1
|
Experience selectively alters functional connectivity within a neural network to predict learned behavior in juvenile songbirds. Neuroimage 2020; 222:117218. [PMID: 32745678 DOI: 10.1016/j.neuroimage.2020.117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/06/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022] Open
Abstract
One of the central questions of neuroethology is how specialized brain areas communicate to form dynamic networks that support complex cognitive and behavioral processes. Developmental song learning in the male zebra finch songbird (Taeniopygia guttata) provides a unique window into the complex interplay among sensory, sensorimotor, and motor network nodes. The foundation of a young male's song structure is the sensory memory he forms during interactions with an adult "tutor." However, even in the absence of tutoring, juveniles produce a song-like behavior. Thus, by controlling a juvenile male's tutor exposure, we can examine how tutor experience affects distributed neural networks and how network properties predict behavior. Here, we used longitudinal, resting-state fMRI (rs-fMRI) functional connectivity (FC) and song analyses to examine known nodes of the song network, and to allow discovery of additional areas functionally related to song learning. We present three major novel findings. First, tutor deprivation significantly reduced the global FC strength of the caudomedial nidopallium (NCM) subregion of the auditory forebrain required for sensory song learning. Second, tutor deprivation resulted in reduced FC between NCM and cerebellar lobule VI, a region analogous to areas that regulate limbic, social, and language functions in humans. Third, NCM FC strength predicted song stereotypy and mediated the relationship between tutoring and stereotypy, thus completing the link between experience, neural network properties, and complex learned behavior.
Collapse
|
2
|
Layden EA, Schertz KE, London SE, Berman MG. Interhemispheric functional connectivity in the zebra finch brain, absent the corpus callosum in normal ontogeny. Neuroimage 2019; 195:113-127. [PMID: 30940612 DOI: 10.1016/j.neuroimage.2019.03.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022] Open
Abstract
Bilaterally symmetric intrinsic brain activity (homotopic functional connectivity; FC) is a fundamental feature of the mammalian brain's functional architecture. In mammals, homotopic FC is primarily mediated by the corpus callosum (CC), a large interhemispheric white matter tract thought to balance the bilateral coordination and hemispheric specialization critical for many complex brain functions, including human language. The CC first emerged with the Eutherian (placental) mammals ∼160 MYA and is not found among other vertebrates. Despite this, other vertebrates also exhibit complex brain functions requiring hemispheric specialization and coordination. For example, the zebra finch (Taeniopygia guttata) songbird learns to sing from tutors much as humans acquire speech and must balance hemispheric specialization and coordination to successfully learn and produce song. We therefore tested whether the zebra finch also exhibits homotopic FC, despite lacking the CC. Resting-state fMRI analyses demonstrated widespread homotopic FC throughout the zebra finch brain across development, including within a network required for learned song that lacks direct interhemispheric structural connectivity. The presence of homotopic FC in a non-Eutherian suggests that ancestral pathways, potentially including indirect connectivity via the anterior commissure, are sufficient for maintaining a homotopic functional architecture, an insight with broad implications for understanding interhemispheric coordination across phylogeny.
Collapse
Affiliation(s)
- Elliot A Layden
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Kathryn E Schertz
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA
| | - Sarah E London
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA; The Institute for Mind and Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Marc G Berman
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
3
|
Behroozi M, Chwiesko C, Ströckens F, Sauvage M, Helluy X, Peterburs J, Güntürkün O. In vivo measurement of T 1 and T 2 relaxation times in awake pigeon and rat brains at 7T. Magn Reson Med 2017; 79:1090-1100. [PMID: 28474481 DOI: 10.1002/mrm.26722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE Establishment of regional longitudinal (T1 ) and transverse (T2 ) relaxation times in awake pigeons and rats at 7T field strength. Regional differences in relaxation times between species and between two different pigeon breeds (homing pigeons and Figurita pigeons) were investigated. METHODS T1 and T2 relaxation times were determined for nine functionally equivalent brain regions in awake pigeons and rats using a multiple spin-echo saturation recovery method with variable repetition time and a multi-slice/multi-echo sequence, respectively. Optimized head fixation and habituation protocols were applied to accustom animals to the scanning conditions and to minimize movement. RESULTS The habituation protocol successfully limited movement of the awake animals to a negligible minimum, allowing reliable measurement of T1 and T2 values within all regions of interest. Significant differences in relaxation times were found between rats and pigeons but not between different pigeon breeds. CONCLUSION The obtained T1 and T2 values for awake pigeons and rats and the optimized habituation protocol will augment future MRI studies with awake animals. The differences in relaxation times observed between species underline the importance of the acquisition of T1 /T2 values as reference points for specific experiments. Magn Reson Med 79:1090-1100, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Mehdi Behroozi
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Bochum, Germany
| | - Caroline Chwiesko
- Mercator Research Group, Ruhr-University Bochum, Bochum, Germany
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
- Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Felix Ströckens
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Bochum, Germany
| | - Magdalena Sauvage
- Mercator Research Group, Ruhr-University Bochum, Bochum, Germany
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
- Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Xavier Helluy
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Bochum, Germany
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Jutta Peterburs
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Onur Güntürkün
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Bochum, Germany
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
4
|
Norepinephrine Modulates Coding of Complex Vocalizations in the Songbird Auditory Cortex Independent of Local Neuroestrogen Synthesis. J Neurosci 2015; 35:9356-68. [PMID: 26109659 DOI: 10.1523/jneurosci.4445-14.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The catecholamine norepinephrine plays a significant role in auditory processing. Most studies to date have examined the effects of norepinephrine on the neuronal response to relatively simple stimuli, such as tones and calls. It is less clear how norepinephrine shapes the detection of complex syntactical sounds, as well as the coding properties of sensory neurons. Songbirds provide an opportunity to understand how auditory neurons encode complex, learned vocalizations, and the potential role of norepinephrine in modulating the neuronal computations for acoustic communication. Here, we infused norepinephrine into the zebra finch auditory cortex and performed extracellular recordings to study the modulation of song representations in single neurons. Consistent with its proposed role in enhancing signal detection, norepinephrine decreased spontaneous activity and firing during stimuli, yet it significantly enhanced the auditory signal-to-noise ratio. These effects were all mimicked by clonidine, an α-2 receptor agonist. Moreover, a pattern classifier analysis indicated that norepinephrine enhanced the ability of single neurons to accurately encode complex auditory stimuli. Because neuroestrogens are also known to enhance auditory processing in the songbird brain, we tested the hypothesis that norepinephrine actions depend on local estrogen synthesis. Neither norepinephrine nor adrenergic receptor antagonist infusion into the auditory cortex had detectable effects on local estradiol levels. Moreover, pretreatment with fadrozole, a specific aromatase inhibitor, did not block norepinephrine's neuromodulatory effects. Together, these findings indicate that norepinephrine enhances signal detection and information encoding for complex auditory stimuli by suppressing spontaneous "noise" activity and that these actions are independent of local neuroestrogen synthesis.
Collapse
|
5
|
Bach JP, Lüpke M, Dziallas P, Wefstaedt P, Uppenkamp S, Seifert H, Nolte I. Functional magnetic resonance imaging of the ascending stages of the auditory system in dogs. BMC Vet Res 2013; 9:210. [PMID: 24131784 PMCID: PMC3854503 DOI: 10.1186/1746-6148-9-210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 10/11/2013] [Indexed: 11/21/2022] Open
Abstract
Background Functional magnetic resonance imaging (fMRI) is a technique able to localize neural activity in the brain by detecting associated changes in blood flow. It is an essential tool for studying human functional neuroanatomy including the auditory system. There are only a few studies, however, using fMRI to study canine brain functions. In the current study ten anesthetized dogs were scanned during auditory stimulation. Two functional sequences, each in combination with a suitable stimulation paradigm, were used in each subject. Sequence 1 provided periods of silence during which acoustic stimuli could be presented unmasked by scanner noise (sparse temporal sampling) whereas in sequence 2 the scanner noise was present throughout the entire session (continuous imaging). The results obtained with the two different functional sequences were compared. Results This study shows that with the proper experimental setup it is possible to detect neural activity in the auditory system of dogs. In contrast to human fMRI studies the strongest activity was found in the subcortical parts of the auditory pathways. Especially sequence 1 showed a high reliability in detecting activated voxels in brain regions associated with the auditory system. Conclusion These results indicate that fMRI is applicable for studying the canine auditory system and could become an additional method for the clinical evaluation of the auditory function of dogs. Additionally, fMRI is an interesting technique for future studies concerned with canine functional neuroanatomy.
Collapse
Affiliation(s)
| | - Matthias Lüpke
- Institute for General Radiology and Medical Physics, University of Veterinary Medicine Hannover, Foundation, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Van Ruijssevelt L, De Groof G, Van der Kant A, Poirier C, Van Audekerke J, Verhoye M, Van der Linden A. Functional magnetic resonance imaging (FMRI) with auditory stimulation in songbirds. J Vis Exp 2013. [PMID: 23770665 DOI: 10.3791/4369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The neurobiology of birdsong, as a model for human speech, is a pronounced area of research in behavioral neuroscience. Whereas electrophysiology and molecular approaches allow the investigation of either different stimuli on few neurons, or one stimulus in large parts of the brain, blood oxygenation level dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) allows combining both advantages, i.e. compare the neural activation induced by different stimuli in the entire brain at once. fMRI in songbirds is challenging because of the small size of their brains and because their bones and especially their skull comprise numerous air cavities, inducing important susceptibility artifacts. Gradient-echo (GE) BOLD fMRI has been successfully applied to songbirds (1-5) (for a review, see (6)). These studies focused on the primary and secondary auditory brain areas, which are regions free of susceptibility artifacts. However, because processes of interest may occur beyond these regions, whole brain BOLD fMRI is required using an MRI sequence less susceptible to these artifacts. This can be achieved by using spin-echo (SE) BOLD fMRI (7,8) . In this article, we describe how to use this technique in zebra finches (Taeniopygia guttata), which are small songbirds with a bodyweight of 15-25 g extensively studied in behavioral neurosciences of birdsong. The main topic of fMRI studies on songbirds is song perception and song learning. The auditory nature of the stimuli combined with the weak BOLD sensitivity of SE (compared to GE) based fMRI sequences makes the implementation of this technique very challenging.
Collapse
|
7
|
Van Ruijssevelt L, Van der Kant A, De Groof G, Van der Linden A. Current state-of-the-art of auditory functional MRI (fMRI) on zebra finches: technique and scientific achievements. ACTA ACUST UNITED AC 2012; 107:156-69. [PMID: 22960664 DOI: 10.1016/j.jphysparis.2012.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 01/27/2023]
Abstract
Songbirds provide an excellent model system exhibiting vocal learning associated with an extreme brain plasticity linked to quantifiable behavioral changes. This animal model has thus far been intensively studied using electrophysiological, histological and molecular mapping techniques. However, these approaches do not provide a global view of the brain and/or do not allow repeated measures, which are necessary to establish correlations between alterations in neural substrate and behavior. In contrast, functional Magnetic Resonance Imaging (fMRI) is a non-invasive in vivo technique which allows one (i) to study brain function in the same subject over time, and (ii) to address the entire brain at once. During the last decades, fMRI has become one of the most popular neuroimaging techniques in cognitive neuroscience for the study of brain activity during various tasks ranging from simple sensory-motor to highly cognitive tasks. By alternating various stimulation periods with resting periods during scanning, resting and task-specific regional brain activity can be determined with this technique. Despite its obvious benefits, fMRI has, until now, only been sparsely used to study cognition in non-human species such as songbirds. The Bio-Imaging Lab (University of Antwerp, Belgium) was the first to implement Blood Oxygen Level Dependent (BOLD) fMRI in songbirds - and in particular zebra finches - for the visualization of sound perception and processing in auditory and song control brain regions. The present article provides an overview of the establishment and optimization of this technique in our laboratory and of the resulting scientific findings. The introduction of fMRI in songbirds has opened new research avenues that permit experimental analysis of complex sensorimotor and cognitive processes underlying vocal communication in this animal model.
Collapse
Affiliation(s)
- Lisbeth Van Ruijssevelt
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Building Uc, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | | | | |
Collapse
|