1
|
Barret L, Schubeis T, Kugler V, Guyot L, Pintacuda G, Wagner R. Production and Preparation of Isotopically Labeled Human Membrane Proteins in Pichia pastoris for Fast-MAS-NMR Analyses. Methods Mol Biol 2022; 2507:201-221. [PMID: 35773584 DOI: 10.1007/978-1-0716-2368-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Membrane proteins (MPs) comprise about one-third of the human proteome, playing critical roles in many physiological processes and associated disorders. Consistently, they represent one of the largest classes of targets for the pharmaceutical industry. Their study at the molecular level is however particularly challenging, resulting in a severe lack of structural and dynamic information that is hindering their detailed functional characterization and the identification of novel potent drug candidates.Magic Angle Spinning (MAS) NMR is a reliable and efficient method for the determination of protein structures and dynamics and for the identification of ligand binding sites and equilibria. MAS-NMR is particularly well suited for MPs since they can be directly analysed in a native-like lipid bilayer environment but used to require aggravating large amounts of isotope enriched material. The frequent toxicity of human MP overexpression in bacterial cultures poses an additional hurdle, resulting in the need for alternative (and often more costly) expression systems. The recent development of very fast (up to 150 kHz) MAS probes has revolutionized the field of biomolecular solid-state NMR enabling higher spectral resolution with significant reduction of the required sample, rendering eukaryotic expression systems cost-effective.Here is presented a set of accessible procedures validated for the production and preparation of eukaryotic MPs for Fast-MAS 1H-detected NMR analysis. The methodology is illustrated with the human copper uptake protein hCTR1 recombinantly produced and 13C-15N uniformly labeled with the versatile and affordable Pichia pastoris system. Subsequent purification procedures allow the recovery of mg amounts that are then reconstituted into liposome formulations compatible with solid-state NMR handling and analysis.
Collapse
Affiliation(s)
- Lina Barret
- Biotechnology and Cell Signalling, IMPReSs Protein Facility, UMR7242 CNRS-University of Strasbourg, Illkirch, France
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs de Lyon (UMR 5082-CNRS, Université Claude Bernard Lyon 1, École Normale Supérieure Lyon), Université de Lyon, Villeurbanne, France
| | - Tobias Schubeis
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs de Lyon (UMR 5082-CNRS, Université Claude Bernard Lyon 1, École Normale Supérieure Lyon), Université de Lyon, Villeurbanne, France
| | - Valérie Kugler
- Biotechnology and Cell Signalling, IMPReSs Protein Facility, UMR7242 CNRS-University of Strasbourg, Illkirch, France
| | - Lucile Guyot
- Biotechnology and Cell Signalling, IMPReSs Protein Facility, UMR7242 CNRS-University of Strasbourg, Illkirch, France
- NovAliX, Illkirch, France
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs de Lyon (UMR 5082-CNRS, Université Claude Bernard Lyon 1, École Normale Supérieure Lyon), Université de Lyon, Villeurbanne, France
| | - Renaud Wagner
- Biotechnology and Cell Signalling, IMPReSs Protein Facility, UMR7242 CNRS-University of Strasbourg, Illkirch, France.
| |
Collapse
|
2
|
Recombinant chimeric enzymes for lignocellulosic biomass hydrolysis. Enzyme Microb Technol 2020; 140:109647. [DOI: 10.1016/j.enzmictec.2020.109647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
|
3
|
Kesidis A, Depping P, Lodé A, Vaitsopoulou A, Bill RM, Goddard AD, Rothnie AJ. Expression of eukaryotic membrane proteins in eukaryotic and prokaryotic hosts. Methods 2020; 180:3-18. [DOI: 10.1016/j.ymeth.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
|
4
|
Guyot L, Hartmann L, Mohammed-Bouteben S, Caro L, Wagner R. Preparation of Recombinant Membrane Proteins from Pichia pastoris for Molecular Investigations. ACTA ACUST UNITED AC 2020; 100:e104. [PMID: 32289210 DOI: 10.1002/cpps.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pichia pastoris is a eukaryotic microorganism reputed for its ability to mass-produce recombinant proteins, including integral membrane proteins, for various applications. This article details a series of protocols that progress towards the production of integral membrane proteins, their extraction and purification in the presence of detergents, and their eventual reconstitution in lipid nanoparticles. These basic procedures can be further optimized to provide integral membrane protein samples that are compatible with a number of structural and/or functional investigations at the molecular level. Each protocol provides general guidelines, technical hints, and specific recommendations, and is illustrated with case studies corresponding to several representative mammalian proteins. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Production of membrane proteins in a P. pastoris recombinant clone using methanol induction Basic Protocol 2: Preparation of whole-membrane fractions Alternate Protocol 1: Preparation of yeast protoplasts Basic Protocol 3: Extraction of membrane proteins from whole-membrane fractions Basic Protocol 4: Purification of membrane proteins Alternate Protocol 2: Purification of membrane proteins from yeast protoplasts Alternate Protocol 3: Simultaneous protoplast preparation and membrane solubilization for purification of membrane proteins Basic Protocol 5: Reconstitution of detergent-purified membrane proteins in lipid nanoparticles.
Collapse
Affiliation(s)
- Lucile Guyot
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France.,NovAliX, Illkirch, France
| | - Lucie Hartmann
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| | - Sarah Mohammed-Bouteben
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| | - Lydia Caro
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| | - Renaud Wagner
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| |
Collapse
|
5
|
Calmet P, Cullin C, Cortès S, Vang M, Caudy N, Baccouch R, Dessolin J, Maamar NT, Lecomte S, Tillier B, Alves ID. Cholesterol impacts chemokine CCR5 receptor ligand-binding activity. FEBS J 2019; 287:2367-2385. [PMID: 31738467 DOI: 10.1111/febs.15145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/27/2019] [Accepted: 11/16/2019] [Indexed: 01/03/2023]
Abstract
The chemokine CCR5 receptor is target of maraviroc, a negative allosteric modulator of CCR5 that blocks the HIV protein gp120 from associating with the receptor, thereby inhibiting virus cellular entry. As noted with other G-protein-coupled receptor family members, the role of the lipid environment in CCR5 signaling remains obscure and very modestly investigated. Controversial literature on the impact of cholesterol (Chol) depletion in HIV infection and CCR5 signaling, including the hypothesis that Chol depletion could inhibit HIV infection, lead us to focus on the understanding of Chol impact in the first stages of receptor activation. To address this aim, the approach chosen was to employ reconstituted model lipid systems of controlled lipid composition containing CCR5 from two distinct expression systems: Pichia pastoris and cell-free expression. The characterization of receptor/ligand interaction in terms of total binding or competition binding assays was independently performed by plasmon waveguide resonance and fluorescence anisotropy, respectively. Maraviroc, a potent receptor antagonist, was the ligand investigated. Additionally, coarse-grained molecular dynamics simulation was employed to investigate Chol impact in the receptor-conformational flexibility and dynamics. Results obtained with receptor produced by different expression systems and using different biophysical approaches clearly demonstrate a considerable impact of Chol in the binding affinity of maraviroc to the receptor and receptor-conformational dynamics. Chol considerably decreases maraviroc binding affinity to the CCR5 receptor. The mechanisms by which this effect occurs seem to involve the adoption of distinct receptor-conformational states with restrained structural dynamics and helical motions in the presence of Chol.
Collapse
Affiliation(s)
- Pierre Calmet
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | | | | | - Maylou Vang
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | - Nada Caudy
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | - Rim Baccouch
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | - Jean Dessolin
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | | | - Sophie Lecomte
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | | | - Isabel D Alves
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| |
Collapse
|
6
|
Bird LE, Nettleship JE, Järvinen V, Rada H, Verma A, Owens RJ. Expression Screening of Integral Membrane Proteins by Fusion to Fluorescent Reporters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 922:1-11. [DOI: 10.1007/978-3-319-35072-1_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Hartmann L, Kugler V, Wagner R. Expression of Eukaryotic Membrane Proteins in Pichia pastoris. Methods Mol Biol 2016; 1432:143-62. [PMID: 27485335 DOI: 10.1007/978-1-4939-3637-3_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A key point when it comes to heterologous expression of eukaryotic membrane proteins (EMPs) is the choice of the best-suited expression platform. The yeast Pichia pastoris has proven to be a very versatile system showing promising results in a growing number of cases. Indeed, its particular methylotrophic characteristics combined to the very simple handling of a eukaryotic microorganism that possesses the majority of mammalian-like machineries make it a very competitive expression system for various complex proteins, in amounts compatible with functional and structural studies. This chapter describes a set of robust methodologies routinely used for the successful expression of a variety of EMPs, going from yeast transformation with the recombinant plasmid to the analysis of the quality and quantity of the proteins produced.
Collapse
Affiliation(s)
- Lucie Hartmann
- Biotechnology and Cell Signalling, IMPReSs Protein Facility, UMR7242 ESBS CNRS, University of Strasbourg, 300 Blvd S. Brant, 67412, Illkirch, France
| | - Valérie Kugler
- Biotechnology and Cell Signalling, IMPReSs Protein Facility, UMR7242 ESBS CNRS, University of Strasbourg, 300 Blvd S. Brant, 67412, Illkirch, France
| | - Renaud Wagner
- Biotechnology and Cell Signalling, IMPReSs Protein Facility, UMR7242 ESBS CNRS, University of Strasbourg, 300 Blvd S. Brant, 67412, Illkirch, France.
| |
Collapse
|
8
|
Spohner SC, Müller H, Quitmann H, Czermak P. Expression of enzymes for the usage in food and feed industry with Pichia pastoris. J Biotechnol 2015; 202:118-34. [DOI: 10.1016/j.jbiotec.2015.01.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/28/2014] [Accepted: 01/07/2015] [Indexed: 12/29/2022]
|
9
|
Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 2014; 38:947-95. [PMID: 24724938 PMCID: PMC4293462 DOI: 10.1111/1574-6976.12073] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/31/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity.
Collapse
Affiliation(s)
- Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Tim Snoek
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Esther Meersman
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Martina Picca Nicolino
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Karin Voordeckers
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| |
Collapse
|