1
|
Peixoto ML, Madan E. Unraveling the complexity: Advanced methods in analyzing DNA, RNA, and protein interactions. Adv Cancer Res 2024; 163:251-302. [PMID: 39271265 DOI: 10.1016/bs.acr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Exploring the intricate interplay within and between nucleic acids, as well as their interactions with proteins, holds pivotal significance in unraveling the molecular complexities steering cancer initiation and progression. To investigate these interactions, a diverse array of highly specific and sensitive molecular techniques has been developed. The selection of a particular technique depends on the specific nature of the interactions. Typically, researchers employ an amalgamation of these different techniques to obtain a comprehensive and holistic understanding of inter- and intramolecular interactions involving DNA-DNA, RNA-RNA, DNA-RNA, or protein-DNA/RNA. Examining nucleic acid conformation reveals alternative secondary structures beyond conventional ones that have implications for cancer pathways. Mutational hotspots in cancer often lie within sequences prone to adopting these alternative structures, highlighting the importance of investigating intra-genomic and intra-transcriptomic interactions, especially in the context of mutations, to deepen our understanding of oncology. Beyond these intramolecular interactions, the interplay between DNA and RNA leads to formations like DNA:RNA hybrids (known as R-loops) or even DNA:DNA:RNA triplex structures, both influencing biological processes that ultimately impact cancer. Protein-nucleic acid interactions are intrinsic cellular phenomena crucial in both normal and pathological conditions. In particular, genetic mutations or single amino acid variations can alter a protein's structure, function, and binding affinity, thus influencing cancer progression. It is thus, imperative to understand the differences between wild-type (WT) and mutated (MT) genes, transcripts, and proteins. The review aims to summarize the frequently employed methods and techniques for investigating interactions involving nucleic acids and proteins, highlighting recent advancements and diverse adaptations of each technique.
Collapse
Affiliation(s)
- Maria Leonor Peixoto
- Champalimaud Center for the Unknown, Lisbon, Portugal; Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Esha Madan
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
2
|
Gupta M, Garfio CM, Spitale RC. Overview of Chemical Methods to Probe RNA Structure with Radionucleotides. Curr Protoc 2023; 3:e781. [PMID: 37196139 DOI: 10.1002/cpz1.781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Structural features of RNA play an important role in its capability to perform various functions in biological systems. To probe structural features, chemical probes are used to conjugate or cleave RNA at solvent-accessible sites, differentiating between flexible and constrained regions. These conjugates or cleaved products are then detected using reverse transcription (RT), where enzymatic RNA-dependent DNA primer extension is abruptly halted at the conjugation site or cleavage site. Here, we provide an overview of methods to probe RNA structure in vitro using radioactively labeled DNA primers, which provide a highly sensitive method to visualize RT stop sites with gel electrophoresis. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Mrityunjay Gupta
- Department of Chemistry, University of California, Irvine, California
| | - Chely M Garfio
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Robert C Spitale
- Department of Chemistry, University of California, Irvine, California
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| |
Collapse
|
3
|
Peng W, Yang Y, Xu J, Peng E, Dai S, Dai L, Wang Y, Yi T, Wang B, Li D, Song N. TALE Transcription Factors in Sweet Orange ( Citrus sinensis): Genome-Wide Identification, Characterization, and Expression in Response to Biotic and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2022; 12:814252. [PMID: 35126435 PMCID: PMC8811264 DOI: 10.3389/fpls.2021.814252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Three-amino-acid-loop-extension (TALE) transcription factors comprise one of the largest gene families in plants, in which they contribute to regulation of a wide variety of biological processes, including plant growth and development, as well as governing stress responses. Although sweet orange (Citrus sinensis) is among the most commercially important fruit crops cultivated worldwide, there have been relatively few functional studies on TALE genes in this species. In this study, we investigated 18 CsTALE gene family members with respect to their phylogeny, physicochemical properties, conserved motif/domain sequences, gene structures, chromosomal location, cis-acting regulatory elements, and protein-protein interactions (PPIs). These CsTALE genes were classified into two subfamilies based on sequence homology and phylogenetic analyses, and the classification was equally strongly supported by the highly conserved gene structures and motif/domain compositions. CsTALEs were found to be unevenly distributed on the chromosomes, and duplication analysis revealed that segmental duplication and purifying selection have been major driving force in the evolution of these genes. Expression profile analysis indicated that CsTALE genes exhibit a discernible spatial expression pattern in different tissues and differing expression patterns in response to different biotic/abiotic stresses. Of the 18 CsTALE genes examined, 10 were found to be responsive to high temperature, four to low temperature, eight to salt, and four to wounding. Moreover, the expression of CsTALE3/8/12/16 was induced in response to infection with the fungal pathogen Diaporthe citri and bacterial pathogen Candidatus Liberibacter asiaticus, whereas the expression of CsTALE15/17 was strongly suppressed. The transcriptional activity of CsTALE proteins was also verified in yeast, with yeast two-hybrid assays indicating that CsTALE3/CsTALE8, CsTALE3/CsTALE11, CsTALE10/CsTALE12, CsTALE14/CsTALE8, CsTALE14/CsTALE11 can form respective heterodimers. The findings of this study could lay the foundations for elucidating the biological functions of the TALE family genes in sweet orange and contribute to the breeding of stress-tolerant plants.
Collapse
Affiliation(s)
- Weiye Peng
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Yang Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Jing Xu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Erping Peng
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Suming Dai
- Horticulture College, Hunan Agricultural University, Changsha, China
- National Center for Citrus Improvement Changsha, Changsha, China
| | - Liangying Dai
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Yunsheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Tuyong Yi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Bing Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Dazhi Li
- Horticulture College, Hunan Agricultural University, Changsha, China
- National Center for Citrus Improvement Changsha, Changsha, China
| | - Na Song
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| |
Collapse
|
4
|
Del Piano A, Kecman T, Schmid M, Barbieri R, Brocchieri L, Tornaletti S, Firrito C, Minati L, Bernabo P, Signoria I, Lauria F, Gillingwater TH, Viero G, Clamer M. Phospho-RNA sequencing with circAID-p-seq. Nucleic Acids Res 2021; 50:e23. [PMID: 34850942 PMCID: PMC8887461 DOI: 10.1093/nar/gkab1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 11/14/2022] Open
Abstract
Most RNA footprinting approaches that require ribonuclease cleavage generate RNA fragments bearing a phosphate or cyclic phosphate group at their 3′ end. Unfortunately, current library preparation protocols rely only on a 3′ hydroxyl group for adaptor ligation or poly-A tailing. Here, we developed circAID-p-seq, a PCR-free library preparation for selective 3′ phospho-RNA sequencing. As a proof of concept, we applied circAID-p-seq to ribosome profiling, which is based on sequencing of RNA fragments protected by ribosomes after endonuclease digestion. CircAID-p-seq, combined with the dedicated computational pipeline circAidMe, facilitates accurate, fast and highly efficient sequencing of phospho-RNA fragments from eukaryotic cells and tissues. We used circAID-p-seq to portray ribosome occupancy in transcripts, providing a versatile and PCR-free strategy to possibly unravel any endogenous 3′-phospho RNA molecules.
Collapse
Affiliation(s)
- Alessia Del Piano
- IMMAGINA BioTechnology S.r.l, Via Sommarive 18, Povo, Italy.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Tea Kecman
- IMMAGINA BioTechnology S.r.l, Via Sommarive 18, Povo, Italy
| | | | | | - Luciano Brocchieri
- TB-Seq, Inc., 458 Carlton Court, Ste H, South San Francisco, CA 94080, USA
| | - Silvia Tornaletti
- TB-Seq, Inc., 458 Carlton Court, Ste H, South San Francisco, CA 94080, USA
| | | | - Luca Minati
- IMMAGINA BioTechnology S.r.l, Via Sommarive 18, Povo, Italy
| | - Paola Bernabo
- IMMAGINA BioTechnology S.r.l, Via Sommarive 18, Povo, Italy
| | - Ilaria Signoria
- Institute of Biophysics, Unit at Trento, CNR, Via Sommarive, 18 Povo, Italy
| | - Fabio Lauria
- Institute of Biophysics, Unit at Trento, CNR, Via Sommarive, 18 Povo, Italy
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences & Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Gabriella Viero
- Institute of Biophysics, Unit at Trento, CNR, Via Sommarive, 18 Povo, Italy
| | | |
Collapse
|
5
|
Balobanov V, Lekontseva N, Mikhaylina A, Nikulin A. Use of Fluorescent Nucleotides to Map RNA-Binding Sites on Protein Surface. Methods Mol Biol 2021; 2113:251-262. [PMID: 32006319 DOI: 10.1007/978-1-0716-0278-2_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, studies of RNA/protein interactions occupy a prominent place in molecular biology and medicine. The structures of RNA-protein complexes may be determined by X-ray crystallography or NMR for further analyses. These methods are time-consuming and difficult due to the versatility and dynamics of the RNA structure. Furthermore, due to the need to solve the "phase problem" for each dataset in crystallography, crystallographic structures of RNA are still underrepresented. Structure determination of single ribonucleotide-protein complexes is a useful tool to identify the position of single-stranded RNA-binding sites in proteins. We describe here a structural approach that incorporates affinity measurement of a protein for various single ribonucleotides, ranking the RNA/protein complexes according to their stability. This chapter describes how to perform these measurements, including a perspective for the analysis of RNA-binding sites in protein and single-nucleotide crystal soaking.
Collapse
Affiliation(s)
- V Balobanov
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | - N Lekontseva
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - A Mikhaylina
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - A Nikulin
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
6
|
Wang H, Zhao Y. RBinds: A user-friendly server for RNA binding site prediction. Comput Struct Biotechnol J 2020; 18:3762-3765. [PMID: 34136090 PMCID: PMC8164131 DOI: 10.1016/j.csbj.2020.10.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/03/2022] Open
Abstract
RNA performs various biological functions by interacting with other molecules. The knowledge of RNA binding sites is essential for the understanding of RNA-protein or RNA-ligand complex structures and their mechanisms. However, the RNA binding site prediction study requires tedious programming scripts and manual handling. One user-friendly bioinformatics tool for RNA binding site prediction has been missing. This limitation motivated us to develop the RBinds, a user-friendly web server, to predict the RNA binding site using a simple graphical user interface. Some advanced features implemented in RBinds are (1) transforming the RNA structure to a network automatically; (2) analyzing the structural network properties to predict binding site; (3) constructing one annotated force-directed network; (4) providing a visualization tool for users to scale and rotate the structure; (5) offering the related tools to predict or simulate RNA structures. RBinds web server is a reliable and user-friendly tool and facilitates the RNA binding site study without installing programs locally. RBinds is freely accessible at http://zhaoserver.com.cn/RBinds/RBinds.html.
Collapse
Affiliation(s)
- Huiwen Wang
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
7
|
Rotstan KA, Abdelsayed MM, Passalacqua LFM, Chizzolini F, Sudarshan K, Chamberlin AR, Míšek J, Luptak A. Regulation of mRNA translation by a photoriboswitch. eLife 2020; 9:e51737. [PMID: 32053109 PMCID: PMC7051177 DOI: 10.7554/elife.51737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
Optogenetic tools have revolutionized the study of receptor-mediated processes, but such tools are lacking for RNA-controlled systems. In particular, light-activated regulatory RNAs are needed for spatiotemporal control of gene expression. To fill this gap, we used in vitro selection to isolate a novel riboswitch that selectively binds the trans isoform of a stiff-stilbene (amino-tSS)-a rapidly and reversibly photoisomerizing small molecule. Structural probing revealed that the RNA binds amino-tSS about 100-times stronger than the cis photoisoform (amino-cSS). In vitro and in vivo functional analysis showed that the riboswitch, termed Werewolf-1 (Were-1), inhibits translation of a downstream open reading frame when bound to amino-tSS. Photoisomerization of the ligand with a sub-millisecond pulse of light induced the protein expression. In contrast, amino-cSS supported protein expression, which was inhibited upon photoisomerization to amino-tSS. Reversible photoregulation of gene expression using a genetically encoded RNA will likely facilitate high-resolution spatiotemporal analysis of complex RNA processes.
Collapse
Affiliation(s)
- Kelly A Rotstan
- Department of Pharmaceutical Sciences, University of CaliforniaIrvineUnited States
| | - Michael M Abdelsayed
- Department of Molecular Biology and Biochemistry, University of CaliforniaIrvineUnited States
| | - Luiz FM Passalacqua
- Department of Pharmaceutical Sciences, University of CaliforniaIrvineUnited States
| | - Fabio Chizzolini
- Department of Pharmaceutical Sciences, University of CaliforniaIrvineUnited States
| | | | - A Richard Chamberlin
- Department of Pharmaceutical Sciences, University of CaliforniaIrvineUnited States
- Department of Chemistry, University of CaliforniaIrvineUnited States
| | - Jiří Míšek
- Department of Pharmaceutical Sciences, University of CaliforniaIrvineUnited States
- Department of Organic Chemistry, Charles UniversityPragueCzech Republic
| | - Andrej Luptak
- Department of Pharmaceutical Sciences, University of CaliforniaIrvineUnited States
- Department of Molecular Biology and Biochemistry, University of CaliforniaIrvineUnited States
- Department of Chemistry, University of CaliforniaIrvineUnited States
| |
Collapse
|
8
|
Cai S, Yan J, Xiong H, Liu Y, Peng D, Liu Z. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst 2019; 143:5317-5338. [PMID: 30357118 DOI: 10.1039/c8an01467a] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA of 20-100 nucleotides in length that have attracted substantial scientific interest due to their ability to specifically bind to target molecules via the formation of three-dimensional structures. Compared to traditional protein antibodies, aptamers have several advantages, such as their small size, high binding affinity, specificity, flexible structure, being chemical synthesizable and modifiable, good biocompatibility, high stability and low immunogenicity, which all contribute to their widely applications in the biomedical field. To date, much progress has been made in the study and applications of aptamers, however, detailed information on how aptamers bind to their targets is still scarce. Over the past few decades, many methods have been introduced to investigate the aptamer-target binding process, such as measuring the main kinetic or thermodynamic parameters, detecting the structural changes of the binding complexes, etc. Apart from traditional physicochemical methods, various types of molecular docking programs have been applied to simulate the aptamer-target interactions, while these simulations also have limitations. To facilitate the further research on the interactions, herein, we provide a brief review to illustrate the recent advances in the study of aptamer-target interactions. We summarize the binding targets of aptamers, such as small molecules, macromolecules, and even cells. Their binding constants (KD) are also summarized. Methods to probe the aptamer-target binding process, such as surface plasmon resonance (SPR), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), footprinting assay, truncation and mutation assay, nuclear magnetic resonance spectroscopy (NMR), X-ray crystallography and molecular docking simulation are indicated. The binding forces mediating the aptamer-target interactions, such as hydrogen bonding, electrostatic interaction, the hydrophobic effect, π-π stacking and van der Waals forces are summarized. The challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China.
| | | | | | | | | | | |
Collapse
|
9
|
Chan D, Feng C, Spitale RC. Measuring RNA structure transcriptome-wide with icSHAPE. Methods 2017; 120:85-90. [PMID: 28336307 DOI: 10.1016/j.ymeth.2017.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 11/17/2022] Open
Abstract
RNA molecules can be found at the heart of nearly every aspect of gene regulation: from gene expression to protein translation. The ability of RNA molecules to fold into intricate structures guides their function. Chemical methods to measure RNA structure have been part of the RNA biologists toolkit for several decades. These methods, although often cumbersome and difficult to perform on large RNAs, are notable for their accuracy and precision of structural measurements. Recent extension of these methods to transcriptome-wide analyses has opened the door to interrogating the structure of complete RNA molecules inside cells. Within this manuscript we describe the biochemical basis for the methodology behind a novel technology, icSHAPE, which measures RNA flexibility and single-strandedness in RNA. Novel methods such as icSHAPE have greatly expanded our understanding of RNA function and have paved the way to expansive analyses of large groups of RNA structures as they function inside the native environment of the cell.
Collapse
Affiliation(s)
- Dalen Chan
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States
| | - Chao Feng
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States; Department of Chemistry, University of California, Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
10
|
Perez-Gonzalez C, Lafontaine DA, Penedo JC. Fluorescence-Based Strategies to Investigate the Structure and Dynamics of Aptamer-Ligand Complexes. Front Chem 2016; 4:33. [PMID: 27536656 PMCID: PMC4971091 DOI: 10.3389/fchem.2016.00033] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
In addition to the helical nature of double-stranded DNA and RNA, single-stranded oligonucleotides can arrange themselves into tridimensional structures containing loops, bulges, internal hairpins and many other motifs. This ability has been used for more than two decades to generate oligonucleotide sequences, so-called aptamers, that can recognize certain metabolites with high affinity and specificity. More recently, this library of artificially-generated nucleic acid aptamers has been expanded by the discovery that naturally occurring RNA sequences control bacterial gene expression in response to cellular concentration of a given metabolite. The application of fluorescence methods has been pivotal to characterize in detail the structure and dynamics of these aptamer-ligand complexes in solution. This is mostly due to the intrinsic high sensitivity of fluorescence methods and also to significant improvements in solid-phase synthesis, post-synthetic labeling strategies and optical instrumentation that took place during the last decade. In this work, we provide an overview of the most widely employed fluorescence methods to investigate aptamer structure and function by describing the use of aptamers labeled with a single dye in fluorescence quenching and anisotropy assays. The use of 2-aminopurine as a fluorescent analog of adenine to monitor local changes in structure and fluorescence resonance energy transfer (FRET) to follow long-range conformational changes is also covered in detail. The last part of the review is dedicated to the application of fluorescence techniques based on single-molecule microscopy, a technique that has revolutionized our understanding of nucleic acid structure and dynamics. We finally describe the advantages of monitoring ligand-binding and conformational changes, one molecule at a time, to decipher the complexity of regulatory aptamers and summarize the emerging folding and ligand-binding models arising from the application of these single-molecule FRET microscopy techniques.
Collapse
Affiliation(s)
- Cibran Perez-Gonzalez
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
| | - Daniel A. Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de SherbrookeSherbrooke, QC, Canada
| | - J. Carlos Penedo
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
- Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. AndrewsSt. Andrews, UK
| |
Collapse
|
11
|
Kubota M, Tran C, Spitale RC. Progress and challenges for chemical probing of RNA structure inside living cells. Nat Chem Biol 2015; 11:933-41. [PMID: 26575240 PMCID: PMC5068366 DOI: 10.1038/nchembio.1958] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/14/2015] [Indexed: 01/18/2023]
Abstract
Proper gene expression is essential for the survival of every cell. Once thought to be a passive transporter of genetic information, RNA has recently emerged as a key player in nearly every pathway in the cell. A full description of its structure is critical to understanding RNA function. Decades of research have focused on utilizing chemical tools to interrogate the structures of RNAs, with recent focus shifting to performing experiments inside living cells. This Review will detail the design and utility of chemical reagents used in RNA structure probing. We also outline how these reagents have been used to gain a deeper understanding of RNA structure in vivo. We review the recent merger of chemical probing with deep sequencing. Finally, we outline some of the hurdles that remain in fully characterizing the structure of RNA inside living cells, and how chemical biology can uniquely tackle such challenges.
Collapse
Affiliation(s)
- Miles Kubota
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Catherine Tran
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
12
|
Zeng P, Li J, Ma W, Cui Q. Rsite: a computational method to identify the functional sites of noncoding RNAs. Sci Rep 2015; 5:9179. [PMID: 25776805 PMCID: PMC4361870 DOI: 10.1038/srep09179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/18/2015] [Indexed: 01/01/2023] Open
Abstract
There is an increasing demand for identifying the functional sites of noncoding RNAs (ncRNAs). Here we introduce a tertiary-structure based computational approach, Rsite, which first calculates the Euclidean distances between each nucleotide and all the other nucleotides in a RNA molecule and then determines the nucleotides that are the extreme points in the distance curve as the functional sites. By analyzing two ncRNAs, tRNA (Lys) and Diels-Alder ribozyme, we demonstrated the efficiency of Rsite. As a result, Rsite recognized all of the known functional sites of the two ncRNAs, suggesting that Rsite could be a potentially useful tool for discovering the functional sites of ncRNAs. The source codes and data sets of Rsite are available at http://www.cuilab.cn/rsite.
Collapse
Affiliation(s)
- Pan Zeng
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 xueyuan Rd, Beijing. 100191, China
| | - Jianwei Li
- Lab of Translational Biomedicine Informatics, School of Computer Science and Engineering, Hebei University of Technology, 5340 Xiping Rd, Tianjin. 300401, China
| | - Wei Ma
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 xueyuan Rd, Beijing. 100191, China
| | - Qinghua Cui
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 xueyuan Rd, Beijing. 100191, China
| |
Collapse
|