1
|
Zafar A, Rahman Z, Mubeen H, Makhdoom J, Tariq J, Mahjabeen, Ali Z, Hamid A, Shafique E, Aftab MN. Heterologous expression, molecular studies and biochemical characterization of a novel alkaline esterase gene from Bacillus thuringiensis for detergent industry. RSC Adv 2022; 12:34482-34495. [PMID: 36545586 PMCID: PMC9709933 DOI: 10.1039/d2ra06138d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Present study was aimed to clone and express the esterase encoding gene from Bacillus thuringiensis in E. coli BL21. Purification of recombinant esterase enzyme was achieved up to 48.6 purification folds by ion exchange chromatography with specific activity of 126.36 U mg-1. Molecular weight of esterase enzyme was 29 kDa as measured by SDS-PAGE. Purified esterase enzyme showed stability up to 90% at 90 °C and remained stable in a wide pH range (8-11). Molecular docking strengthens the experimental results by showing the higher binding energy with p-NP-butyrate. Enzyme activity was found to be reduced by EDTA but enhanced in the presence of other metal ions. Enzyme activity was reduced with 1% SDS, PMSF, and urea but organic solvents did not show considerable impact on it even at higher concentrations. Purified recombinant esterase was also found to be compatible with commercial laundry detergents and showed very good stability (up to 90%). All these properties proved the esterase enzyme from B. thuringensis a significant addition in detergent industry.
Collapse
Affiliation(s)
- Asma Zafar
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | - Ziaur Rahman
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | - Hira Mubeen
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | | | - Javeria Tariq
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | - Mahjabeen
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | - Zulqurnain Ali
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | - Attia Hamid
- Institute of Industrial Biotechnology, Govt. College UniversityLahorePakistan
| | - Eeza Shafique
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | | |
Collapse
|
2
|
Tsai MF, Huang SM, Huang HY, Tsai SW, Kuo CH, Shieh CJ. Ultrasound Plus Vacuum-System-Assisted Biocatalytic Synthesis of Octyl Cinnamate and Response Surface Methodology Optimization. Molecules 2022; 27:molecules27217148. [PMID: 36363974 PMCID: PMC9657652 DOI: 10.3390/molecules27217148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Cinnamic acid is one of the phenolic compounds that is isolated from cinnamon, or other natural plants, and has a wide range of physiological activities. However, the application of cinnamic acid is limited due to its poor solubility and low oral bioavailability. In this study, the feasibility of producing octyl cinnamate by ultrasonic assistance, combined with a rotary evaporation under vacuum, was studied using methyl cinnamate and octanol as the starting materials. A Box–Behnken design (BBD) was employed to evaluate the effects of the operation parameters, including reaction temperature (55–75 °C), reaction time (4–12 h), and ultrasonic power (90–150 W) on the production of octyl cinnamate. Meanwhile, the synthesis process was further optimized by the modeling response surface methodology (RSM). The data indicated that octyl cinnamate was efficiently synthesized from methyl cinnamate and octanol using the ultrasound plus vacuum system; further, this system was superior to the conventional method. According to the RSM model for the actual experiments, a reaction temperature of 74.6 °C, a reaction time of 11.1 h, and an ultrasound power of 150 W were determined to be the best conditions for the maximum molar conversion of octyl cinnamate (93.8%). In conclusion, the highly efficient synthesis of octyl cinnamate by a rotary evaporator with an ultrasound plus vacuum system was achieved via RSM optimization.
Collapse
Affiliation(s)
- Ming-Fang Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Ming Huang
- Department of Nutrition, China Medical University, Taichung 406, Taiwan
| | - Hsin-Yi Huang
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuo-Wen Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-W.T.); (C.-H.K.); (C.-J.S.)
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Correspondence: (S.-W.T.); (C.-H.K.); (C.-J.S.)
| | - Chwen-Jen Shieh
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-W.T.); (C.-H.K.); (C.-J.S.)
| |
Collapse
|
3
|
Lima LMS, Okamoto DN, Passarini MRZ, Gonçalves SS, Goldman GH, Silveira MAV, Ramos PL, Cruz JB, Juliano M, Marcondes MFM, Vasconcellos SP. Enzymatic diversity of filamentous fungi isolated from forest soil incremented by sugar cane solid waste. ENVIRONMENTAL TECHNOLOGY 2022; 43:3037-3046. [PMID: 33826477 DOI: 10.1080/09593330.2021.1914179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Fungi are natural degraders of organic matter which can produce enzymes for many industrial and biotechnological applications. In this context, crude enzymatic extracts of fungal isolates were evaluated regarding their hydrolytic and ligninolytic abilities. The fungal strains were isolated from soil samples from Atlantic Rain Forest Park incremented with sugar cane biomass (filter cake), which allowed the selection of efficient lignocellulolytic enzymes. A total of 190 fungi were isolated and evaluated by endocellulase screenings. Thirteen fungi were selected about their hydrolytic and ligninolytic abilities. Among them, three isolates showed xylanolytic activity. Eleven of the isolates were selected by their cellulolytic abilities. Proteolytic enzymes were also detected for three fungi, allowing the classification as metalloprotease and serine protease. The isolates SPZPF3_47 (Mucor sp.), SPZPF1_129 (Byssochlamys nivea) and SPZPF1_141 (Paecilomyces saturatus) were selected for further investigation on their lignin peroxidase abilities. KM, Vmax and kcat apparent for lignin peroxidases were also determined. The strain of Mucor sp. (SPZPF3_47) was highlighted since this fungal genus was not well described about its isolation in the adopted conditions in our study, and showing ligninolytic abilities.
Collapse
Affiliation(s)
- Lidiane M S Lima
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Debora N Okamoto
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Michel R Z Passarini
- Latin American Institute of Life and Natural Sciences, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | - Sarah S Gonçalves
- Health Science Center, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | - Gustavo H Goldman
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marghuel A V Silveira
- Department of Biophysics, Paulista School of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - João B Cruz
- São Paulo Zoo Park Foundation, São Paulo, Brazil
| | - Maria Juliano
- Department of Biophysics, Paulista School of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo F M Marcondes
- Department of Biophysics, Paulista School of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Suzan P Vasconcellos
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Najjar A, Hassan EA, Zabermawi N, Saber SH, Bajrai LH, Almuhayawi MS, Abujamel TS, Almasaudi SB, Azhar LE, Moulay M, Harakeh S. Optimizing the catalytic activities of methanol and thermotolerant Kocuria flava lipases for biodiesel production from cooking oil wastes. Sci Rep 2021; 11:13659. [PMID: 34211018 PMCID: PMC8249636 DOI: 10.1038/s41598-021-93023-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, two highly thermotolerant and methanol-tolerant lipase-producing bacteria were isolated from cooking oil and they exhibited a high number of catalytic lipase activities recording 18.65 ± 0.68 U/mL and 13.14 ± 0.03 U/mL, respectively. Bacterial isolates were identified according to phenotypic and genotypic 16S rRNA characterization as Kocuria flava ASU5 (MT919305) and Bacillus circulans ASU11 (MT919306). Lipases produced from Kocuria flava ASU5 showed the highest methanol tolerance, recording 98.4% relative activity as well as exhibited high thermostability and alkaline stability. Under the optimum conditions obtained from 3D plots of response surface methodology design, the Kocuria flava ASU5 biocatalyst exhibited an 83.08% yield of biodiesel at optimized reaction variables of, 60 ○C, pH value 8 and 1:2 oil/alcohol molar ratios in the reaction mixture. As well as, the obtained results showed the interactions of temperature/methanol were significant effects, whereas this was not noted in the case of temperature/pH and pH/methanol interactions. The obtained amount of biodiesel from cooking oil was 83.08%, which was analyzed by a GC/Ms profile. The produced biodiesel was confirmed by Fourier-transform infrared spectroscopy (FTIR) approaches showing an absorption band at 1743 cm-1, which is recognized for its absorption in the carbonyl group (C=O) which is characteristic of ester absorption. The energy content generated from biodiesel synthesized was estimated as 12,628.5 kJ/mol. Consequently, Kocuria flava MT919305 may provide promising thermostable, methanol-tolerant lipases, which may improve the economic feasibility and biotechnology of enzyme biocatalysis in the synthesis of value-added green chemicals.
Collapse
Affiliation(s)
- Azhar Najjar
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elhagag Ahmed Hassan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt.
| | - Nidal Zabermawi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saber H Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Leena H Bajrai
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed S Almuhayawi
- Department of Medical Microbiology/Parasitology and Molecular Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Turki S Abujamel
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saad B Almasaudi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Leena E Azhar
- Preventive Medicine, General Directorate of Health Affairs, Aseer Region, Abha, Saudi Arabia
| | - Mohammed Moulay
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Embryonic Stem Cells Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
5
|
Cui H, Zhang L, Eltoukhy L, Jiang Q, Korkunç SK, Jaeger KE, Schwaneberg U, Davari MD. Enzyme Hydration Determines Resistance in Organic Cosolvents. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03233] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Lingling Zhang
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Lobna Eltoukhy
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Qianjia Jiang
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Seval Kübra Korkunç
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Wilhelm Johnen Strasse, Jülich 52426, Germany
- Institute of Bio-and Geosciences IBG 1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, Jülich 52426, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen 52074, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| |
Collapse
|
6
|
Martani F, Maestroni L, Torchio M, Ami D, Natalello A, Lotti M, Porro D, Branduardi P. Conversion of sugar beet residues into lipids by Lipomyces starkeyi for biodiesel production. Microb Cell Fact 2020; 19:204. [PMID: 33167962 PMCID: PMC7653891 DOI: 10.1186/s12934-020-01467-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipids from oleaginous yeasts emerged as a sustainable alternative to vegetable oils and animal fat to produce biodiesel, the biodegradable and environmentally friendly counterpart of petro-diesel fuel. To develop economically viable microbial processes, the use of residual feedstocks as growth and production substrates is required. RESULTS In this work we investigated sugar beet pulp (SBP) and molasses, the main residues of sugar beet processing, as sustainable substrates for the growth and lipid accumulation by the oleaginous yeast Lipomyces starkeyi. We observed that in hydrolysed SBP the yeast cultures reached a limited biomass, cellular lipid content, lipid production and yield (2.5 g/L, 19.2%, 0.5 g/L and 0.08 g/g, respectively). To increase the initial sugar availability, cells were grown in SBP blended with molasses. Under batch cultivation, the cellular lipid content was more than doubled (47.2%) in the presence of 6% molasses. Under pulsed-feeding cultivation, final biomass, cellular lipid content, lipid production and lipid yield were further improved, reaching respectively 20.5 g/L, 49.2%, 9.7 g/L and 0.178 g/g. Finally, we observed that SBP can be used instead of ammonium sulphate to fulfil yeasts nitrogen requirement in molasses-based media for microbial oil production. CONCLUSIONS This study demonstrates for the first time that SBP and molasses can be blended to create a feedstock for the sustainable production of lipids by L. starkeyi. The data obtained pave the way to further improve lipid production by designing a fed-batch process in bioreactor.
Collapse
Affiliation(s)
- Francesca Martani
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy
| | - Letizia Maestroni
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy
| | - Mattia Torchio
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy
| | - Danilo Porro
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy.
| |
Collapse
|
7
|
Biodiesel synthesis from palm fatty acid distillate using enzyme immobilized on magnetic nanoparticles. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03338-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
8
|
Van Tassel L, Moilanen A, Ruddock LW. Efficient production of wild-type lipase B from Candida antarctica in the cytoplasm of Escherichia coli. Protein Expr Purif 2020; 165:105498. [DOI: 10.1016/j.pep.2019.105498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 10/26/2022]
|
9
|
Biochemical characterization of an esterase from Clostridium acetobutylicum with novel GYSMG pentapeptide motif at the catalytic domain. J Ind Microbiol Biotechnol 2019; 47:169-181. [PMID: 31807968 DOI: 10.1007/s10295-019-02253-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
Abstract
Gene CA_C0816 codes for a serine hydrolase protein from Clostridium acetobutylicum (ATCC 824) a member of hormone-sensitive lipase of lipolytic family IV. This gene was overexpressed in E. coli strain BL21and purified using Ni2+-NTA affinity chromatography. Size exclusion chromatography revealed that the protein is a dimer in solution. Optimum pH and temperature for recombinant Clostridium acetobutylicum esterase (Ca-Est) were found to be 7.0 and 60 °C, respectively. This enzyme exhibited high preference for p-nitrophenyl butyrate. KM and kcat/KM of the enzyme were 24.90 µM and 25.13 s-1 µM-1, respectively. Sequence analysis of Ca-Est predicts the presence of catalytic amino acids Ser 89, His 224, and Glu 196, presence of novel GYSMG conserved sequence (instead of GDSAG and GTSAG motif), and undescribed variation of HGSG motif. Site-directed mutagenesis confirmed that Ser 89 and His 224 play a major role in catalysis. This study reports that Ca-Est is hormone-sensitive lipase with novel GYSMG pentapeptide motif at a catalytic domain.
Collapse
|
10
|
Zaitsev SY, Savina AA, Zaitsev IS. Biochemical aspects of lipase immobilization at polysaccharides for biotechnology. Adv Colloid Interface Sci 2019; 272:102016. [PMID: 31421454 DOI: 10.1016/j.cis.2019.102016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022]
Abstract
The design of immobilized enzyme preparations is an important and relevant area of modern sciences and technologies. Immobilization of enzymes from animal sources (component I) on natural carriers (component II) increases the system stability by protecting the active site of the enzyme from deactivation; facilitates the separation and accelerates the recovery of the enzyme. This makes reuse possible and provides a significant reduction in operating costs. Hydrolytic enzymes (such as lipases) and polysaccharides (such as chitosan) are the most promising of such pairs of components. The main attention here is devoted to the discussion on lipase immobilization on polysaccharide (mainly - chitin and chitosan). Based on the analysis of the available literature, the most adequate method is the immobilization of lipase from porcine pancreas (LPP) on polysaccharide particles (such as chitin or chitosan) pre-treated with ultrasound (to increase the particle surface area) and glutaraldehyde (for particle activation) that shows reasonably high LPP activity and stability. In order to increase further the activity of the lipase, some authors proposed to incorporate a spacer in the form of 1,3-diaminopropane (or 1,3-diaminobutane) prior to activation of the surface of the chitosan particles. In particular cases, the use of chitin (instead of chitosan) may be an alternative solution for biotechnological applications. Recently the idea of constructing "supramolecular enzyme systems" realized in the so-called "coimmobilized multienzymatic systems" strategy. The most fascinating example is the combined assay of a mixture of native LPP, glycerol kinase (from Cellulomonas) and glycerol-3-phosphate oxidase (from Aerococcus viridans) linked by glutaraldehyde to chitosan (as shell for inorganic nanoparticle core). This material was placed on a Pt-electrode as biosensor and was successfully applied for amperometric determination of the triglyceride level in the serum of healthy and diseased person. Thus, the whole innovative research-production sequence is described by Aggarwal V. and Pundir C.S.: from simple components to advanced material and further biomedical application. Thus, the following approach of lipase immobilization appears the most promising for future applications: a few types of lipases or the combination of LPP with some other enzymes immobilized simultaneously on multifunctional carriers (as nanohybrids of inorganic core and polysaccharide shell).
Collapse
|
11
|
Evaluation of Yarrowia lipolytica Oil for Biodiesel Production: Land Use Oil Yield, Carbon, and Energy Balance. J Lipids 2018; 2018:6393749. [PMID: 30510804 PMCID: PMC6230387 DOI: 10.1155/2018/6393749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/15/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022] Open
Abstract
Oils from yeasts have emerged as a suitable alternative raw material to produce biodiesel, due to their similar composition to common raw materials such as vegetable oils. Additionally, they have the advantage of not competing with human or animal feed, and, furthermore, they do not compete for arable land. In this work, a carbon and energy balance was evaluated for Yarrowia lipolytica as a model yeast, using crude glycerol from biodiesel as the only carbon source, which improves biodiesel overall yield by 6%. The process presented a positive energy balance. Feasibility of yeast oil as biodiesel substrate was also evaluated by determination of the lipid fatty acid profile and cetane number. Moreover, a comparison of oil yields, in terms of land use, between vegetable, microalgae, and yeast oils is also presented. The results showed that Y. lipolytica oil yield is considerably higher than vegetable oils (767 times) and microalgae (36 times).
Collapse
|
12
|
Jiang W, Wang X, Yang J, Han H, Li Q, Tang J. Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization: A new support for biodiesel synthesis. J Colloid Interface Sci 2018; 514:102-107. [DOI: 10.1016/j.jcis.2017.12.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/24/2023]
|
13
|
Microbial lipolytic fusion enzymes: current state and future perspectives. World J Microbiol Biotechnol 2017; 33:216. [DOI: 10.1007/s11274-017-2381-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/20/2017] [Indexed: 01/11/2023]
|
14
|
Bonet-Ragel K, López-Pou L, Tutusaus G, Benaiges MD, Valero F. Rice husk ash as a potential carrier for the immobilization of lipases applied in the enzymatic production of biodiesel. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1308498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kírian Bonet-Ragel
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lucia López-Pou
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Gisela Tutusaus
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M. Dolors Benaiges
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
15
|
Ramnath L, Sithole B, Govinden R. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol 2017; 63:179-192. [DOI: 10.1139/cjm-2016-0447] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the pulp and paper industry, during the manufacturing process, the agglomeration of pitch particles (composed of triglycerides, fatty acids, and esters) leads to the formation of black pitch deposits in the pulp and on machinery, which impacts on the process and pulp quality. Traditional methods of pitch prevention and treatment are no longer feasible due to environmental impact and cost. Consequently, there is a need for more efficient and environmentally friendly approaches. The application of lipolytic enzymes, such as lipases and esterases, could be the sustainable solution to this problem. Therefore, an understanding of their structure, mechanism, and sources are essential. In this report, we review the microbial sources for the different groups of lipolytic enzymes, the differences between lipases and esterases, and their potential applications in the pulping industry.
Collapse
Affiliation(s)
- L. Ramnath
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, P/Bag X54001, Durban 4000, South Africa
| | - B. Sithole
- Forestry and Forest Products Research Centre, Council for Scientific and Industrial Research, Durban 4000, South Africa
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban 4000, South Africa
| | - R. Govinden
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, P/Bag X54001, Durban 4000, South Africa
| |
Collapse
|
16
|
Rodrigues J, Canet A, Rivera I, Osório NM, Sandoval G, Valero F, Ferreira-Dias S. Biodiesel production from crude Jatropha oil catalyzed by non-commercial immobilized heterologous Rhizopus oryzae and Carica papaya lipases. BIORESOURCE TECHNOLOGY 2016; 213:88-95. [PMID: 26980626 DOI: 10.1016/j.biortech.2016.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was to evaluate the feasibility of biodiesel production by transesterification of Jatropha oil with methanol, catalyzed by non-commercial sn-1,3-regioselective lipases. Using these lipases, fatty acid methyl esters (FAME) and monoacylglycerols are produced, avoiding the formation of glycerol as byproduct. Heterologous Rhizopus oryzae lipase (rROL) immobilized on different synthetic resins and Carica papaya lipase (rCPL) immobilized on Lewatit VP OC 1600 were tested. Reactions were performed at 30°C, with seven stepwise methanol additions. For all biocatalysts, 51-65% FAME (theoretical maximum=67%, w/w) was obtained after 4h transesterification. Stability tests were performed in 8 or 10 successive 4h-batches, either with or without rehydration of the biocatalyst between each two consecutive batches. Activity loss was much faster when biocatalysts were rehydrated. For rROL, half-life times varied from 16 to 579h. rROL on Lewatit VPOC 1600 was more stable than for rCPL on the same support.
Collapse
Affiliation(s)
- J Rodrigues
- Instituto Superior de Agronomia, Universidade de Lisboa, LEAF, Lisbon, Portugal
| | - A Canet
- Departament d'Enginyeria Quimica, Biològica i Ambiental (EE), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - I Rivera
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | - N M Osório
- Instituto Superior de Agronomia, Universidade de Lisboa, LEAF, Lisbon, Portugal
| | - G Sandoval
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | - F Valero
- Departament d'Enginyeria Quimica, Biològica i Ambiental (EE), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - S Ferreira-Dias
- Instituto Superior de Agronomia, Universidade de Lisboa, LEAF, Lisbon, Portugal.
| |
Collapse
|
17
|
Yan J, Yan Y, Madzak C, Han B. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway. Crit Rev Biotechnol 2015; 37:26-36. [DOI: 10.3109/07388551.2015.1104531] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Walsh G. Additional Industrial Enzymes. Proteins 2015. [DOI: 10.1002/9781119117599.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Pliego J, Mateos JC, Rodriguez J, Valero F, Baeza M, Femat R, Camacho R, Sandoval G, Herrera-López EJ. Monitoring lipase/esterase activity by stopped flow in a sequential injection analysis system using p-nitrophenyl butyrate. SENSORS (BASEL, SWITZERLAND) 2015; 15:2798-811. [PMID: 25633600 PMCID: PMC4367334 DOI: 10.3390/s150202798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/24/2014] [Accepted: 01/13/2015] [Indexed: 11/25/2022]
Abstract
Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05-1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed.
Collapse
Affiliation(s)
- Jorge Pliego
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Avenida Normalistas 800, Colinas de la Normal. C.P. 44270, Guadalajara Jalisco, Mexico.
| | - Juan Carlos Mateos
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Avenida Normalistas 800, Colinas de la Normal. C.P. 44270, Guadalajara Jalisco, Mexico.
| | - Jorge Rodriguez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Avenida Normalistas 800, Colinas de la Normal. C.P. 44270, Guadalajara Jalisco, Mexico.
| | - Francisco Valero
- Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Mireia Baeza
- Departament de Química, Facultat de Ciències, Edifici C-Nord, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Ricardo Femat
- Grupo de Biodinámica y Sistemas Alineales, División de Matemáticas Aplicadas, Instituto Potosinode Investigación Científicay Tecnológica. A.C. Camino a la Presa San José 2055, Lomas 4 Sección, C.P. 78216, San Luis Potosí S.L.P., Mexico.
| | - Rosa Camacho
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Avenida Normalistas 800, Colinas de la Normal. C.P. 44270, Guadalajara Jalisco, Mexico.
| | - Georgina Sandoval
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Avenida Normalistas 800, Colinas de la Normal. C.P. 44270, Guadalajara Jalisco, Mexico.
| | - Enrique J Herrera-López
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Avenida Normalistas 800, Colinas de la Normal. C.P. 44270, Guadalajara Jalisco, Mexico.
| |
Collapse
|
20
|
Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Prog Lipid Res 2015; 57:40-54. [DOI: 10.1016/j.plipres.2014.12.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/30/2014] [Accepted: 12/18/2014] [Indexed: 01/12/2023]
|
21
|
Ghadi A, Tabandeh F, Mahjoub S, Mohsenifar A, Roshan FT, Alavije RS. Fabrication and Characterization of Core-Shell Magnetic Chitosan Nanoparticles as a Novel carrier for Immobilization of Burkholderia cepacia Lipase. J Oleo Sci 2015; 64:423-30. [DOI: 10.5650/jos.ess14236] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arezoo Ghadi
- Faculty of Chemical Engineering, Noshirvani University of Technology
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB)
| | - Fatemeh Tabandeh
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB)
| | - Soleiman Mahjoub
- Department of Biochemistry & Biophysics, Faculty of Medicine, Babol University of Medical Sciences
| | - Afshin Mohsenifar
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University
| | | | - Razieh Shafiee Alavije
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB)
| |
Collapse
|
22
|
Tremblay H, St-Georges C, Legault MA, Morin C, Fortin S, Marsault E. One-pot synthesis of polyunsaturated fatty acid amides with anti-proliferative properties. Bioorg Med Chem Lett 2014; 24:5635-5638. [DOI: 10.1016/j.bmcl.2014.10.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
|
23
|
Immobilization of lipase from Burkholderia cepacia into calcium carbonate microcapsule and its use for enzymatic reactions in organic and aqueous media. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Immobilization of Lipase on Silver Nanoparticles via Adhesive Polydopamine for Biodiesel Production. Enzyme Res 2014; 2014:389739. [PMID: 25328685 PMCID: PMC4177086 DOI: 10.1155/2014/389739] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/23/2014] [Accepted: 09/01/2014] [Indexed: 12/03/2022] Open
Abstract
Biodiesel production technology is competitive in terms of low cost and alternative source of energy which should be not only sustainable but also environmentally friendly. Designing of the lipase immobilization for biodiesel production has a remarkable impact and is still challenging. In this work, biodiesel production from soybean oil was enhanced and facilitated by using a novel biocatalyst consisting of commercial lipase (EC 3.1.1.3), silver nanoparticles, and polydopamine. Silver nanoparticles (AgNPs) were synthesized with a size range of 10–20 nm. Polydopamine (PD) was delivered by the self-polymerization of dopamine in 10 mM Tris-HCl pH 8.5 and simultaneously coated the AgNPs to form a PD/AgNPs complex. Lipase was immobilized on the PD/AgNPs complex surface via covalent bonds to form a tailor-made biocatalyst consisting of immobilized lipase/PD/AgNPs complex (LPA). The formation and morphology of each composition were characterized by UV-Vis spectroscopy and scanning electron microscope (SEM). Significantly, gas chromatography analysis showed a remarkable biodiesel production yield of 95% by using the LPA complex at 40°C for 6-hours reaction time, whereas the yield was 86% when using free lyophilized lipase. The LPA complex was apparently reusable after 7 batches and the latter conversion rate of soybean oil was decreased by only 27%.
Collapse
|
25
|
Gerits LR, Pareyt B, Decamps K, Delcour JA. Lipases and Their Functionality in the Production of Wheat-Based Food Systems. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12085] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lien R. Gerits
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven, Kasteelpark Arenberg 20 - box 2463 B-3001 Heverlee Belgium
| | - Bram Pareyt
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven, Kasteelpark Arenberg 20 - box 2463 B-3001 Heverlee Belgium
| | - Karolien Decamps
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven, Kasteelpark Arenberg 20 - box 2463 B-3001 Heverlee Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven, Kasteelpark Arenberg 20 - box 2463 B-3001 Heverlee Belgium
| |
Collapse
|
26
|
de Mello MD, Cordeiro D, Costa LT, Follmer C. Catalytic properties of lipases immobilized onto ultrasound-treated chitosan supports. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0285-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
de Regil R, Sandoval G. Biocatalysis for biobased chemicals. Biomolecules 2013; 3:812-47. [PMID: 24970192 PMCID: PMC4030974 DOI: 10.3390/biom3040812] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 11/17/2022] Open
Abstract
The design and development of greener processes that are safe and friendly is an irreversible trend that is driven by sustainable and economic issues. The use of Biocatalysis as part of a manufacturing process fits well in this trend as enzymes are themselves biodegradable, require mild conditions to work and are highly specific and well suited to carry out complex reactions in a simple way. The growth of computational capabilities in the last decades has allowed Biocatalysis to develop sophisticated tools to understand better enzymatic phenomena and to have the power to control not only process conditions but also the enzyme's own nature. Nowadays, Biocatalysis is behind some important products in the pharmaceutical, cosmetic, food and bulk chemicals industry. In this review we want to present some of the most representative examples of industrial chemicals produced in vitro through enzymatic catalysis.
Collapse
Affiliation(s)
- Rubén de Regil
- Unidad de Biotecnología Industrial, CIATEJ, A.C. Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jal, C.P. 44270, Mexico.
| | - Georgina Sandoval
- Unidad de Biotecnología Industrial, CIATEJ, A.C. Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jal, C.P. 44270, Mexico.
| |
Collapse
|
28
|
Garlapati VK, Kant R, Kumari A, Mahapatra P, Das P, Banerjee R. Lipase mediated transesterification of Simarouba glauca oil: a new feedstock for biodiesel production. ACTA ACUST UNITED AC 2013. [DOI: 10.1186/2043-7129-1-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Immobilized lipase mediated tranesterification process for new feed stock Simarouba glauca oil for biodiesel production has been developed by utilizing the greener aspects of immobilized biocatalyst in n-hexane solvent system. The presence of solvent system helps to overcome the negative effects of methanol and glycerol, the end product. Effect of methanol to oil ratio, reaction time, methanol to hexane ratio, reaction temperature, agitation speed and immobilized lipase on final molar conversion were investigated.
Results
A maximum yield of 91.5 % fatty acid methyl esters with a 62.23 % molar conversion with respect to methyl oleate has been achieved with oil: methanol molar ratio of 1:1, using 10 U of immobilized lipase/g of oil and with methanol to oil ratio of 1:0.6 in a reaction time of 36 h at 34 °C and 200 rpm. Immobilized lipase has been reused successfully up to 6 recycles with retaining relative activity of more than 95 %.
Conclusion
Lipase mediated tranesterification of new feedstock Simarouba glauca oil for biodiesel production has been successfully carried out under n-hexane solvent system. Utilization of immobilized lipase, which facilitates reuse helps considerably for the economy of the process. The introduced new feedstock with a green tinge seems to be a very promising to the biofuel sector for biodiesel production through sustainable approach.
Collapse
|
29
|
Biochemical diversity of carboxyl esterases and lipases from Lake Arreo (Spain): a metagenomic approach. Appl Environ Microbiol 2013; 79:3553-62. [PMID: 23542620 DOI: 10.1128/aem.00240-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The esterases and lipases from the α/β hydrolase superfamily exhibit an enormous sequence diversity, fold plasticity, and activities. Here, we present the comprehensive sequence and biochemical analyses of seven distinct esterases and lipases from the metagenome of Lake Arreo, an evaporite karstic lake in Spain (42°46'N, 2°59'W; altitude, 655 m). Together with oligonucleotide usage patterns and BLASTP analysis, our study of esterases/lipases mined from Lake Arreo suggests that its sediment contains moderately halophilic and cold-adapted proteobacteria containing DNA fragments of distantly related plasmids or chromosomal genomic islands of plasmid and phage origins. This metagenome encodes esterases/lipases with broad substrate profiles (tested over a set of 101 structurally diverse esters) and habitat-specific characteristics, as they exhibit maximal activity at alkaline pH (8.0 to 8.5) and temperature of 16 to 40°C, and they are stimulated (1.5 to 2.2 times) by chloride ions (0.1 to 1.2 M), reflecting an adaptation to environmental conditions. Our work provides further insights into the potential significance of the Lake Arreo esterases/lipases for biotechnology processes (i.e., production of enantiomers and sugar esters), because these enzymes are salt tolerant and are active at low temperatures and against a broad range of substrates. As an example, the ability of a single protein to hydrolyze triacylglycerols, (non)halogenated alkyl and aryl esters, cinnamoyl and carbohydrate esters, lactones, and chiral epoxides to a similar extent was demonstrated.
Collapse
|
30
|
Verma ML, Barrow CJ, Puri M. Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 2012; 97:23-39. [DOI: 10.1007/s00253-012-4535-9] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 12/01/2022]
|