G-CSF, and PEG-K41-G-CSF. The results demonstrated that the circular conjugate had improved physicochemical and thermal stability, prolonged pharmacokinetic interaction, and retained the biological activity of G-CSF. The PEGylation strategy employed in this study has potential applications in the design of novel protein-based therapeutics.
Collapse
Affiliation(s)
- Antonella Grigoletto
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Valentina Marotti
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Tommaso Tedeschini
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Benedetta Campara
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Ilaria Marigo
- Department
of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Istituto
Oncologico Veneto IOV − IRCCS, Via Gattamelata 64, 35128 Padova, Italy
| | - Vincenzo Ingangi
- Istituto
Oncologico Veneto IOV − IRCCS, Via Gattamelata 64, 35128 Padova, Italy
| | - Gianfranco Pasut
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
2
|
Duan HX, Zhao Z, Jin YJ, Wang ZL, Deng JF, He J, Zhu B. PEG-modified subunit vaccine encoding dominant epitope to enhance immune response against spring viraemia of carp virus. JOURNAL OF FISH DISEASES 2021; 44:1587-1594. [PMID: 34165796 DOI: 10.1111/jfd.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Spring viraemia of carp (SVC) caused by spring viraemia of carp virus (SVCV) can infect almost all fish of cyprinids, which bring huge economic losses to aquaculture. Glycoprotein (G), as the most important antigenic determinant protein of SVCV, is widely considered as an effective method against SVCV. In our previous study, we found that G3 (131 aa) is the potential dominant antigen epitope that induces strong immune responses similar to G protein (510 aa). Here, in order to further improve the immune effect, we reported a subunit vaccine (PEG-G3) constructed by PEG-modified dominant epitope protein (G3). The results of serum antibody production, enzyme activities and immune-related genes expression showed that PEG-G3 induces significantly stronger immune protective responses against SVCV than G3. PEG modification significantly increased the serum antibody level of the vaccine, which increased significantly after immunization and reached the peak at 21 day post-vaccination. T-AOC and AKP activities in the lowest concentration group (5 μg) of PEG-G3 were significantly higher than those in the highest concentration group (20 μg) of G3. In PEG-G3 group, the expression of almost all genes increased at least 4 times compared with the control group. After 14-day challenge, the RPS (relative percentage survival) of the highest concentration of PEG-G3 group was 53.6%, while that of G3 group is 38.9%. Therefore, this work shows that PEG modification and dominant epitope screening may be effective methods to improve the immune protective effect of vaccines and to resist the infection of aquatic animal viral diseases.
Collapse
Affiliation(s)
- Hui-Xin Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ying-Jie Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zi-Long Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jie-Fang Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jie He
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Yan J, Marina PF, Blencowe A. A Facile Strategy for the High Yielding, Quantitative Conversion of Polyglycol End-Groups to Amines. Polymers (Basel) 2021; 13:1403. [PMID: 33926044 PMCID: PMC8123656 DOI: 10.3390/polym13091403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
Amino end-group functionalised polyglycols are important intermediates in the synthesis of sophisticated polymeric architectures and biomaterials. Herein, we report a facile strategy for the end-group conversion of hydroxyl-terminated polyglycols to amino-terminated polyglycols in high isolated yields and with excellent end-group fidelity. Following traditional conversion of polyglycol hydroxyl end-groups to azides via the corresponding mesylate, reduction with zinc in the presence of ammonium chloride afforded a range of amino end-group functionalised poly(ethylene glycol) and poly(propylene glycol) homopolymers and copolymers with isolated yields of 82-99% and end-group conversions of >99% as determined by NMR spectroscopy and MALDI ToF MS. Furthermore, this process is applicable to a sequential reagent addition approach without intermediate polymer isolation steps with only a slight reduction in yield and end-group conversion (95%). Importantly, a simple work-up procedure provides access to high purity polyglycols without contamination from other reagents.
Collapse
Affiliation(s)
- Jie Yan
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Paula Facal Marina
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
4
|
Phage Display Libraries: From Binders to Targeted Drug Delivery and Human Therapeutics. Mol Biotechnol 2019; 61:286-303. [DOI: 10.1007/s12033-019-00156-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Lucas AT, Robinson R, Schorzman AN, Piscitelli JA, Razo JF, Zamboni WC. Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients. Antibodies (Basel) 2019; 8:E3. [PMID: 31544809 PMCID: PMC6640706 DOI: 10.3390/antib8010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
The rapid advancement in the development of therapeutic proteins, including monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), has created a novel mechanism to selectively deliver highly potent cytotoxic agents in the treatment of cancer. These agents provide numerous benefits compared to traditional small molecule drugs, though their clinical use still requires optimization. The pharmacology of mAbs/ADCs is complex and because ADCs are comprised of multiple components, individual agent characteristics and patient variables can affect their disposition. To further improve the clinical use and rational development of these agents, it is imperative to comprehend the complex mechanisms employed by antibody-based agents in traversing numerous biological barriers and how agent/patient factors affect tumor delivery, toxicities, efficacy, and ultimately, biodistribution. This review provides an updated summary of factors known to affect the disposition of mAbs/ADCs in development and in clinical use, as well as how these factors should be considered in the selection and design of preclinical studies of ADC agents in development.
Collapse
Affiliation(s)
- Andrew T Lucas
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Ryan Robinson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Allison N Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Joseph A Piscitelli
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | - Juan F Razo
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | - William C Zamboni
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Kim H, Hwang D, Choi M, Lee S, Kang S, Lee Y, Kim S, Chung J, Jon S. Antibody-Assisted Delivery of a Peptide-Drug Conjugate for Targeted Cancer Therapy. Mol Pharm 2018; 16:165-172. [PMID: 30521347 DOI: 10.1021/acs.molpharmaceut.8b00924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of cancer-targeting peptide-drug conjugates (PDCs) have been explored as alternatives to antibody-drug conjugates (ADCs) for targeted cancer therapy. However, the much shorter circulation half-life of PDCs compared with ADCs in vivo has limited their therapeutic value and thus their translation into the clinic, highlighting the need to develop new approaches for extending the half-life of PDCs. Here, we report a new strategy for targeted cancer therapy of a PDC based on a molecular hybrid between an antihapten antibody and a hapten-labeled PDC. An anticotinine antibody (Abcot) was used as a model antihapten antibody. The anticancer drug SN38 was linked to a cotinine-labeled aptide specific to extra domain B of fibronectin (cot-APTEDB), yielding the model PDC, cot-APTEDB-SN38. The cotinine-labeled PDC showed specific binding to and cytotoxicity toward an EDB-overexpressing human glioblastoma cell line (U87MG) and also formed a hybrid complex (HC) with Abcot in situ, designated HC[cot-APTEDB-SN38/Abcot]. In glioblastoma-bearing mice, in situ HC[cot-APTEDB-SN38/Abcot] significantly extended the circulation half-life of cot-APTEDB-SN38 in blood, and it enhanced accumulation and penetration within the tumor and, ultimately, inhibition of tumor growth. These findings suggest that the present platform holds promise as a new, targeted delivery strategy for PDCs in anticancer therapy.
Collapse
Affiliation(s)
- Hyungjun Kim
- KAIST Institute for the BioCentury, Department of Biological Sciences , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Dobeen Hwang
- Department of Biochemistry and Molecular Biology , Seoul National University College of Medicine , 103 Daehak-ro , Seoul 03080 , Republic of Korea
| | - Minsuk Choi
- KAIST Institute for the BioCentury, Department of Biological Sciences , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Soyoung Lee
- KAIST Institute for the BioCentury, Department of Biological Sciences , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Sukmo Kang
- KAIST Institute for the BioCentury, Department of Biological Sciences , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Yonghyun Lee
- KAIST Institute for the BioCentury, Department of Biological Sciences , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Sunghyun Kim
- Center for Convergence Bioceramic Materials , Korea Institute of Ceramic Engineering and Technology , 202 Osongsaengmyeong 1-ro , Cheongju 28160 , Republic of Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology , Seoul National University College of Medicine , 103 Daehak-ro , Seoul 03080 , Republic of Korea
| | - Sangyong Jon
- KAIST Institute for the BioCentury, Department of Biological Sciences , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| |
Collapse
|
7
|
Lucas AT, Price LSL, Schorzman AN, Storrie M, Piscitelli JA, Razo J, Zamboni WC. Factors Affecting the Pharmacology of Antibody-Drug Conjugates. Antibodies (Basel) 2018; 7:E10. [PMID: 31544862 PMCID: PMC6698819 DOI: 10.3390/antib7010010] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Major advances in therapeutic proteins, including antibody-drug conjugates (ADCs), have created revolutionary drug delivery systems in cancer over the past decade. While these immunoconjugate agents provide several advantages compared to their small-molecule counterparts, their clinical use is still in its infancy. The considerations in their development and clinical use are complex, and consist of multiple components and variables that can affect the pharmacologic characteristics. It is critical to understand the mechanisms employed by ADCs in navigating biological barriers and how these factors affect their biodistribution, delivery to tumors, efficacy, and toxicity. Thus, future studies are warranted to better understand the complex pharmacology and interaction between ADC carriers and biological systems, such as the mononuclear phagocyte system (MPS) and tumor microenvironment. This review provides an overview of factors that affect the pharmacologic profiles of ADC therapies that are currently in clinical use and development.
Collapse
Affiliation(s)
- Andrew T Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Lauren S L Price
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Allison N Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Mallory Storrie
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | | | - Juan Razo
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
Marchioli G, Zellner L, Oliveira C, Engelse M, Koning ED, Mano J, Apeldoorn AV, Moroni L. Layered PEGDA hydrogel for islet of Langerhans encapsulation and improvement of vascularization. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:195. [PMID: 29151130 PMCID: PMC5694514 DOI: 10.1007/s10856-017-6004-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Islets of Langerhans need to maintain their round morphology and to be fast revascularized after transplantation to preserve functional insulin secretion in response to glucose stimulation. For this purpose, a non-cell-adhesive environment is preferable for their embedding. Conversely, nutrient and oxygen supply to islets is guaranteed by capillary ingrowth within the construct and this can only be achieved in a matrix that provides adhesion cues for cells. In this study, two different approaches are explored, which are both based on a layered architecture, in order to combine these two opposite requirements. A non-adhesive islet encapsulation layer is based on polyethyleneglycole diacrylate (PEGDA). This first layer is combined with a second hydrogel based on thiolated-gelatin, thiolated-heparin and thiolated-hyaluronic acid providing cues for endothelial cell adhesion and acting as a growth factor releasing matrix. In an alternative approach, a conformal PEGDA coating is covalently applied on the surface of the islets. The coated islets are subsequently embedded in the previously mentioned hydrogel containing thiolated glycosaminoglycans. The suitability of this approach as a matrix for controlled growth factor release has been demonstrated by studying the controlled release of VEGF and bFGF for 14 days. Preliminary tube formation has been quantified on the growth factor loaded hydrogels. This approach should facilitate blood vessel ingrowth towards the embedded islets and maintain islet round morphology and functionality upon implantation.
Collapse
Affiliation(s)
- Giulia Marchioli
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Lisa Zellner
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Catarina Oliveira
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Marten Engelse
- Department of Nephrology and Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eelco de Koning
- Department of Nephrology and Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joao Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Aart van Apeldoorn
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Grigoletto A, Mero A, Maso K, Pasut G. Transgultaminase-Mediated Nanoarmoring of Enzymes by PEGylation. Methods Enzymol 2017; 590:317-346. [DOI: 10.1016/bs.mie.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Nanda P, P.E. J, Raju JR. Production and Optimization of Site-Specific monoPEGylated Uricase Conjugates Using mPEG-Maleimide Through RP–HPLC Methodology. J Pharm Innov 2016. [DOI: 10.1007/s12247-016-9251-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Bejaoui M, Pantazi E, Calvo M, Folch-Puy E, Serafín A, Pasut G, Panisello A, Adam R, Roselló-Catafau J. Polyethylene Glycol Preconditioning: An Effective Strategy to Prevent Liver Ischemia Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9096549. [PMID: 26981166 PMCID: PMC4770158 DOI: 10.1155/2016/9096549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Hepatic ischemia reperfusion injury (IRI) is an inevitable clinical problem for liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proven their effectiveness in various in vivo and in vitro models of tissue injury. The present study aims to investigate whether the intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) could be an effective strategy for rat liver preconditioning against IRI. PEG 35 was intravenously administered at 2 and 10 mg/kg to male Sprague Dawley rats. Then, rats were subjected to one hour of partial ischemia (70%) followed by two hours of reperfusion. The results demonstrated that PEG 35 injected intravenously at 10 mg/kg protected efficiently rat liver against the deleterious effects of IRI. This was evidenced by the significant decrease in transaminases levels and the better preservation of mitochondrial membrane polarization. Also, PEG 35 preserved hepatocyte morphology as reflected by an increased F-actin/G-actin ratio and confocal microscopy findings. In addition, PEG 35 protective mechanisms were correlated with the activation of the prosurvival kinase Akt and the cytoprotective factor AMPK and the inhibition of apoptosis. Thus, PEG may become a suitable agent to attempt pharmacological preconditioning against hepatic IRI.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Rossello 161, Barcelona, 08036 Catalonia, Spain
| | - Eirini Pantazi
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Rossello 161, Barcelona, 08036 Catalonia, Spain
| | - Maria Calvo
- Advanced Optical Microscopy Unit CCiTUB, Science and Technology Center, Faculty of Medicine, University of Barcelona, C/Casanova 143, Barcelona, 08036 Catalonia, Spain
| | - Emma Folch-Puy
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Rossello 161, Barcelona, 08036 Catalonia, Spain
| | - Anna Serafín
- Platform of Laboratory Animal Applied Research, Barcelona Science Park, Barcelona, 08028 Catalonia, Spain
| | - Gianfranco Pasut
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, 35131 Padova, Italy
- Veneto Institute of Oncology (IOV), IRCCS, 35128 Padova, Italy
| | - Arnau Panisello
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Rossello 161, Barcelona, 08036 Catalonia, Spain
| | - René Adam
- Hepato-Biliary Centre, Paul Brousse Hospital, Inserm U776, Paris-Sud University, Villejuif, 75008 Paris, France
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Rossello 161, Barcelona, 08036 Catalonia, Spain
| |
Collapse
|
12
|
Bejaoui M, Pantazi E, Folch-Puy E, Panisello A, Calvo M, Pasut G, Rimola A, Navasa M, Adam R, Roselló-Catafau J. Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:794287. [PMID: 26543868 PMCID: PMC4620277 DOI: 10.1155/2015/794287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 12/17/2022]
Abstract
Ischemia reperfusion injury (IRI) leads to significant tissue damage in liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proved their effectiveness against IRI. The objective of our study was to investigate the potential protective effects of intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) in steatotic livers subjected to cold ischemia reperfusion. In this study, we used isolated perfused rat liver model to assess the effects of PEG 35 intravenous administration after prolonged cold ischemia (24 h, 4°C) and after reperfusion (2 h, 37°C). Liver injury was measured by transaminases levels and mitochondrial damage was determined by confocal microscopy assessing mitochondrial polarization (after cold storage) and by measuring glutamate dehydrogenase activity (after reperfusion). Also, cell signaling pathways involved in the physiopathology of IRI were assessed by western blot technique. Our results show that intravenous administration of PEG 35 at 10 mg/kg ameliorated liver injury and protected the mitochondria. Moreover, PEG 35 administration induced a significant phosphorylation of prosurvival protein kinase B (Akt) and activation of cytoprotective factors e-NOS and AMPK. In conclusion, intravenous PEG 35 efficiently protects steatotic livers exposed to cold IRI.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - Eirini Pantazi
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - Emma Folch-Puy
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - Arnau Panisello
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - María Calvo
- Serveis Cientifico-Tècnics, Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Gianfranco Pasut
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, 35122 Padova, Italy
| | - Antoni Rimola
- Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Miquel Navasa
- Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - René Adam
- Centre Hepato-Biliaire, AP-P-HP Hôpital Paul Brousse, Inserm U776, Université Paris Sud, Villejuif, 75008 Paris, France
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| |
Collapse
|
13
|
N-Monosubstituted Methoxy-oligo(ethylene glycol) Carbamate Ester Prodrugs of Resveratrol. Molecules 2015; 20:16085-102. [PMID: 26404221 PMCID: PMC6332312 DOI: 10.3390/molecules200916085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 12/18/2022] Open
Abstract
Resveratrol is a natural polyphenol with many interesting biological activities. Its pharmacological exploitation in vivo is, however, hindered by its rapid elimination via phase II conjugative metabolism at the intestinal and, most importantly, hepatic levels. One approach to bypass this problem relies on prodrugs. We report here the synthesis, characterization, hydrolysis, and in vivo pharmacokinetic behavior of resveratrol prodrugs in which the OH groups are engaged in an N-monosubstituted carbamate ester linkage. As promoiety, methoxy-oligo(ethylene glycol) groups (m-OEG) (CH3–[OCH2CH2]n–) of defined chain length (n = 3, 4, 6) were used. These are expected to modulate the chemico-physical properties of the resulting derivatives, much like longer poly(ethylene glycol) (PEG) chains, while retaining a relatively low MW and, thus, a favorable drug loading capacity. Intragastric administration to rats resulted in the appearance in the bloodstream of the prodrug and of the products of its partial hydrolysis, confirming protection from first-pass metabolism during absorption.
Collapse
|
14
|
Peng F, Liu Y, Li X, Sun L, Zhao D, Wang Q, Ma G, Su Z. PEGylation of G-CSF in organic solvent markedly increase the efficacy and reactivity through protein unfolding, hydrolysis inhibition and solvent effect. J Biotechnol 2014; 170:42-9. [DOI: 10.1016/j.jbiotec.2013.10.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/16/2013] [Accepted: 10/31/2013] [Indexed: 01/08/2023]
|
15
|
Gao A, Yang X, Zhang C, Long G, Pu J, Yuan Y, Liu H, Li Y, Liao F. Facile spectrophotometric assay of molar equivalents of N-hydroxysuccinimide esters of monomethoxyl poly-(ethylene glycol) derivatives. Chem Cent J 2012. [PMID: 23176729 PMCID: PMC3542108 DOI: 10.1186/1752-153x-6-142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background A new method is developed to quantify molar equivalents of
N-hydroxysuccinimide (NHS) esters of derivatives of monomethoxyl
poly-(ethylene glycol) (mPEG) in their preparations with NHS acetate ester
as the reference. Results NHS ester of succinic monoester or carbonate of mPEG of 5,000 Da was
synthesized and reacted with excessive ethanolamine in dimethylformamide at
25°C for 15 min. Residual ethanolamine was subsequently quantified by
absorbance at 420 nm after reaction with 2,4,6-trinitrobenzenesulfonic acid
(TNBS) at pH 9.2 for 15 min at 55°C followed by cooling with tap water.
Reaction products of ethanolamine and NHS esters of mPEG caused no
interference with TNBS assay of residual ethanolamine. Reaction between
ethanolamine and NHS acetate ester follows 1:1 stoichiometry. By the new
method, molar equivalents of NHS esters of carbonate and succinic monoester
of mPEG in their preparations were about 90% and 60% of their
theoretical values, respectively. During storage at 37°C in humid air,
the new method detected spontaneous hydrolyses of the two NHS esters of mPEG
more sensitively than the classical spectrophotometric method based on
absorbance at 260 nm of NHS released by reaction with ammonia in aqueous
solution. Conclusion The new method is favorable to quantify molar equivalents of NHS esters of
mPEG derivatives and thus control quality of their preparations.
Collapse
Affiliation(s)
- Ang Gao
- Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry of China, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Schwarz C, Bohne AV, Wang F, Cejudo FJ, Nickelsen J. An intermolecular disulfide-based light switch for chloroplast psbD gene expression in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:378-89. [PMID: 22725132 DOI: 10.1111/j.1365-313x.2012.05083.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Expression of the chloroplast psbD gene encoding the D2 protein of the photosystem II reaction center is regulated by light. In the green alga Chlamydomonas reinhardtii, D2 synthesis requires a high-molecular-weight complex containing the RNA stabilization factor Nac2 and the translational activator RBP40. Based on size exclusion chromatography analyses, we provide evidence that light control of D2 synthesis depends on dynamic formation of the Nac2/RBP40 complex. Furthermore, 2D redox SDS-PAGE assays suggest an intermolecular disulfide bridge between Nac2 and Cys11 of RBP40 as the putative molecular basis for attachment of RBP40 to the complex in light-grown cells. This covalent link is reduced in the dark, most likely via NADPH-dependent thioredoxin reductase C, supporting the idea of a direct relationship between chloroplast gene expression and chloroplast carbon metabolism during dark adaption of algal cells.
Collapse
Affiliation(s)
- Christian Schwarz
- Molekulare Pflanzenwissenschaften, Biozentrum Ludwig Maximilian University Munich, Grosshaderner Strasse, Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
17
|
Moysan E, Bastiat G, Benoit JP. Gemcitabine versus Modified Gemcitabine: a review of several promising chemical modifications. Mol Pharm 2012; 10:430-44. [PMID: 22978251 DOI: 10.1021/mp300370t] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gemcitabine, an anticancer agent which acts against a wide range of solid tumors, is known to be rapidly deaminated in blood to the inactive metabolite 2',2'-difluorodeoxyuridine and to be rapidly excreted by the urine. Moreover, many cancers develop resistance against this drug, such as loss of transporters and kinases responsible for the first phosphorylation step. To increase its therapeutic levels, gemcitabine is administered at high doses (1000 mg/m(2)) causing side effects (neutropenia, nausea, and so forth). To improve its metabolic stability and cytotoxic activity and to limit the phenomena of resistance many alternatives have emerged, such as the synthesis of prodrugs. Modifying an anticancer agent is not new; paclitaxel or ara-C has been subjected to such changes. This review summarizes the various chemical modifications that can be found in the 4-(N)- and 5'-positions of gemcitabine. They can provide (i) a protection against deamination, (ii) a better storage and (iii) a prolonged release in the cell, (iv) a possible use in the case of deoxycytidine kinase deficiency, and (v) transporter deficiency. These new gemcitabine-based sysems have the potential to improve the clinical outcome of a chemotherapy strategy.
Collapse
Affiliation(s)
- Elodie Moysan
- LUNAM Université -Micro et Nanomédecines Biomimétiques, F-49933 Angers, France
| | | | | |
Collapse
|