1
|
Pewkliang Y, Thongsri P, Suthivanich P, Thongbaiphet N, Keatkla J, Pasomsub E, Anurathapan U, Borwornpinyo S, Wongkajornsilp A, Hongeng S, Sa-Ngiamsuntorn K. Immortalized hepatocyte-like cells: A competent hepatocyte model for studying clinical HCV isolate infection. PLoS One 2024; 19:e0303265. [PMID: 38739590 PMCID: PMC11090328 DOI: 10.1371/journal.pone.0303265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
More than 58 million individuals worldwide are inflicted with chronic HCV. The disease carries a high risk of end stage liver disease, i.e., cirrhosis and hepatocellular carcinoma. Although direct-acting antiviral agents (DAAs) have revolutionized therapy, the emergence of drug-resistant strains has become a growing concern. Conventional cellular models, Huh7 and its derivatives were very permissive to only HCVcc (JFH-1), but not HCV clinical isolates. The lack of suitable host cells had hindered comprehensive research on patient-derived HCV. Here, we established a novel hepatocyte model for HCV culture to host clinically pan-genotype HCV strains. The immortalized hepatocyte-like cell line (imHC) derived from human mesenchymal stem cell carries HCV receptors and essential host factors. The imHC outperformed Huh7 as a host for HCV (JFH-1) and sustained the entire HCV life cycle of pan-genotypic clinical isolates. We analyzed the alteration of host markers (i.e., hepatic markers, cellular innate immune response, and cell apoptosis) in response to HCV infection. The imHC model uncovered the underlying mechanisms governing the action of IFN-α and the activation of sofosbuvir. The insights from HCV-cell culture model hold promise for understanding disease pathogenesis and novel anti-HCV development.
Collapse
Affiliation(s)
- Yongyut Pewkliang
- Faculty of Medicine Ramathibodi Hospital, Program in Translational Medicine, Mahidol University, Rama VI Road, Rajathevi, Bangkok, Thailand
| | - Piyanoot Thongsri
- Faculty of Medicine Ramathibodi Hospital, Program in Translational Medicine, Mahidol University, Rama VI Road, Rajathevi, Bangkok, Thailand
| | - Phichaya Suthivanich
- Faculty of Science, Excellent Center for Drug Discovery, Mahidol University, Rama VI Road, Rajathevi, Bangkok, Thailand
| | - Nipa Thongbaiphet
- Faculty of Medicine Ramathibodi Hospital, Department of Pathology, Virology Laboratory, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Jiraporn Keatkla
- Faculty of Medicine Ramathibodi Hospital, Department of Pathology, Virology Laboratory, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Ekawat Pasomsub
- Faculty of Medicine Ramathibodi Hospital, Department of Pathology, Virology Laboratory, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Usanarat Anurathapan
- Faculty of Medicine Ramathibodi Hospital, Department of Pediatrics, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Faculty of Science, Excellent Center for Drug Discovery, Mahidol University, Rama VI Road, Rajathevi, Bangkok, Thailand
- Faculty of Science, Department of Biotechnology, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Adisak Wongkajornsilp
- Faculty of Medicine Siriraj Hospital, Department of Pharmacology, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Faculty of Medicine Ramathibodi Hospital, Department of Pediatrics, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Khanit Sa-Ngiamsuntorn
- Faculty of Pharmacy, Department of Biochemistry, Mahidol University, Rajathevi, Bangkok, Thailand
| |
Collapse
|
2
|
Kongmanas K, Punyadee N, Wasuworawong K, Songjaeng A, Prommool T, Pewkliang Y, Manocheewa S, Thiemmeca S, Sa-ngiamsuntorn K, Puttikhunt C, Faull KF, Hongeng S, Avirutnan P. Immortalized stem cell-derived hepatocyte-like cells: An alternative model for studying dengue pathogenesis and therapy. PLoS Negl Trop Dis 2020; 14:e0008835. [PMID: 33216752 PMCID: PMC7717553 DOI: 10.1371/journal.pntd.0008835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 12/04/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Suitable cell models are essential to advance our understanding of the pathogenesis of liver diseases and the development of therapeutic strategies. Primary human hepatocytes (PHHs), the most ideal hepatic model, are commercially available, but they are expensive and vary from lot-to-lot which confounds their utility. We have recently developed an immortalized hepatocyte-like cell line (imHC) from human mesenchymal stem cells, and tested it for use as a substitute model for hepatotropic infectious diseases. With a special interest in liver pathogenesis of viral infection, herein we determined the suitability of imHC as a host cell target for dengue virus (DENV) and as a model for anti-viral drug testing. We characterized the kinetics of DENV production, cellular responses to DENV infection (apoptosis, cytokine production and lipid droplet metabolism), and examined anti-viral drug effects in imHC cells with comparisons to the commonly used hepatoma cell lines (HepG2 and Huh-7) and PHHs. Our results showed that imHC cells had higher efficiencies in DENV replication and NS1 secretion as compared to HepG2 and Huh-7 cells. The kinetics of DENV infection in imHC cells showed a slower rate of apoptosis than the hepatoma cell lines and a certain similarity of cytokine profiles to PHHs. In imHC, DENV-induced alterations in levels of lipid droplets and triacylglycerols, a major component of lipid droplets, were more apparent than in hepatoma cell lines, suggesting active lipid metabolism in imHC. Significantly, responses to drugs with DENV inhibitory effects were greater in imHC cells than in HepG2 and Huh-7 cells. In conclusion, our findings suggest superior suitability of imHC as a new hepatocyte model for studying mechanisms underlying viral pathogenesis, liver diseases and drug effects. A model system resembling normal human liver cells is needed for advancement of hepatotropic infectious disease research. Here we show that immortalized cells (imHC) derived from human stem cells have a higher efficiency of DENV replication and a lower rate of cell death in response to DENV infection than the cancer cell-derived model systems currently used. The imHC also have active fat metabolism and respond well to anti-viral drug treatment, making them an attractive model for the initial stage of drug discovery and testing.
Collapse
Affiliation(s)
- Kessiri Kongmanas
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nuntaya Punyadee
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kasima Wasuworawong
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Songjaeng
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tanapan Prommool
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Yongyut Pewkliang
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Siriphan Manocheewa
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somchai Thiemmeca
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Chunya Puttikhunt
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Kym Francis Faull
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, California, United States of America
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
3
|
Sa-Ngiamsuntorn K, Thongsri P, Pewkliang Y, Wongkajornsilp A, Kongsomboonchoke P, Suthivanich P, Borwornpinyo S, Hongeng S. An Immortalized Hepatocyte-like Cell Line (imHC) Accommodated Complete Viral Lifecycle, Viral Persistence Form, cccDNA and Eventual Spreading of a Clinically-Isolated HBV. Viruses 2019; 11:E952. [PMID: 31623162 PMCID: PMC6832882 DOI: 10.3390/v11100952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
More than 350 million people worldwide have been persistently infected with the hepatitis B virus (HBV). Chronic HBV infection could advance toward liver cirrhosis and hepatocellular carcinoma. The intervention with prophylactic vaccine and conventional treatment could suppress HBV, but could not completely eradicate it. The major obstacle for investigating curative antiviral drugs are the incompetence of hepatocyte models that should have closely imitated natural human infection. Here, we demonstrated that an immortalized hepatocyte-like cell line (imHC) could accommodate for over 30 days the entire life cycle of HBV prepared from either established cultured cells or clinically-derived fresh isolates. Normally, imHCs had intact interferon signaling with anti-viral action. Infected imHCs responded to treatments with direct-acting antiviral drugs (DAAs) and interferons (IFNs) by diminishing HBV DNA, the covalently closed circular DNA (cccDNA) surface antigen of HBV (HBsAg, aka the Australia antigen) and the hepatitis B viral protein (HBeAg). Notably, we could observe and quantify HBV spreading from infected cells to naïve cells using an imHC co-culture model. In summary, this study constructed a convenient HBV culture model that allows the screening for novel anti-HBV agents with versatile targets, either HBV entry, replication or cccDNA formation. Combinations of agents aiming at different targets should achieve a complete HBV eradication.
Collapse
Affiliation(s)
- Khanit Sa-Ngiamsuntorn
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Piyanoot Thongsri
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Yongyut Pewkliang
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | | | - Phichaya Suthivanich
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
4
|
Pongjantarasatian S, Kadegasem P, Sasanakul W, Sa-ngiamsuntorn K, Borwornpinyo S, Sirachainan N, Chuansumrit A, Tanratana P, Hongeng S. Coagulant activity of recombinant human factor VII produced by lentiviral human F7 gene transfer in immortalized hepatocyte-like cell line. PLoS One 2019; 14:e0220825. [PMID: 31381603 PMCID: PMC6681952 DOI: 10.1371/journal.pone.0220825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/23/2019] [Indexed: 11/19/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) have the potential to differentiate into hepatocyte-like cells, indicating that these cells may be the new target cell of interest to produce biopharmaceuticals. Our group recently established a hMSC-derived immortalized hepatocyte-like cell line (imHC) that demonstrates several liver-specific phenotypes. However, the ability of imHC to produce coagulation factors has not been characterized. Here, we examined the potential for imHC as a source of coagulation protein production by investigating the ability of imHC to produce human factor VII (FVII) using a lentiviral transduction system. Our results showed that imHC secreted a low amount of FVII (~22 ng/mL) into culture supernatant. Moreover, FVII from the transduced imHC (0.11 ± 0.005 IU/mL) demonstrated a similar coagulant activity compared with FVII from transduced HEK293T cells (0.12 ± 0.004 IU/mL) as determined by chromogenic assay. We demonstrate for the first time, to the best of our knowledge, that imHC produced FVII, albeit at a low level, indicating the unique characteristic of hepatocytes. Our study suggests the possibility of using imHC for the production of coagulation proteins.
Collapse
Affiliation(s)
| | - Praguywan Kadegasem
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Werasak Sasanakul
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nongnuch Sirachainan
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ampaiwan Chuansumrit
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pansakorn Tanratana
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| | - Suradej Hongeng
- Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Sa-Ngiamsuntorn K, Hongeng S, Wongkajornsilp A. Development of Hepatocyte-like Cell Derived from Human Induced Pluripotent Stem cell as a Host for Clinically Isolated Hepatitis C Virus. ACTA ACUST UNITED AC 2017; 42:4A.13.1-4A.13.34. [PMID: 28806853 PMCID: PMC7162336 DOI: 10.1002/cpsc.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This unit describes protocols to develop hepatocyte‐like cells (HLCs) starting from mesenchymal stem cells (MSCs) as a natural host for hepatitis C virus (HCV). These include the preparation of MSCs from bone marrow, the reprogramming of MSCs into induced pluripotent stem cells (iPSCs), and the differentiation of iPSCs into HLCs. This unit also incorporates the characterization of the resulting cells at each stage. Another section entails the preparations of HCV. The sources of HCV are either the clinically isolated HCV (HCVser) and the conventional JFH‐1 genotype. The last section is the infection protocol coupled with the measurement of viral titer. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Khanit Sa-Ngiamsuntorn
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand
| |
Collapse
|
6
|
Zhu X, Liu Z, Deng W, Zhang Z, Liu Y, Wei L, Zhang Y, Zhou L, Wang Y. Derivation and characterization of sheep bone marrow-derived mesenchymal stem cells induced with telomerase reverse transcriptase. Saudi J Biol Sci 2017; 24:519-525. [PMID: 28386176 PMCID: PMC5372373 DOI: 10.1016/j.sjbs.2017.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 02/06/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are a type of adult stem cells with a wide range of potential applications. However, BMSCs have a limited life cycle under normal culturing conditions, which has hindered further study and application. Many studies have confirmed that cells modified by telomerase reverse transcriptase (TERT) can maintain the ability to proliferate in vitro over a long period of time. In this study, we constructed a gene expression vector to transfer TERT into sheep BMSCs, and evaluated whether the TERT cell strain was successfully transferred. The abilities of cell proliferation and differentiation were evaluated using the methods including growth curve determination, inheritance stability analysis, multi-directional induction and so on, and the results showed that the cell strain can be cultured to 40 generations, with a normal karyotype rate maintained at 88.24%, and that the cell strain can be transferred and differentiated into neurocytes and lipocytes, proving that it retains the multi-directional transdifferentiation ability.
Collapse
Affiliation(s)
- Xuemin Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Zongzheng Liu
- Animal Husbandry and Veterinary Research Institute of Qingdao, Qingdao 266000, China
| | - Wen Deng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Lan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Liutao Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuzhu Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
7
|
Sa-Ngiamsuntorn K, Wongkajornsilp A, Phanthong P, Borwornpinyo S, Kitiyanant N, Chantratita W, Hongeng S. A robust model of natural hepatitis C infection using hepatocyte-like cells derived from human induced pluripotent stem cells as a long-term host. Virol J 2016; 13:59. [PMID: 27044429 PMCID: PMC4820862 DOI: 10.1186/s12985-016-0519-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/29/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) could induce chronic liver diseases and hepatocellular carcinoma in human. The use of primary human hepatocyte as a viral host is restrained with the scarcity of tissue supply. A culture model restricted to HCV genotype 2a (JFH-1) has been established using Huh7-derived hepatocyte. Other genotypes including the wild-type virus could not propagate in Huh7, Huh7.5 and Huh7.5.1 cells. METHODS Functional hepatocyte-like cells (HLCs) were developed from normal human iPS cells as a host for HCV infection. Mature HLCs were identified for selective hepatocyte markers, CYP450s, HCV associated receptors and HCV essential host factors. HLCs were either transfected with JFH-1 HCV RNA or infected with HCV particles derived from patient serum. The enhancing effect of α-tocopherol and the inhibitory effects of INF-α, ribavirin and sofosbuvir to HCV infection were studied. The HCV viral load and HCV RNA were assayed for the infection efficiency. RESULTS The fully-developed HLCs expressed phase I, II, and III drug-metabolizing enzymes, HCV associated receptors (claudin-1, occludin, CD81, ApoE, ApoB, LDL-R) and HCV essential host factors (miR-122 and SEC14L2) comparable to the primary human hepatocyte. SEC14L2, an α-tocopherol transfer protein, was expressed in HLCs, but not in Huh7 cell, had been implicated in effective HCVser infection. The HLCs permitted not only the replication of HCV RNA, but also the production of HCV particles (HCVcc) released to the culture media. HLCs drove higher propagation of HCVcc derived from JFH-1 than did the classical host Huh7 cells. HLCs infected with either JFH-1 or wild-type HCV expressed HCV core antigen, NS5A, NS5B, NS3 and HCV negative-stand RNA. HLCs allowed entire HCV life cycle derived from either JFH-1, HCVcc or wild-type HCV (genotype 1a, 1b, 3a, 3b, 6f and 6n). Further increasing the HCVser infection in HLCs was achieved by incubating cell with α-tocopherol. The supernatant from infected HLCs could infect both naïve HLC and Huh7 cell. Treating infected HLC with INF-α and ribavirin decreased HCV RNA in both the cellular fraction and the culture medium. The HLCs reacted to HCVcc or wild-type HCV infection by upregulating TNF-α, IL-28B and IL-29. CONCLUSIONS This robust cell culture model for serum-derived HCV using HLCs as host cells provides a remarkable system for investigating HCV life cycle, HCV-associated hepatocellular carcinoma development and the screening for new anti HCV drugs.
Collapse
Affiliation(s)
- Khanit Sa-Ngiamsuntorn
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Phetcharat Phanthong
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Narisorn Kitiyanant
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Wasun Chantratita
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Ratchatewi, Bangkok, 10400, Thailand.
| |
Collapse
|
8
|
Tralau T, Riebeling C, Pirow R, Oelgeschläger M, Seiler A, Liebsch M, Luch A. Wind of change challenges toxicological regulators. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1489-94. [PMID: 22871563 PMCID: PMC3556610 DOI: 10.1289/ehp.1104782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 08/07/2012] [Indexed: 05/09/2023]
Abstract
BACKGROUND In biomedical research, the past two decades have seen the advent of in vitro model systems based on stem cells, humanized cell lines, and engineered organotypic tissues, as well as numerous cellular assays based on primarily established tumor-derived cell lines and their genetically modified derivatives. OBJECTIVE There are high hopes that these systems might replace the need for animal testing in regulatory toxicology. However, despite increasing pressure in recent years to reduce animal testing, regulators are still reluctant to adopt in vitro approaches on a large scale. It thus seems appropriate to consider how we could realistically perform regulatory toxicity testing using in vitro assays only. DISCUSSION AND CONCLUSION Here, we suggest an in vitro-only approach for regulatory testing that will benefit consumers, industry, and regulators alike.
Collapse
Affiliation(s)
- Tewes Tralau
- German Federal Institute for Risk Assessment (BfR), Center for Alternative Methods to Animal Experiments (ZEBET), Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Kermanizadeh A, Gaiser BK, Ward MB, Stone V. Primary human hepatocytes versus hepatic cell line: assessing their suitability for in vitro nanotoxicology. Nanotoxicology 2012; 7:1255-71. [PMID: 23009365 DOI: 10.3109/17435390.2012.734341] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The use of hepatocyte cell lines as a replacement for animal models have been heavily criticised mainly due to low expression of metabolism enzymes. This study compares primary human hepatocytes with the C3A cell line and with respect to their response to a panel of nanomaterials (NMs; two ZnO, two MWCNTs, one Ag and one positively functionalised TiO₂). The cell line was very comparable with the primary hepatocytes with regards to their cytotoxic response to the NMs (Ag > uncoated ZnO > coated ZnO). The LC₅₀ was not attained in the presence of the MWCNTs and the TiO₂ NMs. All NMs significantly increased IL-8 production, with no change in levels of TNF-α and IL-6. Albumin production was measured as an indicator of hepatic function. The authors found no change in levels of albumin with the exception of the coated ZnO NM at the LC₅₀ concentration. NM uptake was similar for both the primary hepatocytes and C3A cells as investigated by TEM. Meanwhile, the authors confirmed greater levels of CYP450 activity in untreated primary cells. This study demonstrates that the C3A cell line is a good model for investigating NM-induced hepatocyte responses with respect to uptake, cytotoxicity, pro-inflammatory cytokine production and albumin production.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- Heriot-Watt University, School of Life Sciences, John Muir Building , Edinburgh, EH14 4AS, UK
| | | | | | | |
Collapse
|