1
|
Brandao R, Kwa MQ, Yarden Y, Brakebusch C. ACK1 is dispensable for development, skin tumor formation, and breast cancer cell proliferation. FEBS Open Bio 2021; 11:1579-1592. [PMID: 33730447 PMCID: PMC8167857 DOI: 10.1002/2211-5463.13149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022] Open
Abstract
Activated Cdc42‐associated kinase 1 (ACK1), a widely expressed nonreceptor tyrosine kinase, is often amplified in cancer and has been shown to interact with Cell division cycle 42 (Cdc42), Epidermal growth factor receptor (EGFR), and several other cancer‐relevant molecules, suggesting a possible role for ACK1 in development and tumor formation. To directly address this scenario, we generated mice lacking a functional ACK1 gene (ACK1 ko) using CRISPR genome editing. ACK1 ko mice developed normally, displayed no obvious defect in tissue maintenance, and were fertile. Primary ACK1‐null keratinocytes showed normal phosphorylation of EGFR, but a tendency toward reduced activation of AKT serine/threonine kinase 1 (Akt) and Mitogen‐activated protein kinase 1 (Erk). DMBA/TPA‐induced skin tumor formation did not reveal significant differences between ACK1 ko and control mice. Deletion of the ACK1 gene in the breast cancer cell lines MDA‐MB‐231, 67NR, MCF7, 4T1, and T47D caused no differences in growth. Furthermore, EGF‐induced phosphorylation kinetics of Erk, Akt, and p130Cas were not detectably altered in T47D cells by the loss of ACK1. Finally, loss of ACK1 in MDA‐MB‐231 and T47D breast cancer cells had a very limited or no effect on directed cell migration. These data do not support a major role for ACK1 in Cdc42 and EGFR signaling, development, or tumor formation.
Collapse
Affiliation(s)
- Rafael Brandao
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
| | - Mei Qi Kwa
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
| | | | - Cord Brakebusch
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
| |
Collapse
|
2
|
Manresa-Arraut A, Johansen FF, Brakebusch C, Issazadeh-Navikas S, Hasseldam H. RhoA Drives T-Cell Activation and Encephalitogenic Potential in an Animal Model of Multiple Sclerosis. Front Immunol 2018; 9:1235. [PMID: 29904389 PMCID: PMC5990621 DOI: 10.3389/fimmu.2018.01235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/16/2018] [Indexed: 01/22/2023] Open
Abstract
T-cells are known to be intimately involved in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). T-cell activation is controlled by a range of intracellular signaling pathways regulating cellular responses such as proliferation, cytokine production, integrin expression, and migration. These processes are crucial for the T-cells’ ability to mediate inflammatory processes in autoimmune diseases such as MS. RhoA is a ubiquitously expressed small GTPase well described as a regulator of the actin cytoskeleton. It is essential for embryonic development and together with other Rho GTPases controls various cellular processes such as cell development, shaping, proliferation, and locomotion. However, the specific contribution of RhoA to these processes in T-cells in general, and in autoreactive T-cells in particular, has not been fully characterized. Using mice with a T-cell specific deletion of the RhoA gene (RhoAfl/flLckCre+), we investigated the role of RhoA in T-cell development, functionality, and encephalitogenic potential in EAE. We show that lack of RhoA specifically in T-cells results in reduced numbers of mature T-cells in thymus and spleen but normal counts in peripheral blood. EAE induction in RhoAfl/flLckCre+ mice results in significantly reduced disease incidence and severity, which coincides with a reduced CNS T-cell infiltration. Besides presenting reduced migratory capacity, both naïve and autoreactive effector T-cells from RhoAfl/flLckCre+ mice show decreased viability, proliferative capacity, and an activation profile associated with reduced production of Th1 pro-inflammatory cytokines. Our study demonstrates that RhoA is a central regulator of several archetypical T-cell responses, and furthermore points toward RhoA as a new potential therapeutic target in diseases such as MS, where T-cell activity plays a central role.
Collapse
Affiliation(s)
- Alba Manresa-Arraut
- Neuroinflammation Unit, Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Fryd Johansen
- Neuroinflammation Unit, Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cord Brakebusch
- Cytoskeletal Organization Group, Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Hasseldam
- Neuroinflammation Unit, Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
García-Mariscal A, Li H, Pedersen E, Peyrollier K, Ryan KM, Stanley A, Quondamatteo F, Brakebusch C. Loss of RhoA promotes skin tumor formation and invasion by upregulation of RhoB. Oncogene 2018; 37:847-860. [PMID: 29059167 DOI: 10.1038/onc.2017.333] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/26/2017] [Accepted: 08/12/2017] [Indexed: 02/06/2023]
Abstract
Cellular movement is controlled by small GTPases, such as RhoA. Although migration is crucial for cancer cell invasion, the specific role of RhoA in tumor formation is unclear. Inducing skin tumors in mice with a keratinocyte-restricted loss of RhoA, we observed increased tumor frequency, growth and invasion. In vitro invasion assays revealed that in the absence of RhoA cell invasiveness is increased in a Rho-associated protein kinase (ROCK) activation and cell contraction-dependent manner. Surprisingly, loss of RhoA causes increased Rho signaling via overcompensation by RhoB because of reduced lysosomal degradation of RhoB in Gamma-aminobutyric acid receptor-associated protein (GABARAP)+ autophagosomes and endosomes. In the absence of RhoA, RhoB relocalized to the plasma membrane and functionally replaced RhoA with respect to invasion, clonogenic growth and survival. Our data demonstrate for the first time that RhoA is a tumor suppressor in 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol 13-acetate skin carcinogenesis and identify Rho signaling dependent on RhoA and RhoB as a potent driver of tumor progression.
Collapse
Affiliation(s)
- A García-Mariscal
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - H Li
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - E Pedersen
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - K Peyrollier
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | | | - A Stanley
- Skin and Extracellular Matrix Research Group, Anatomy, NUI, Galway, Ireland
| | - F Quondamatteo
- Skin and Extracellular Matrix Research Group, Anatomy, NUI, Galway, Ireland
| | - C Brakebusch
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
García-Mariscal A, Peyrollier K, Basse A, Pedersen E, Rühl R, van Hengel J, Brakebusch C. RhoA controls retinoid signaling by ROCK dependent regulation of retinol metabolism. Small GTPases 2016; 9:433-444. [PMID: 27754752 DOI: 10.1080/21541248.2016.1248272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ubiquitously expressed small GTPase RhoA is essential for embryonic development and mutated in different cancers. Functionally, it is well described as a regulator of the actin cytoskeleton, but its role in gene regulation is less understood. Using primary mouse keratinocytes with a deletion of the RhoA gene, we have now been exploring how the loss of RhoA affects gene expression. Performing transcription factor reporter assays, we found a significantly decreased activity of a RAR luciferase reporter in RhoA-null keratinocytes. Inhibition of the RhoA effector ROCK in control cells reproduced this phenotype. ATRA and retinal, but not retinol increased RAR reporter activity of keratinocytes with impaired RhoA/ROCK signaling, suggesting that retinol metabolism is regulated by RhoA/ROCK signaling. Furthermore a significant percentage of known ATRA target genes displayed altered expression in RhoA-null keratinocytes. These data reveal an unexpected link between the cytoskeletal regulator RhoA and retinoid signaling and uncover a novel pathway by which RhoA regulates gene expression.
Collapse
Affiliation(s)
| | - Karine Peyrollier
- a Department of Biomedical Sciences , BRIC, University of Copenhagen , Copenhagen , Denmark
| | - Astrid Basse
- a Department of Biomedical Sciences , BRIC, University of Copenhagen , Copenhagen , Denmark
| | - Esben Pedersen
- a Department of Biomedical Sciences , BRIC, University of Copenhagen , Copenhagen , Denmark
| | - Ralph Rühl
- b Laboratory of Nutritional Bioactivation and Bioanalysis, Research Center of Molecular Medicine, University of Debrecen , Hungary
| | - Jolanda van Hengel
- c Department of Basic Medical Sciences , Faculty of Medicine and Health Sciences, Ghent University , Ghent , Belgium
| | - Cord Brakebusch
- a Department of Biomedical Sciences , BRIC, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
5
|
Rho protein GTPases and their interactions with NFκB: crossroads of inflammation and matrix biology. Biosci Rep 2014; 34:BSR20140021. [PMID: 24877606 PMCID: PMC4069681 DOI: 10.1042/bsr20140021] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RhoGTPases, with RhoA, Cdc42 and Rac being major members, are a group of key ubiquitous proteins present in all eukaryotic organisms that subserve such important functions as cell migration, adhesion and differentiation. The NFκB (nuclear factor κB) is a family of constitutive and inducible transcription factors that through their diverse target genes, play a major role in processes such as cytokine expression, stress regulation, cell division and transformation. Research over the past decade has uncovered new molecular links between the RhoGTPases and the NFκB pathway, with the RhoGTPases playing a positive or negative regulatory role on NFκB activation depending on the context. The RhoA–NFκB interaction has been shown to be important in cytokine-activated NFκB processes, such as those induced by TNFα (tumour necrosis factor α). On the other hand, Rac is important for activating the NFκB response downstream of integrin activation, such as after phagocytosis. Specific residues of Rac1 are important for triggering NFκB activation, and mutations do obliterate this response. Other upstream triggers of the RhoGTPase–NFκB interactions include the suppressive p120 catenin, with implications for skin inflammation. The networks described here are not only important areas for further research, but are also significant for discovery of targets for translational medicine.
Collapse
|
6
|
Abstract
Rho GTPases are a family of small GTPases, which play an important role in the regulation of the actin cytoskeleton. Not surprisingly, Rho GTPases are crucial for cell migration and therefore highly important for cancer cell invasion and the formation of metastases. In addition, Rho GTPases are involved in growth and survival of tumor cells, in the interaction of tumor cells with their environment, and they are vital for the cancer supporting functions of the tumor stroma. Recent research has significantly improved our understanding of the regulation of Rho GTPase activity, the specificity of Rho GTPases, and their function in tumor stem cells and tumor stroma. This review summarizes these novel findings and tries to define challenging questions for future research.
Collapse
Affiliation(s)
- Hui Li
- University of Copenhagen, BRIC, BMI, 2200, Copenhagen, Denmark
| | | | | | | |
Collapse
|