1
|
Gismene C, González JEH, de Freitas Calmon M, Nascimento AFZ, Santisteban ARN, Calil FA, da Silva ADT, Rahal P, Góes RM, Arni RK, Mariutti RB. Necrotic activity of ExhC from Mammaliicoccus sciuri is mediated by specific amino acid residues. Int J Biol Macromol 2024; 254:127741. [PMID: 38287568 DOI: 10.1016/j.ijbiomac.2023.127741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Mammaliicoccus sciuri, a commensal and pathogenic bacterium of significant clinical and veterinary relevance, expresses exfoliative toxin C (ExhC), a specific glutamyl endopeptidase belonging to the chymotrypsin family as the principal virulence factor. However, unlike most members of this family, ETs are inactive against a wide range of substrates and possess exquisite specificity for desmoglein-1 (Dsg1), a cadherin-like adhesion molecule that is crucial to maintain tissue integrity, thereby preventing the separation of skin cells and the entry of pathogens. ExhC is of clinical importance since in addition to causing exfoliation in pigs and mice, it induces necrosis in multiple mammalian cell lines, a property not observed for other ETs. Previous experiments have implicated the ExhC79-128 fragment in causing necrosis. Site-directed mutagenesis of specific residues within this fragment were studied and led to the design of an ExhC variant containing four-point mutations (ExhCmut4) lacking necrotic potential but retaining nearly wild-type (wt) levels of enzymatic activity. Moreover, the determination of the ExhCwt and ExhCmut4 crystal structures identified the conformation in the necrosis-linked region. These results constitute an important step toward the understanding of the mechanisms underlying the necrotic and epidermolytic activity of ExhC.
Collapse
Affiliation(s)
- Carolina Gismene
- Multiuser Center for Biomolecular Innovation, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil
| | | | - Marília de Freitas Calmon
- Laboratory of Genomic Studies, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil
| | - Andrey Fabricio Ziem Nascimento
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | | | - Felipe Antunes Calil
- Multiuser Center for Biomolecular Innovation, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil
| | - Alana Della Torre da Silva
- Department of Biological Sciences, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil
| | - Paula Rahal
- Laboratory of Genomic Studies, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil
| | - Rejane Maira Góes
- Department of Biological Sciences, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil
| | - Raghuvir Krishnaswamy Arni
- Multiuser Center for Biomolecular Innovation, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil
| | - Ricardo Barros Mariutti
- Multiuser Center for Biomolecular Innovation, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
2
|
Abstract
Protein-protein interactions and multiprotein assemblies of water-soluble and membrane proteins are inherent features of the proteome, which also impart functional heterogeneity. One needs to consider this aspect while studying changes in abundance and activities of proteins in response to any physiological stimulus. Abundance changes in the components of a given proteome can be best visualized and efficiently quantified using electrophoresis-based approaches. Here, we describe the method of Blue Native Difference Gel Electrophoresis to quantify changes in abundance and activity of proteins in the context of protein-protein interactions. This method confers an additional advantage to monitor quantitative changes in membrane proteins, which otherwise is a difficult task.
Collapse
Affiliation(s)
- Diksha Dani
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam-Golm, Germany
- Physical Biochemistry, Department of Chemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Norbert A Dencher
- Physical Biochemistry, Department of Chemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
3
|
Abstract
Protein-protein interactions and multi-protein assemblies are inherent features of proteomes, involving soluble and membrane proteins. This imparts structural and functional heterogeneity to the proteome. One needs to consider this aspect while studying changes in abundance or activities of proteins in response to any physiological stimulus. Abundance changes in components of a given proteome can be best visualized and quantified using electrophoresis-based approaches. Here, we describe the method of Blue Native Difference Gel Electrophoresis (BN DIGE) to quantify abundance changes in proteins in the context of protein-protein interactions. This method confers an additional advantage to monitor quantitative changes in membrane proteins, which otherwise is a difficult task.
Collapse
|
4
|
Fromm S, Senkler J, Eubel H, Peterhänsel C, Braun HP. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3079-93. [PMID: 27122571 PMCID: PMC4867900 DOI: 10.1093/jxb/erw165] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific 'carbonic anhydrase domain' of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe 'life without complex I'.
Collapse
Affiliation(s)
- Steffanie Fromm
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany Institut für Botanik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jennifer Senkler
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Christoph Peterhänsel
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|