Chindasub P, Lindsey JD, Duong-Polk K, Leung CK, Weinreb RN. Inhibition of histone deacetylases 1 and 3 protects injured retinal ganglion cells.
Invest Ophthalmol Vis Sci 2013;
54:96-102. [PMID:
23197683 PMCID:
PMC3544425 DOI:
10.1167/iovs.12-10850]
[Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 12/25/2022] Open
Abstract
PURPOSE
Thy-1 is a marker of retinal ganglion cell (RGC) differentiation. Optic nerve injury triggers reduction of Thy-1 promoter activation followed by retinal ganglion cell (RGC) death. This study determined whether MS-275, an inhibitor of the histone deacetylases 1 and 3, can inhibit these changes.
METHODS
Mice expressing cyan fluorescent protein (CFP) under control of the Thy-1 promoter received MS-275 (subcutaneous) or vehicle three times per week starting 1 week before optic nerve crush and continuing for 6 weeks. The same retinal area was imaged using the blue-light confocal scanning laser ophthalmoscope before and after optic nerve crush every week, and fluorescent spots were counted manually. The eyes were then processed for histopathologic analysis.
RESULTS
The mean proportions of fluorescent retinal neurons remaining in the vehicle group following optic nerve crush were 36 ± 8, 18 ± 6, 13 ± 10, 12 ± 4, 13 ± 5, and 13 ± 5% at weeks 1 through 6, respectively (n = 6). In contrast, the mean proportions of fluorescent retinal neurons remaining in the group treated with MS-275 were 59 ± 19, 39 ± 11, 34 ± 12, 33 ± 15, 32 ± 13, and 27 ± 15% at weeks 1 through 6, respectively (n = 7, P < 0.05 at weeks 1 through 5). Rate analysis showed that MS-275 slowed the rate of loss during the first 2 weeks by 23% (P < 0.05) and subsequently was similar. Histopathologic analysis revealed 27 ± 13% greater ganglion cell layer (GCL) neurons in the eyes from mice that received MS-275 treatment (P < 0.02).
CONCLUSIONS
These results indicate that treatment with MS-275 protects against the loss of RGC differentiation and promotes RGC survival following optic nerve injury.
Collapse