1
|
Melloul S, Zehioua R, Meniai AH. Evaluation and optimisation of phenolic compounds extracted by supercritical carbon dioxide from the seeds of Plantago ovata and their comparison with conventional extraction. Nat Prod Res 2024:1-9. [PMID: 38972058 DOI: 10.1080/14786419.2024.2375319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
This study's main objectives are to evaluate and confirm the effects of the extraction process, operating conditions, solvent type and solvent polarity on the yield and quality of the extracts. Supercritical carbon dioxide (scCO2) and Soxhlet were specially used in this study to extract bioactive chemicals from the seeds of a natural plant known as Plantago ovata. No studies have been published so far regarding the extraction from the seeds of this plant using scCO2.The effects of three operating parameters (pressure, temperature and particle size) on the extraction yield, total phenolic content, total flavonoid content (TFC), total tannin content (TTC) and antioxidant activity were assessed in this study using the Box-Behnken statistical experimental design (BBD). The chemical components in the extracts were separated and identified using gas chromatography mass spectrometry. According to the antioxidant activity results, scCO2 failed to produce bioactive compounds with interesting properties when operated within operating range conditions.
Collapse
Affiliation(s)
- Sarra Melloul
- Laboratory of Environmental Engineering Processes, University of Constantine 3 Salah BOUBNIDER, Algeria
| | - Raouf Zehioua
- Laboratory of Environmental Engineering Processes, University of Constantine 3 Salah BOUBNIDER, Algeria
| | - Abdeslam-Hassen Meniai
- Laboratory of Environmental Engineering Processes, University of Constantine 3 Salah BOUBNIDER, Algeria
| |
Collapse
|
2
|
Kyriakou S, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants (Basel) 2022; 11:antiox11040642. [PMID: 35453327 PMCID: PMC9029005 DOI: 10.3390/antiox11040642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Isothiocyanates are biologically active secondary metabolites liberated via enzymatic hydrolysis of their sulfur enriched precursors, glucosinolates, upon tissue plant disruption. The importance of this class of compounds lies in their capacity to induce anti-cancer, anti-microbial, anti-inflammatory, neuroprotective, and other bioactive properties. As such, their isolation from natural sources is of utmost importance. In this review article, an extensive examination of the various parameters (hydrolysis, extraction, and quantification) affecting the isolation of isothiocyanates from naturally-derived sources is presented. Overall, the effective isolation/extraction and quantification of isothiocyanate is strongly associated with their chemical and physicochemical properties, such as polarity-solubility as well as thermal and acidic stability. Furthermore, the successful activation of myrosinase appears to be a major factor affecting the conversion of glucosinolates into active isothiocyanates.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
- Correspondence: ; Tel.: +357-22392626
| |
Collapse
|
3
|
Nahar L, Uddin SJ, Alam MA, Sarker SD. Extraction of naturally occurring cannabinoids: an update. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:228-241. [PMID: 32893413 DOI: 10.1002/pca.2987] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Organic molecules that interact with the cannabinoid receptors are called cannabinoids, which can be endogenous, natural or synthetic compounds. They possess similar pharmacological properties as produced by the plant, Cannabis sativa L. Before cannabinoids can be analysed, they need to be extracted from the matrices. OBJECTIVE To review literature on the methods and protocols for the extraction of naturally occurring cannabinoids. METHODOLOGY An extensive literature search was performed incorporating several databases, notably, Web of Knowledge, PubMed and Google Scholar, and other relevant published materials. The keywords used in the search, in various combinations, with cannabinoids and extraction being present in all combinations, were Cannabis, hemp, cannabinoids, Cannabis sativa, marijuana, and extraction. RESULTS In addition to classical maceration with organic solvents, e.g. ethanol, pressurised solvent extraction, solvent heat reflux, Soxhlet extraction, supercritical fluid extraction, ultrasound-assisted extraction and microwave-assisted extraction, are routinely used nowadays for the extraction of cannabinoids from plant materials and cannabis consumer products. For the extraction of cannabinoids from biological samples, e.g. human blood, and also from food and beverages, and wastewater, solid-phase extraction and its variants, as well as liquid-liquid extraction are commonly used. Parameters for extraction can be optimised by response surface methodology or other mathematical modelling tools. There are at least six US patents on extraction of cannabinoids available to date. CONCLUSIONS Irrespective of the extraction method, extraction temperature, extraction time and extraction pressure play a vital role in overall yield of extraction. Solvent polarity can also be an important factor in some extraction methods.
Collapse
Affiliation(s)
- Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Olomouc, Czech Republic
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
4
|
Khalil N, Bishr M, El-Degwy M, Abdelhady M, Amin M, Salama O. Assessment of Conventional Solvent Extraction vs. Supercritical Fluid Extraction of Khella ( Ammi visnaga L.) Furanochromones and Their Cytotoxicity. Molecules 2021; 26:molecules26051290. [PMID: 33673560 PMCID: PMC7956847 DOI: 10.3390/molecules26051290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Khella (Ammi visnaga Lam.) fruits (Apiaceae) are rich in furanochromones, mainly khellin and visnagin, and are thus incorporated in several pharmaceutical products used mainly for treatment of renal stones. Methods: The objective of this study was to compare the yield of khellin and visnagin obtained using different conventional solvents and supercritical fluid extraction (SCFE) with carbon dioxide (containing 5% methanol as co-solvent). Water, acetone and ethanol (30% and 95%) were selected as conventional solvents. Results: Highest extract yield was obtained from 30% ethanol (15.44%), while SCFE gave the lowest yield (4.50%). However, the percentage of furanochromones were highest in SCFE (30.1%), and lowest in boiling water extract (5.95%). HPLC analysis of conventional solvent extracts showed other coumarins that did not appear in supercritical fluid extraction chromatogram due to non-selectivity of solvent extraction. Ammi visnaga extracts as well as standard khellin and visnagin were tested for their cytotoxic activity using sulforhodamine B assay on breast cancer (MCF-7) and hepatocellular carcinoma (Hep G2) cell lines. Results revealed a strong cytotoxic activity (IC50 < 20 µg/mL) for the SCFE and standard compounds (khellin and visnagin) (IC50 ranging between 12.54 ± 0.57 and 17.53 ± 1.03 µg/mL). However, ethanol and acetone extracts had moderate cytotoxic activity (IC50 20–90 µg/mL) and aqueous extract had a weak activity (IC50 > 90 µg/mL). Conclusions: Thus, supercritical fluid extraction is an efficient, relatively safe, and cheap technique that yielded a more selective purified extract with better cytotoxic activity.
Collapse
Affiliation(s)
- Noha Khalil
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 11835, Egypt;
- Correspondence: ; Tel.: +20-10-0356-6515
| | - Mokhtar Bishr
- Arab Company for Pharmaceuticals and Medicinal Plants, (Mepaco-Medifood), AlSharqiya 11361, Egypt; (M.B.); (M.E.-D.); (M.A.); (M.A.)
| | - Mohamed El-Degwy
- Arab Company for Pharmaceuticals and Medicinal Plants, (Mepaco-Medifood), AlSharqiya 11361, Egypt; (M.B.); (M.E.-D.); (M.A.); (M.A.)
| | - Mohamed Abdelhady
- Arab Company for Pharmaceuticals and Medicinal Plants, (Mepaco-Medifood), AlSharqiya 11361, Egypt; (M.B.); (M.E.-D.); (M.A.); (M.A.)
| | - Mohamed Amin
- Arab Company for Pharmaceuticals and Medicinal Plants, (Mepaco-Medifood), AlSharqiya 11361, Egypt; (M.B.); (M.E.-D.); (M.A.); (M.A.)
| | - Osama Salama
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 11835, Egypt;
| |
Collapse
|
5
|
PELLICANÒ TM, SICARI V, LOIZZO MR, LEPORINI M, FALCO T, POIANA M. Optimizing the supercritical fluid extraction process of bioactive compounds from processed tomato skin by-products. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.16619] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | - Marco POIANA
- University “Mediterranea” of Reggio Calabria, Italy
| |
Collapse
|
6
|
Yousefi M, Rahimi-Nasrabadi M, Mirsadeghi S, Pourmortazavi SM. Supercritical Fluid Extraction of Pesticides and Insecticides from Food Samples and Plant Materials. Crit Rev Anal Chem 2020; 51:482-501. [PMID: 32295402 DOI: 10.1080/10408347.2020.1743965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The principal intention of this study is presenting the attempts carried out for extracting, separating, and determining of the pesticide and insecticide residues existing in food and plant samples. In this regard, a set of content, including the explanations about the supercritical fluid extraction (SFE), supercritical fluid chromatography, and various types of pesticides are indicated. Besides, the parameters affecting the pesticides extraction composed of temperature, pressure, modifier, drying agent, and so on are discussed. Also, examples of insecticides extraction by SFE technique as an important subset of pesticides are indicated. Along with these items, some interesting works, concerning the innovations implemented in the field of SFE of pesticide and insecticide residues from foodstuff and plants are depicted.
Collapse
Affiliation(s)
- Mohammad Yousefi
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| | | |
Collapse
|
7
|
Nahar L, Guo M, Sarker SD. A review on the latest advances in extraction and analysis of artemisinin. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:5-14. [PMID: 31370102 DOI: 10.1002/pca.2873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Artemisinin (1), a well-known natural antimalarial drug, is a sesquiterpene lactone that contains a unique peroxide bridge. Since its discovery, the amount of research into the analysis of artemisinin has increased considerably, and it has been further intensified since the Noble Prize win by Tu Youyou in the year 2015 for the discovery of artemisinin. OBJECTIVE To review literature on the extraction and analysis of artemisinin, published during 2017-present, and to present an appraisal of those methods. METHODOLOGY Extensive literature search was carried out which involved, but not limited to, the use of, various databases, like Web of Knowledge, PubMed and Google Scholar, and relevant published materials including published books. The keywords used, in various combinations, with artemisinin being present in all combinations, in the search were artemisinin, Artemisia annua, analysis, extraction, quantitative, qualitative and quality control. RESULTS During the period covered in this review, several methods of analysis of artemisinin have been reported, the most of which were liquid chromatography (LC)-based methods. However, the use of new methods like near-infrared analysis, fluorometirc analysis and molecular imprinting, and a significant increase in the use of computational tools have been observed. Mainly several methods involving supercritical fluid extraction and ultrasound-assisted extraction of artemisinin have dominated the extraction area. CONCLUSIONS Newer analytical tools, as well as improved protocols for the known analytical tools, for qualitative and quantitative determination of artemisinin (1), have been made available by various researchers during the period covered by this review. Supercritical fluid extraction and ultrasound-assisted extraction are still the methods of choice for extraction of artemisinin.
Collapse
Affiliation(s)
- Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR and Palacký University, Olomouc, Czech Republic
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
8
|
Separation of bioactive chamazulene from chamomile extract using metal-organic framework. J Pharm Biomed Anal 2017; 146:126-134. [DOI: 10.1016/j.jpba.2017.08.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 01/22/2023]
|
9
|
Foti C, Alsante K, Cheng G, Zelesky T, Zell M. Tools and workflow for structure elucidation of drug degradation products. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Bhattacharya SK. Recent advances in shotgun lipidomics and their implication for vision research and ophthalmology. Curr Eye Res 2013; 38:417-27. [PMID: 23330842 DOI: 10.3109/02713683.2012.760742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the past decade, mass spectrometry (MS) has made tremendous advances toward the profiling and identification of lipids from biological samples. MS is attractive for the simplicity it offers toward total profiling of lipids, the identification and characterization of individual entities directly after extraction from complex biological mixtures utilizing an infusion mode. Fundamentally, two types of mass analyzers exist, depending upon whether the fragment ion resolution and analysis occurs in space domain or in time domain within the mass spectrometer. Compared to MS, chromatographic methods are cumbersome. Nuclear magnetic resonance, which provides unequivocal elucidation of structures, necessitates much higher absolute amount and demands purity of lipids. We present here an account of recent developments in class-specific lipid identification strategies, targeted and untargeted lipid analyses, identification and de novo structure elucidation using mass spectrometric and combinatorial chemical derivatization and MS. We have reviewed the strategies with emphasis for spatial domain fragment resolution mass analyzers enabling analysis of lipids in a class-specific manner. We also provide a brief account of database and bioinformatic tools that have been recently developed toward profiling, identification and quantification of lipids in complex biological mixtures.
Collapse
|
11
|
Bucar F, Wube A, Schmid M. Natural product isolation – how to get from biological material to pure compounds. Nat Prod Rep 2013; 30:525-45. [DOI: 10.1039/c3np20106f] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|