1
|
Gassner C, Vongsvivut J, Ng SH, Ryu M, Tobin MJ, Juodkazis S, Morikawa J, Wood BR. Linearly Polarized Infrared Spectroscopy for the Analysis of Biological Materials. APPLIED SPECTROSCOPY 2023; 77:977-1008. [PMID: 37464791 DOI: 10.1177/00037028231180233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The analysis of biological samples with polarized infrared spectroscopy (p-IR) has long been a widely practiced method for the determination of sample orientation and structural properties. In contrast to earlier works, which employed this method to investigate the fundamental chemistry of biological systems, recent interests are moving toward "real-world" applications for the evaluation and diagnosis of pathological states. This focal point review provides an up-to-date synopsis of the knowledge of biological materials garnered through linearly p-IR on biomolecules, cells, and tissues. An overview of the theory with special consideration to biological samples is provided. Different modalities which can be employed along with their capabilities and limitations are outlined. Furthermore, an in-depth discussion of factors regarding sample preparation, sample properties, and instrumentation, which can affect p-IR analysis is provided. Additionally, attention is drawn to the potential impacts of analysis of biological samples with inherently polarized light sources, such as synchrotron light and quantum cascade lasers. The vast applications of p-IR for the determination of the structure and orientation of biological samples are given. In conclusion, with considerations to emerging instrumentation, findings by other techniques, and the shift of focus toward clinical applications, we speculate on the future directions of this methodology.
Collapse
Affiliation(s)
- Callum Gassner
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Soon Hock Ng
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Meguya Ryu
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mark J Tobin
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Junko Morikawa
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Mahrous E, Chen R, Zhao C, Farag MA. Lipidomics in food quality and authentication: A comprehensive review of novel trends and applications using chromatographic and spectroscopic techniques. Crit Rev Food Sci Nutr 2023; 64:9058-9081. [PMID: 37165484 DOI: 10.1080/10408398.2023.2207659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Lipid analysis is an integral part of food authentication and quality control which provides consumers with the necessary information to make an informed decision about their lipid intake. Recent advancement in lipid analysis and lipidome scope represents great opportunities for food science. In this review we provide a comprehensive overview of available tools for extraction, analysis and interpretation of data related to dietary fats analyses. Different analytical platforms are discussed including GC, MS, NMR, IR and UV with emphasis on their merits and limitations alongside complementary tools such as chemometric models and lipid-targeted online databases. Applications presented here include quality control, authentication of organic and delicacy food, tracing dietary fat source and investigating the effect of heat/storage on lipids. A multitude of analytical methods with different sensitivity, affordability, reproducibility and ease of operation are now available to comprehensively analyze dietary fats. Application of these methods range from studies which favor the use of large data generating platforms such as MS-based methods, to routine quality control which demands easy to use affordable equipment as TLC and IR. Hence, this review provides a navigation tool for food scientists to help develop an optimal protocol for their future lipid analysis quest.
Collapse
Affiliation(s)
- Engy Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ruoxin Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Soubias O, Sodt AJ, Teague WE, Hines KG, Gawrisch K. Physiological changes in bilayer thickness induced by cholesterol control GPCR rhodopsin function. Biophys J 2023; 122:973-983. [PMID: 36419350 PMCID: PMC10111215 DOI: 10.1016/j.bpj.2022.11.2937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
We monitored the effect on function of the G-protein-coupled receptor (GPCR) rhodopsin from small, stepwise changes in bilayer thickness induced by cholesterol. Over a range of phosphatidylcholine bilayers with hydrophobic thickness from ≈21 Å to 38 Å, the metarhodopsin-I (MI)/metarhodopsin-II (MII) equilibrium was monitored with UV-visible spectroscopy while ordering of hydrocarbon chains was probed by 2H-NMR. Addition of cholesterol shifted equilibrium toward MII for bilayers thinner than the average length of hydrophobic transmembrane helices (27 Å) and to MI for thicker bilayers, while small bilayer thickness changes within the range of the protein hydrophobic thickness drastically up- or downregulated MII formation. The cholesterol-induced shifts toward MII for thinner membranes correlated with the cholesterol-induced increase of bilayer hydrophobic thickness measured by NMR, consistent with continuum elastic modeling. The energetic penalty of adding cholesterol to thick bilayers caused rhodopsin oligomerization and a shift toward MI. In membranes of physiological thickness, changes in bilayer mechanical properties induced by cholesterol potentiated the interplay between bilayer and protein thickness resulting in large swings of the MI-MII equilibrium. In membrane containing cholesterol, elastic deformations near the protein are a dominant energetic contribution to the functional equilibrium of the model GPCR rhodopsin.
Collapse
Affiliation(s)
- Olivier Soubias
- Macromolecular NMR Section, Center for Structural Biology, Center for Cancer Research, NCI, NIH, Frederick, Maryland.
| | - Alexander J Sodt
- Unit on Membrane Chemical Physics, Eunice Kennedy Shriver NICHD, NIH, Bethesda, Maryland
| | - Walter E Teague
- Section of NMR, Laboratory of Membrane Biochemistry and Biophysics, NIAAA, NIH, Bethesda, Maryland
| | - Kirk G Hines
- Section of NMR, Laboratory of Membrane Biochemistry and Biophysics, NIAAA, NIH, Bethesda, Maryland
| | - Klaus Gawrisch
- Section of NMR, Laboratory of Membrane Biochemistry and Biophysics, NIAAA, NIH, Bethesda, Maryland
| |
Collapse
|
4
|
Membrane Curvature Revisited-the Archetype of Rhodopsin Studied by Time-Resolved Electronic Spectroscopy. Biophys J 2020; 120:440-452. [PMID: 33217383 DOI: 10.1016/j.bpj.2020.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) comprise the largest and most pharmacologically targeted membrane protein family. Here, we used the visual receptor rhodopsin as an archetype for understanding membrane lipid influences on conformational changes involved in GPCR activation. Visual rhodopsin was recombined with lipids varying in their degree of acyl chain unsaturation and polar headgroup size using 1-palmitoyl-2-oleoyl-sn-glycero- and 1,2-dioleoyl-sn-glycerophospholipids with phosphocholine (PC) or phosphoethanolamine (PE) substituents. The receptor activation profile after light excitation was measured using time-resolved ultraviolet-visible spectroscopy. We discovered that more saturated POPC lipids back shifted the equilibrium to the inactive state, whereas the small-headgroup, highly unsaturated DOPE lipids favored the active state. Increasing unsaturation and decreasing headgroup size have similar effects that combine to yield control of rhodopsin activation, and necessitate factors beyond proteolipid solvation energy and bilayer surface electrostatics. Hence, we consider a balance of curvature free energy with hydrophobic matching and demonstrate how our data support a flexible surface model (FSM) for the coupling between proteins and lipids. The FSM is based on the Helfrich formulation of membrane bending energy as we previously first applied to lipid-protein interactions. Membrane elasticity and curvature strain are induced by lateral pressure imbalances between the constituent lipids and drive key physiological processes at the membrane level. Spontaneous negative monolayer curvature toward water is mediated by unsaturated, small-headgroup lipids and couples directly to GPCR activation upon light absorption by rhodopsin. For the first time to our knowledge, we demonstrate this modulation in both the equilibrium and pre-equilibrium evolving states using a time-resolved approach.
Collapse
|
5
|
Perera SMDC, Chawla U, Shrestha UR, Bhowmik D, Struts AV, Qian S, Chu XQ, Brown MF. Small-Angle Neutron Scattering Reveals Energy Landscape for Rhodopsin Photoactivation. J Phys Chem Lett 2018; 9:7064-7071. [PMID: 30489081 DOI: 10.1021/acs.jpclett.8b03048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Knowledge of the activation principles for G-protein-coupled receptors (GPCRs) is critical to development of new pharmaceuticals. Rhodopsin is the archetype for the largest GPCR family, yet the changes in protein dynamics that trigger signaling are not fully understood. Here we show that rhodopsin can be investigated by small-angle neutron scattering (SANS) in fully protiated detergent micelles under contrast matching to resolve light-induced changes in the protein structure. In SANS studies of membrane proteins, the zwitterionic detergent [(cholamidopropyl)dimethylammonio]-propanesulfonate (CHAPS) is advantageous because of the low contrast difference between the hydrophobic core and hydrophilic head groups as compared with alkyl glycoside detergents. Combining SANS results with quasielastic neutron scattering reveals how changes in volumetric protein shape are coupled (slaved) to the aqueous solvent. Upon light exposure, rhodopsin is swollen by the penetration of water into the protein core, allowing interactions with effector proteins in the visual signaling mechanism.
Collapse
Affiliation(s)
- Suchithranga M D C Perera
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Udeep Chawla
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Utsab R Shrestha
- Department of Physics and Astronomy , Wayne State University , Detroit , Michigan 48201 , United States
| | - Debsindhu Bhowmik
- Department of Physics and Astronomy , Wayne State University , Detroit , Michigan 48201 , United States
| | - Andrey V Struts
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
- Laboratory of Biomolecular NMR , St. Petersburg State University , St. Petersburg 199034 , Russia
| | - Shuo Qian
- Neutron Scattering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Xiang-Qiang Chu
- Graduate School of China Academy of Engineering Physics , Beijing 100193 , China
| | - Michael F Brown
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
- Department of Physics , University of Arizona , Tucson , Arizona 85721 , United States
| |
Collapse
|
6
|
Affiliation(s)
- Michael F. Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
- Department of Physics, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
7
|
Abstract
Conformational equilibria of G-protein-coupled receptors (GPCRs) are intimately involved in intracellular signaling. Here conformational substates of the GPCR rhodopsin are investigated in micelles of dodecyl maltoside (DDM) and in phospholipid nanodiscs by monitoring the spatial positions of transmembrane helices 6 and 7 at the cytoplasmic surface using site-directed spin labeling and double electron-electron resonance spectroscopy. The photoactivated receptor in DDM is dominated by one conformation with weak pH dependence. In nanodiscs, however, an ensemble of pH-dependent conformational substates is observed, even at pH 6.0 where the MIIbH+ form defined by proton uptake and optical spectroscopic methods is reported to be the sole species present in native disk membranes. In nanodiscs, the ensemble of substates in the photoactivated receptor spontaneously decays to that characteristic of the inactive state with a lifetime of ∼16 min at 20 °C. Importantly, transducin binding to the activated receptor selects a subset of the ensemble in which multiple substates are apparently retained. The results indicate that in a native-like lipid environment rhodopsin activation is not analogous to a simple binary switch between two defined conformations, but the activated receptor is in equilibrium between multiple conformers that in principle could recognize different binding partners.
Collapse
|
8
|
Abstract
Preparation and storage of functional membrane proteins such as G-protein-coupled receptors (GPCRs) are crucial to the processes of drug delivery and discovery. Here, we describe a method of preparing powdered GPCRs using rhodopsin as the prototype. We purified rhodopsin in CHAPS detergent with low detergent to protein ratio so the bulk of the sample represented protein (ca. 72% w/w). Our new method for generating powders of membrane proteins followed by rehydration paves the way for conducting functional and biophysical experiments. As an illustrative application, powdered rhodopsin was prepared with and without the cofactor 11-cis-retinal to enable partial rehydration of the protein with D2O in a controlled manner. Quasi-elastic neutron scattering studies using both spatial motion and energy landscape models form the basis for crucial insights into structural fluctuations and thermodynamics of GPCR activation.
Collapse
Affiliation(s)
| | - Udeep Chawla
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael F. Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
9
|
Chawla U, Jiang Y, Zheng W, Kuang L, Perera SMDC, Pitman MC, Brown MF, Liang H. A Usual G-Protein-Coupled Receptor in Unusual Membranes. Angew Chem Int Ed Engl 2016; 55:588-92. [PMID: 26633591 PMCID: PMC5233722 DOI: 10.1002/anie.201508648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/02/2015] [Indexed: 12/30/2022]
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of membrane-bound receptors and constitute about 50% of all known drug targets. They offer great potential for membrane protein nanotechnologies. We report here a charge-interaction-directed reconstitution mechanism that induces spontaneous insertion of bovine rhodopsin, the eukaryotic GPCR, into both lipid- and polymer-based artificial membranes. We reveal a new allosteric mode of rhodopsin activation incurred by the non-biological membranes: the cationic membrane drives a transition from the inactive MI to the activated MII state in the absence of high [H(+)] or negative spontaneous curvature. We attribute this activation to the attractive charge interaction between the membrane surface and the deprotonated Glu134 residue of the rhodopsin-conserved ERY sequence motif that helps break the cytoplasmic "ionic lock". This study unveils a novel design concept of non-biological membranes to reconstitute and harness GPCR functions in synthetic systems.
Collapse
Affiliation(s)
- Udeep Chawla
- Department of Chemistry & Biochemistry, Department of Physics University of Arizona, Tucson, AZ 85721 (USA)
| | - Yunjiang Jiang
- Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, CO 80401 (USA)
- Current address: Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech, University Health Science Center, Lubbock, TX 79430 (USA)
| | - Wan Zheng
- Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, CO 80401 (USA)
| | - Liangju Kuang
- Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, CO 80401 (USA)
| | - Suchithranga M D C Perera
- Department of Chemistry & Biochemistry, Department of Physics University of Arizona, Tucson, AZ 85721 (USA)
| | - Michael C Pitman
- Department of Chemistry & Biochemistry, Department of Physics University of Arizona, Tucson, AZ 85721 (USA)
| | - Michael F Brown
- Department of Chemistry & Biochemistry, Department of Physics University of Arizona, Tucson, AZ 85721 (USA).
| | - Hongjun Liang
- Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, CO 80401 (USA).
- Current address: Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech, University Health Science Center, Lubbock, TX 79430 (USA).
| |
Collapse
|
10
|
Soubias O, Teague WE, Hines KG, Gawrisch K. The role of membrane curvature elastic stress for function of rhodopsin-like G protein-coupled receptors. Biochimie 2015; 107 Pt A:28-32. [PMID: 25447139 DOI: 10.1016/j.biochi.2014.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
Abstract
The human genome encodes about 800 different G protein-coupled receptors (GPCR). They are key molecules in signal transduction pathways that transmit signals of a variety of ligands such as hormones and neurotransmitters to the cell interior. Upon ligand binding, the receptors undergo structural transitions that either enhance or inhibit transmission of a specific signal to the cell interior. Here we discuss results which indicate that transmission of such signals can be strongly modulated by the composition of the lipid matrix into which GPCR are imbedded. Experimental results have been obtained on rhodopsin, a prototype GPCR whose structure and function is representative for the great majority of GPCR in humans. The data shed light on the importance of curvature elastic stress in the lipid domain for function of GPCR.
Collapse
|