1
|
Faura G, Studenovska H, Sekac D, Ellederova Z, Petrovski G, Eide L. The Effects of the Coating and Aging of Biodegradable Polylactic Acid Membranes on In Vitro Primary Human Retinal Pigment Epithelium Cells. Biomedicines 2024; 12:966. [PMID: 38790928 PMCID: PMC11117638 DOI: 10.3390/biomedicines12050966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Age-related macular degeneration (AMD) is the most frequent cause of blindness in developed countries. The replacement of dysfunctional human retinal pigment epithelium (hRPE) cells by the transplantation of in vitro-cultivated hRPE cells to the affected area emerges as a feasible strategy for regenerative therapy. Synthetic biomimetic membranes arise as powerful hRPE cell carriers, but as biodegradability is a requirement, it also poses a challenge due to its limited durability. hRPE cells exhibit several characteristics that putatively respond to the type of membrane carrier, and they can be used as biomarkers to evaluate and further optimize such membranes. Here, we analyze the pigmentation, transepithelial resistance, genome integrity, and maturation markers of hRPE cells plated on commercial polycarbonate (PC) versus in-house electrospun polylactide-based (PLA) membranes, both enabling separate apical/basolateral compartments. Our results show that PLA is superior to PC-based membranes for the cultivation of hRPEs, and the BEST1/RPE65 maturation markers emerge as the best biomarkers for addressing the quality of hRPE cultivated in vitro. The stability of the cultures was observed to be affected by PLA aging, which is an effect that could be partially palliated by the coating of the PLA membranes.
Collapse
Affiliation(s)
- Georgina Faura
- Department of Medical Biochemistry, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- CIDETEC, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Hana Studenovska
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 00 Prague, Czech Republic;
| | - David Sekac
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic; (D.S.); (Z.E.)
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic; (D.S.); (Z.E.)
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital and Institute for Clinical Medicine, University of Oslo, 0424 Oslo, Norway;
- Norwegian Center for Stem Cell Research, Oslo University Hospital, 0424 Oslo, Norway
- Department of Ophthalmology, University Hospital Centre, University of Split School of Medicine, 21000 Split, Croatia
- UKLO Network, University St. Kliment Ohridski, 7000 Bitola, North Macedonia
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
2
|
Zhou D, Petersen A, Adelöf J, Hernebring M, Zetterberg M. A Novel Primary Porcine Retinal Pigment Epithelium Cell Model with Preserved Properties. Curr Eye Res 2024; 49:97-107. [PMID: 37725007 DOI: 10.1080/02713683.2023.2259636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE To establish an ethical, reliable, and expandable retinal pigment epithelial (RPE) cell model with maintained RPE properties compatible with multifarious assays. METHODS RPE cells from abattoir-obtained porcine eyes were cultured under various conditions. Morphology, RPE cell-specific protein markers (RPE-65, CRALBP), and the tight junction marker ZO-1 were analyzed by phase-contrast microscopy, immunocytochemistry, and western blot, and transepithelial electrical resistance (TEER) was determined to assess barrier function. RESULTS The porcine RPE cells (pRPE) were best established using TrypLE Express, 10% fetal bovine serum (FBS) supplemented high-glucose media, and subculturing at semi-confluency. The pRPE cells maintained epithelioid morphology with ZO-1 positive tight junctions at the cell-to-cell borders, the ability to establish proper barrier function (TEERmax: 346/375 Ω⋅cm2 at passage I/passage VI), and expressed CRALBP and RPE-65 for several passages. The RPE characteristics decreased and disappeared with transdifferentiation. CONCLUSIONS This work describes, for the first time, a pRPE cell model that exhibits preserved RPE properties for several passages on cell culture plastic plates. Though RPE characteristics were maintained for at least 6 passages, the reduced CRALBP and RPE-65 with passaging emphasize that lower passage cells are advantageous to utilize, and that morphology, barrier function, and ZO-1 localization cannot be solely employed as a quality measure of RPE identity. Pigs are phylogenetically similar to humans, including similar physiology, anatomy and immune system. Therefore, porcine RPE cells constitute a relevant model system for studying human eye diseases, such as AMD.
Collapse
Affiliation(s)
- Dinna Zhou
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anne Petersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julia Adelöf
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Hernebring
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
3
|
Wu L, Yang S, Li H, Zhang Y, Feng L, Zhang C, Wei J, Gu X, Xu G, Wang Z, Wang F. TSPAN4-positive migrasome derived from retinal pigmented epithelium cells contributes to the development of proliferative vitreoretinopathy. J Nanobiotechnology 2022; 20:519. [PMID: 36494806 PMCID: PMC9733225 DOI: 10.1186/s12951-022-01732-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Proliferative vitreoretinopathy (PVR) is a blind-causing disease initiated by the activation of retinal pigmented epithelium (RPE) primarily induced by TGF-β families. Migrasome is a recently discovered type of extracellular vesicle related to cell migration. RESULTS Here, we used ex vivo, in vitro, and in vivo models, to investigate the characteristics and functions of migrasomes in RPE activation and PVR development. Results indicated that the migrasome marker tetraspanin-4 (TSPAN4) was abundantly expressed in human PVR-associated clinical samples. The ex vivo model PVR microenvironment is simulated by incubating brown Norway rat RPE eyecups with TGF-β1. Electron microscope images showed the formation of migrasome-like vesicles during the activation of RPE. Further studies indicated TGF-β1 increased the expression of TSPAN4 which results in migrasome production. Migrasomes can be internalized by RPE and increase the migration and proliferation ability of RPE. Moreover, TSPAN4-inhibited RPE cells are with reduced ability of initiating experimental PVR. Mechanically, TSPAN4 expression and migrasome production are induced through TGF-β1/Smad2/3 signaling pathway. CONCLUSION In conclusion, migrasomes can be produced by RPE under PVR microenvironment. Migrasomes play a pivotal role in RPE activation and PVR progression. Thus, targeting TSPAN4 or blocking migrasome formation might be a new therapeutic method against PVR.
Collapse
Affiliation(s)
- Liangjing Wu
- grid.24516.340000000123704535Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Shuai Yang
- grid.24516.340000000123704535Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Hui Li
- grid.24516.340000000123704535Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yao Zhang
- grid.24516.340000000123704535Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Le Feng
- grid.24516.340000000123704535Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Conghui Zhang
- grid.24516.340000000123704535Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Jiayi Wei
- grid.24516.340000000123704535Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Xunyi Gu
- grid.24516.340000000123704535Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Guotong Xu
- grid.24516.340000000123704535Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Zhaoyang Wang
- grid.24516.340000000123704535Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Fang Wang
- grid.24516.340000000123704535Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China ,Shanghai Bright Eye Hospital, Shanghai, 200050 China
| |
Collapse
|
4
|
Malek G, Campisi J, Kitazawa K, Webster C, Lakkaraju A, Skowronska-Krawczyk D. Does senescence play a role in age-related macular degeneration? Exp Eye Res 2022; 225:109254. [PMID: 36150544 PMCID: PMC10032649 DOI: 10.1016/j.exer.2022.109254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022]
Abstract
Advanced age is the most established risk factor for developing age-related macular degeneration (AMD), one of the leading causes of visual impairment in the elderly, in Western and developed countries. Similarly, after middle age, there is an exponential increase in pathologic molecular and cellular events that can induce senescence, traditionally defined as an irreversible loss of the cells' ability to divide and most recently reported to also occur in select post-mitotic and terminally differentiated cells, such as neurons. Together these facts raise the question as to whether or not cellular senescence, may play a role in the development of AMD. A number of studies have reported the effect of ocular-relevant inducers of senescence using primarily in vitro models of poorly polarized, actively dividing retinal pigment epithelial (RPE) cell lines. However, in interpretating the data, the fidelity of these culture models to the RPE in vivo, must be considered. Fewer studies have explored the presence and/or impact of senescent cells in in vivo models that present with phenotypic features of AMD, leaving this an open field for further investigation. The goal of this review is to discuss current thoughts on the potential role of senescence in AMD development and progression, with consideration of the model systems used and their relevance to human disease.
Collapse
Affiliation(s)
- Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Koji Kitazawa
- Buck Institute for Research on Aging, Novato, CA, USA; Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Corey Webster
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Aparna Lakkaraju
- Departments of Ophthalmology and Anatomy, School of Medicine, University of California, San Francisco, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
5
|
Bharti K, den Hollander AI, Lakkaraju A, Sinha D, Williams DS, Finnemann SC, Bowes-Rickman C, Malek G, D'Amore PA. Cell culture models to study retinal pigment epithelium-related pathogenesis in age-related macular degeneration. Exp Eye Res 2022; 222:109170. [PMID: 35835183 PMCID: PMC9444976 DOI: 10.1016/j.exer.2022.109170] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
Abstract
Age-related macular degeneration (AMD) is a disease that affects the macula - the central part of the retina. It is a leading cause of irreversible vision loss in the elderly. AMD onset is marked by the presence of lipid- and protein-rich extracellular deposits beneath the retinal pigment epithelium (RPE), a monolayer of polarized, pigmented epithelial cells located between the photoreceptors and the choroidal blood supply. Progression of AMD to the late nonexudative "dry" stage of AMD, also called geographic atrophy, is linked to progressive loss of areas of the RPE, photoreceptors, and underlying choriocapillaris leading to a severe decline in patients' vision. Differential susceptibility of macular RPE in AMD and the lack of an anatomical macula in most lab animal models has promoted the use of in vitro models of the RPE. In addition, the need for high throughput platforms to test potential therapies has driven the creation and characterization of in vitro model systems that recapitulate morphologic and functional abnormalities associated with human AMD. These models range from spontaneously formed cell line ARPE19, immortalized cell lines such as hTERT-RPE1, RPE-J, and D407, to primary human (fetal or adult) or animal (mouse and pig) RPE cells, and embryonic and induced pluripotent stem cell (iPSC) derived RPE. Hallmark RPE phenotypes, such as cobblestone morphology, pigmentation, and polarization, vary significantly betweendifferent models and culture conditions used in different labs, which would directly impact their usability for investigating different aspects of AMD biology. Here the AMD Disease Models task group of the Ryan Initiative for Macular Research (RIMR) provides a summary of several currently used in vitro RPE models, historical aspects of their development, RPE phenotypes that are attainable in these models, their ability to model different aspects of AMD pathophysiology, and pros/cons for their use in the RPE and AMD fields. In addition, due to the burgeoning use of iPSC derived RPE cells, the critical need for developing standards for differentiating and rigorously characterizing RPE cell appearance, morphology, and function are discussed.
Collapse
Affiliation(s)
- Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, NIH, Bethesda, MD, USA.
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; AbbVie, Genomics Research Center, Cambridge, MA, USA.
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, USA.
| | - Debasish Sinha
- Department of Ophthalmology, Cell Biology and Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - David S Williams
- Stein Eye Institute, Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Silvia C Finnemann
- Center of Cancer, Genetic Diseases, and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| | - Catherine Bowes-Rickman
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Patricia A D'Amore
- Mass Eye and Ear, Departments of Ophthalmology and Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Markert EK, Klein H, Viollet C, Rust W, Strobel B, Kauschke SG, Makovoz B, Neubauer H, Bakker RA, Blenkinsop TA. Transcriptional comparison of adult human primary Retinal Pigment Epithelium, human pluripotent stem cell-derived Retinal Pigment Epithelium, and ARPE19 cells. Front Cell Dev Biol 2022; 10:910040. [PMID: 36092714 PMCID: PMC9461284 DOI: 10.3389/fcell.2022.910040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
The therapeutic potential of pluripotent stem cells is great as they promise to usher in a new era of medicine where cells or organs may be prescribed to replace dysfunctional tissue. At the forefront are efforts in the eye to develop this technology as it lends itself to in vivo monitoring and sophisticated non-invasive imaging modalities. In the retina, retinal pigment epithelium (RPE) is the most promising replacement cell as it has a single layer, is relatively simple to transplant, and is associated with several eye diseases. However, after transplantation, the cells may transform and cause complications. This transformation may be partially due to incomplete maturation. With the goal of learning how to mature RPE, we compared induced pluripotent stem cell-derived RPE (iPSC-RPE) cells with adult human primary RPE (ahRPE) cells and the immortalized human ARPE-19 line. We cultured ARPE-19, iPSC-RPE, and ahRPE cells for one month, and evaluated morphology, RPE marker staining, and transepithelial electrical resistance (TEER) as quality control indicators. We then isolated RNA for bulk RNA-sequencing and DNA for genotyping. We genotyped ahRPE lines for the top age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR) risk allele polymorphisms. Transcriptome data verified that both adult and iPSC-RPE exhibit similar RPE gene expression signatures, significantly higher than ARPE-19. In addition, in iPSC-RPE, genes relating to stem cell maintenance, retina development, and muscle contraction were significantly upregulated compared to ahRPE. We compared ahRPE to iPSC-RPE in a model of epithelial-mesenchymal transition (EMT) and observed an increased sensitivity of iPSC-RPE to producing contractile aggregates in vitro which resembles incident reports upon transplantation. P38 inhibition was capable of inhibiting iPSC-RPE-derived aggregates. In summary, we find that the transcriptomic signature of iPSC-RPE conveys an immature RPE state which may be ameliorated by targeting "immature" gene regulatory networks.
Collapse
Affiliation(s)
- Elke K. Markert
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Holger Klein
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Coralie Viollet
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Werner Rust
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Benjamin Strobel
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Stefan G. Kauschke
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Bar Makovoz
- Ophthalmology Cell Development and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Heike Neubauer
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Remko A. Bakker
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - Timothy A. Blenkinsop
- Ophthalmology Cell Development and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Zhu Y, Cao B, Tolone A, Yan J, Christensen G, Arango-Gonzalez B, Ueffing M, Paquet-Durand F. In vitro Model Systems for Studies Into Retinal Neuroprotection. Front Neurosci 2022; 16:938089. [PMID: 35873807 PMCID: PMC9301112 DOI: 10.3389/fnins.2022.938089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Therapy development for neurodegenerative diseases of the retina constitutes a major unmet medical need, and this may be particularly relevant for inherited diseases of the retina, which are largely untreatable to this day. Therapy development necessitates appropriate models to improve the understanding of the underlying degenerative mechanisms, as well as for the testing and evaluation of novel treatment approaches. This review provides an overview of various in vitro model systems used to study retinal neuroprotection. The in vitro methods and technologies discussed range from primary retinal cell cultures and cell lines, to retinal organoids and organotypic retinal explants, to the cultivation of whole eyeballs. The advantages and disadvantages of these methods are compared and evaluated, also in view of the 3R principles (i.e., the refinement, reduction, and replacement of live animal testing), to identify suitable in vitro alternatives for in vivo experimentation. The article further expands on the use of in vitro models to test and evaluate neuroprotective treatments and to aid the development of retinal drug delivery systems. Among the pharmacological agents tested and characterized in vitro are such that interfere with aberrant cyclic guanosine monophosphate (cGMP) -signaling or such that inhibit the activities of poly (ADP-ribose) polymerase (PARP), histone deacetylases (HDAC), calpain-type proteases, as well as unfolded protein response-related stress. We then introduce nanoparticle-based drug delivery systems and discuss how different in vitro systems may be used to assess their efficacy in the treatment of retinal diseases. The summary provides a brief comparison of available in vitro models and relates their advantages and limitations to the various experimental requirements, for instance, for studies into disease mechanisms, novel treatments, or retinal toxicity. In many cases, combinations of different in vitro models may be required to obtain a comprehensive view of the efficacy of a given retinal neuroprotection approach.
Collapse
Affiliation(s)
- Yu Zhu
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Bowen Cao
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Arianna Tolone
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Jie Yan
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Gustav Christensen
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Blanca Arango-Gonzalez
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- *Correspondence: Marius Ueffing,
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- François Paquet-Durand,
| |
Collapse
|
8
|
Parikh BH, Liu Z, Blakeley P, Lin Q, Singh M, Ong JY, Ho KH, Lai JW, Bogireddi H, Tran KC, Lim JYC, Xue K, Al-Mubaarak A, Yang B, R S, Regha K, Wong DSL, Tan QSW, Zhang Z, Jeyasekharan AD, Barathi VA, Yu W, Cheong KH, Blenkinsop TA, Hunziker W, Lingam G, Loh XJ, Su X. A bio-functional polymer that prevents retinal scarring through modulation of NRF2 signalling pathway. Nat Commun 2022; 13:2796. [PMID: 35589753 PMCID: PMC9119969 DOI: 10.1038/s41467-022-30474-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/26/2022] [Indexed: 01/20/2023] Open
Abstract
One common cause of vision loss after retinal detachment surgery is the formation of proliferative and contractile fibrocellular membranes. This aberrant wound healing process is mediated by epithelial-mesenchymal transition (EMT) and hyper-proliferation of retinal pigment epithelial (RPE) cells. Current treatment relies primarily on surgical removal of these membranes. Here, we demonstrate that a bio-functional polymer by itself is able to prevent retinal scarring in an experimental rabbit model of proliferative vitreoretinopathy. This is mediated primarily via clathrin-dependent internalisation of polymeric micelles, downstream suppression of canonical EMT transcription factors, reduction of RPE cell hyper-proliferation and migration. Nuclear factor erythroid 2-related factor 2 signalling pathway was identified in a genome-wide transcriptomic profiling as a key sensor and effector. This study highlights the potential of using synthetic bio-functional polymer to modulate RPE cellular behaviour and offers a potential therapy for retinal scarring prevention.
Collapse
Affiliation(s)
- Bhav Harshad Parikh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zengping Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
| | - Paul Blakeley
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Malay Singh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun Yi Ong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kim Han Ho
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joel Weijia Lai
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design (SUTD), Singapore, Singapore
| | - Hanumakumar Bogireddi
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kim Chi Tran
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Abdurrahmaan Al-Mubaarak
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Binxia Yang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sowmiya R
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kakkad Regha
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel Soo Lin Wong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Queenie Shu Woon Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zhongxing Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Veluchamy Amutha Barathi
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
- Academic Clinical Program in Ophthalmology, Duke-NUS Medical School, Singapore, Singapore
| | - Weimiao Yu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kang Hao Cheong
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design (SUTD), Singapore, Singapore
| | - Timothy A Blenkinsop
- Department of Cellular, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Walter Hunziker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gopal Lingam
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
| | - Xinyi Su
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Singapore Eye Research Institute (SERI), Singapore, Singapore.
- Department of Ophthalmology, National University Hospital, Singapore, Singapore.
| |
Collapse
|
9
|
Grigoryan EN. Pigment Epithelia of the Eye: Cell-Type Conversion in Regeneration and Disease. Life (Basel) 2022; 12:life12030382. [PMID: 35330132 PMCID: PMC8955580 DOI: 10.3390/life12030382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
Pigment epithelial cells (PECs) of the retina (RPE), ciliary body, and iris (IPE) are capable of altering their phenotype. The main pathway of phenotypic switching of eye PECs in vertebrates and humans in vivo and/or in vitro is neural/retinal. Besides, cells of amphibian IPE give rise to the lens and its derivatives, while mammalian and human RPE can be converted along the mesenchymal pathway. The PECs’ capability of conversion in vivo underlies the lens and retinal regeneration in lower vertebrates and retinal diseases such as proliferative vitreoretinopathy and fibrosis in mammals and humans. The present review considers these processes studied in vitro and in vivo in animal models and in humans. The molecular basis of conversion strategies in PECs is elucidated. Being predetermined onto- and phylogenetically, it includes a species-specific molecular context, differential expression of transcription factors, signaling pathways, and epigenomic changes. The accumulated knowledge regarding the mechanisms of PECs phenotypic switching allows the development of approaches to specified conversion for many purposes: obtaining cells for transplantation, creating conditions to stimulate natural regeneration of the retina and the lens, blocking undesirable conversions associated with eye pathology, and finding molecular markers of pathology to be targets of therapy.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
10
|
Schäfer N, Rasras A, Ormenisan DM, Amslinger S, Enzmann V, Jägle H, Pauly D. Complement Factor H-Related 3 Enhanced Inflammation and Complement Activation in Human RPE Cells. Front Immunol 2021; 12:769242. [PMID: 34819935 PMCID: PMC8606654 DOI: 10.3389/fimmu.2021.769242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
Complement Factor H-Related 3 (FHR-3) is a major regulator of the complement system, which is associated with different diseases, such as age-related macular degeneration (AMD). However, the non-canonical local, cellular functions of FHR-3 remained poorly understood. Here, we report that FHR-3 bound to oxidative stress epitopes and competed with FH for interaction. Furthermore, FHR-3 was internalized by viable RPE cells and modulated time-dependently complement component (C3, FB) and receptor (C3aR, CR3) expression of human RPE cells. Independently of any external blood-derived proteins, complement activation products were detected. Anaphylatoxin C3a was visualized in treated cells and showed a translocation from the cytoplasm to the cell membrane after FHR-3 exposure. Subsequently, FHR-3 induced a RPE cell dependent pro-inflammatory microenvironment. Inflammasome NLRP3 activation and pro-inflammatory cytokine secretion of IL-1ß, IL-18, IL-6 and TNF-α were induced after FHR-3-RPE interaction. Our previously published monoclonal anti-FHR-3 antibody, which was chimerized to reduce immunogenicity, RETC-2-ximab, ameliorated the effect of FHR-3 on ARPE-19 cells. Our studies suggest FHR-3 as an exogenous trigger molecule for the RPE cell "complosome" and as a putative target for a therapeutic approach for associated degenerative diseases.
Collapse
Affiliation(s)
- Nicole Schäfer
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| | - Anas Rasras
- Chemistry Department, Al-Balqa Applied University, Al-Salt, Jordan
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | - Delia M. Ormenisan
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Sabine Amslinger
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | - Volker Enzmann
- Department of Ophthalmology, University Hospital of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Herbert Jägle
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Experimental Ophthalmology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
11
|
A Novel Method of Mouse RPE Explant Culture and Effective Introduction of Transgenes Using Adenoviral Transduction for In Vitro Studies in AMD. Int J Mol Sci 2021; 22:ijms222111979. [PMID: 34769409 PMCID: PMC8584596 DOI: 10.3390/ijms222111979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 12/04/2022] Open
Abstract
Degeneration of retinal pigment epithelium (RPE) is one of the most critical phenotypic changes of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly. While cultured polarized RPE cells with original properties are valuable in in vitro models to study RPE biology and the consequences of genetic and/or pharmacological manipulations, the procedure to establish mouse primary PRE cell culture or pluripotent stem cell-derived RPE cells is time-consuming and yields a limited number of cells. Thus, establishing a mouse in situ RPE culture system is highly desirable. Here we describe a novel and efficient method for RPE explant culture that allows for obtaining biologically relevant RPE cells in situ. These RPE explants (herein referred to as RPE flatmounts) are viable in culture for at least 7 days, can be efficiently transduced with adenoviral constructs, and/or treated with a variety of drugs/chemicals followed by downstream analysis of the signaling pathways/biological processes of interest, such as assessment of the autophagy flux, inflammatory response, and receptor tyrosine kinases stimulation. This method of RPE explant culture is highly beneficial for pharmacological and mechanistic studies in the field of RPE biology and AMD research.
Collapse
|
12
|
Grigoryan EN, Markitantova YV. Molecular Strategies for Transdifferentiation of Retinal Pigment Epithelial Cells in Amphibians and Mammals In Vivo. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421040032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Singh RK, Binette F, Seiler M, Petersen-Jones SM, Nasonkin IO. Pluripotent Stem Cell-Based Organoid Technologies for Developing Next-Generation Vision Restoration Therapies of Blindness. J Ocul Pharmacol Ther 2021; 37:147-156. [PMID: 33052761 PMCID: PMC8060716 DOI: 10.1089/jop.2020.0016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022] Open
Abstract
Blindness, associated with death of retinal cells at the back of the eye, is caused by a number of conditions with high prevalence such as glaucoma, age-related macular degeneration, and diabetic retinopathy. In addition, a large number of orphan inherited (mostly monogenic) conditions, such as retinitis pigmentosa and Leber Congenital Amaurosis, add to the overall number of patients with blinding retinal degenerative diseases. Blindness caused by deterioration and loss of retina is so far incurable. Modern biomedical research leveraging molecular and regenerative medicine approaches had a number of groundbreaking discoveries and proof-of-principle treatments of blindness in animals. However, these methods are slow to be standardized and commercialized as therapies to benefit people losing their eyesight due to retinal degenerative conditions. In this review, we will outline major regenerative medicine approaches, which are emerging as promising for preserving or/and restoring vision. We discuss the potential of each of these approaches to reach commercialization step and be converted to treatments, which could at least ameliorate blindness caused by retinal cell death.
Collapse
Affiliation(s)
| | | | - Magdalene Seiler
- Stem Cell Research Center, University of California, Irvine, Irvine, California, USA
- Department of Physical Medicine & Rehabilitation, University of California, Irvine, Irvine, California, USA
- Department of Ophthalmology, University of California, Irvine, Irvine, California, USA
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, California, USA
| | - Simon M. Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
14
|
Liu Z, Parikh BH, Tan QSW, Wong DSL, Ong KH, Yu W, Seah I, Holder GE, Hunziker W, Tan GSW, Barathi VA, Lingam G, Stanzel BV, Blenkinsop TA, Su X. Surgical Transplantation of Human RPE Stem Cell-Derived RPE Monolayers into Non-Human Primates with Immunosuppression. Stem Cell Reports 2021; 16:237-251. [PMID: 33450191 PMCID: PMC7878718 DOI: 10.1016/j.stemcr.2020.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Recent trials of retinal pigment epithelium (RPE) transplantation for the treatment of disorders such as age-related macular degeneration have been promising. However, limitations of existing strategies include the uncertain survival of RPE cells delivered by cell suspension and the inherent risk of uncontrolled cell proliferation in the vitreous cavity. Human RPE stem cell-derived RPE (hRPESC-RPE) transplantation can rescue vision in a rat model of retinal dystrophy and survive in the rabbit retina for at least 1 month. The present study placed hRPESC-RPE monolayers under the macula of a non-human primate model for 3 months. The transplant was able to recover in vivo and maintained healthy photoreceptors. Importantly, there was no evidence that subretinally transplanted monolayers underwent an epithelial-mesenchymal transition. Neither gliosis in adjacent retina nor epiretinal membranes were observed. These findings suggest that hRPESC-RPE monolayers are safe and may be a useful source for RPE cell replacement therapy. hRPESC-RPE monolayer transplanted under macula of non-human primates Transplanted hRPESC-RPE recovers in vivo and maintains healthy photoreceptors Transplanted cells did not undergo epithelial-mesenchymal transition Gliosis was not observed in adjacent retina for up to at least 3 months
Collapse
Affiliation(s)
- Zengping Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Singapore Eye Research Institute (SERI), Singapore, Singapore
| | - Bhav Harshad Parikh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Queenie Shu Woon Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Daniel Soo Lin Wong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kok Haur Ong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Weimiao Yu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Ivan Seah
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Graham E Holder
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Ophthalmology, National University Hospital, Singapore, Singapore; UCL Institute of Ophthalmology, London, UK
| | - Walter Hunziker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gavin S W Tan
- Singapore Eye Research Institute (SERI), Singapore, Singapore; Academic Clinical Program in Ophthalmology, Duke-NUS Medical School, Singapore, Singapore
| | - Veluchamy Amutha Barathi
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Singapore Eye Research Institute (SERI), Singapore, Singapore; Academic Clinical Program in Ophthalmology, Duke-NUS Medical School, Singapore, Singapore
| | - Gopal Lingam
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Singapore Eye Research Institute (SERI), Singapore, Singapore; Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Boris V Stanzel
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Macula Center Saar, Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Saar, Germany.
| | - Timothy A Blenkinsop
- Department of Cellular, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Xinyi Su
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Singapore Eye Research Institute (SERI), Singapore, Singapore; Department of Ophthalmology, National University Hospital, Singapore, Singapore.
| |
Collapse
|
15
|
Jemni-Damer N, Guedan-Duran A, Fuentes-Andion M, Serrano-Bengoechea N, Alfageme-Lopez N, Armada-Maresca F, Guinea GV, Perez-Rigueiro J, Rojo F, Gonzalez-Nieto D, Kaplan DL, Panetsos F. Biotechnology and Biomaterial-Based Therapeutic Strategies for Age-Related Macular Degeneration. Part II: Cell and Tissue Engineering Therapies. Front Bioeng Biotechnol 2020; 8:588014. [PMID: 33363125 PMCID: PMC7758210 DOI: 10.3389/fbioe.2020.588014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related Macular Degeneration (AMD) is an up-to-date untreatable chronic neurodegenerative eye disease of multifactorial origin, and the main causes of blindness in over 65 y.o. people. It is characterized by a slow progression and the presence of a multitude of factors, highlighting those related to diet, genetic heritage and environmental conditions, present throughout each of the stages of the illness. Current therapeutic approaches, mainly consisting on intraocular drug delivery, are only used for symptoms relief and/or to decelerate the progression of the disease. Furthermore, they are overly simplistic and ignore the complexity of the disease and the enormous differences in the symptomatology between patients. Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, different treatment options have to be considered. Cell therapy is a very promising alternative to drug-based approaches for AMD treatment. Cells delivered to the affected tissue as a suspension have shown poor retention and low survival rate. A solution to these inconveniences has been the encapsulation of these cells on biomaterials, which contrive to their protection, gives them support, and favor their retention of the desired area. We offer a two-papers critical review of the available and under development AMD therapeutic approaches, from a biomaterials and biotechnological point of view. We highlight benefits and limitations and we forecast forthcoming alternatives based on novel biomaterials and biotechnology methods. In this second part we review the preclinical and clinical cell-replacement approaches aiming at the development of efficient AMD-therapies, the employed cell types, as well as the cell-encapsulation and cell-implant systems. We discuss their advantages and disadvantages and how they could improve the survival and integration of the implanted cells.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
| | - Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - María Fuentes-Andion
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
| | - Nora Serrano-Bengoechea
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Nuria Alfageme-Lopez
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | | | - Gustavo V. Guinea
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - José Perez-Rigueiro
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Francisco Rojo
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|
16
|
Schäfer N, Wolf HN, Enzbrenner A, Schikora J, Reichenthaler M, Enzmann V, Pauly D. Properdin Modulates Complement Component Production in Stressed Human Primary Retinal Pigment Epithelium Cells. Antioxidants (Basel) 2020; 9:E793. [PMID: 32859013 PMCID: PMC7555107 DOI: 10.3390/antiox9090793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Accepted: 08/22/2020] [Indexed: 12/16/2022] Open
Abstract
The retinal pigment epithelium (RPE) maintains visual function and preserves structural integrity of the retina. Chronic dysfunction of the RPE is associated with retinal degeneration, including age-related macular degeneration (AMD). The AMD pathogenesis includes both increased oxidative stress and complement dysregulation. Physiological sources of oxidative stress in the retina are well known, while complement sources and regulation are still under debate. Using human primary RPE (hpRPE) cells, we have established a model to investigate complement component expression on transcript and protein level in AMD-risk and non-risk hpRPE cells. We evaluated the effect of properdin, a complement stabilizer, on the hpRPE cell-dependent complement profile exposed to oxidative stress. hpRPE cells expressed complement components, receptors and regulators. Complement proteins were also stored and secreted by hpRPE cells. We associated AMD-risk single nucleotide polymorphisms with an increased secretion of complement factors D (CFD) and I (CFI). Furthermore, we detected hpRPE cell-associated complement activation products (C3a, C5a) independent of any extracellularly added complement system. Exogenous properdin increased the mRNA expression of CFI and CFD, but decreased levels of complement components (C1Q, C3), receptors (C3AR, C5AR1, CD11B) and inflammation-associated transcripts (NLRP3, IL1B) in hpRPE cells exposed to oxidative stress. This properdin effect was time-dependently counter regulated. In conclusion, our data unveiled a local, genotype-associated complement component production in hpRPE cells, regulated by exogenous properdin. The local complement production and activation via blood-independent mechanisms can be a new therapeutic target for AMD.
Collapse
Affiliation(s)
- Nicole Schäfer
- Experimental Ophthalmology, Eye clinic, University Hospital Regensburg, 93053 Regensburg, Germany; (N.S.); (H.N.W.); (A.E.); (J.S.); (M.R.)
| | - Hannah N. Wolf
- Experimental Ophthalmology, Eye clinic, University Hospital Regensburg, 93053 Regensburg, Germany; (N.S.); (H.N.W.); (A.E.); (J.S.); (M.R.)
| | - Anne Enzbrenner
- Experimental Ophthalmology, Eye clinic, University Hospital Regensburg, 93053 Regensburg, Germany; (N.S.); (H.N.W.); (A.E.); (J.S.); (M.R.)
| | - Juliane Schikora
- Experimental Ophthalmology, Eye clinic, University Hospital Regensburg, 93053 Regensburg, Germany; (N.S.); (H.N.W.); (A.E.); (J.S.); (M.R.)
| | - Maria Reichenthaler
- Experimental Ophthalmology, Eye clinic, University Hospital Regensburg, 93053 Regensburg, Germany; (N.S.); (H.N.W.); (A.E.); (J.S.); (M.R.)
| | - Volker Enzmann
- Department of Ophthalmology, University Hospital of Bern, University of Bern, 3010 Bern, Switzerland;
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Diana Pauly
- Experimental Ophthalmology, Eye clinic, University Hospital Regensburg, 93053 Regensburg, Germany; (N.S.); (H.N.W.); (A.E.); (J.S.); (M.R.)
| |
Collapse
|
17
|
The Petri Dish-N2B27 Culture Condition Maintains RPE Phenotype by Inhibiting Cell Proliferation and mTOR Activation. J Ophthalmol 2020; 2020:4892978. [PMID: 32855817 PMCID: PMC7443227 DOI: 10.1155/2020/4892978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
Objective To develop a method for the rapid isolation of rat RPE cells with high yield and maintain its epithelial state in modified culture system. Methods The eyeballs were incubated with dispase. The retina was isolated with RPE attached and cut into several pieces. Following a brief incubation in growth medium, large RPE sheets can be harvested rapidly. RPE cells were divided into four groups and cultured for several weeks, that is, (1) in cell culture dishes with 10% FBS containing medium (CC dish-FBS), (2) in petri dishes with 10% FBS containing medium (Petri dish-FBS), (3) in cell culture dishes with N2 and B27 containing medium (CC dish-N2B27), and (4) in petri dishes with N2 and B27 containing medium (Petri dish-N2B27). Morphological and biological characteristics were investigated using light microscopy, Q-PCR, and western blot. Results The retina would curl inwardly during the growth medium incubation period, releasing RPE sheets in the medium. Compared with low density group (5,000 cells/cm2), RPE cells plated at high density (15,000 cells/cm2) can maintain RPE morphology for a more extended period. Meanwhile, plating RPE cells at low density significantly reduced the expression of RPE cell type-specific genes (RPE65, CRALBP, and bestrophin) and increased the expression of EMT-related genes (N-cadherin, fibronectin, and α-SMA), in comparison with the samples from the high density group. The petri dish culture condition reduced cell adhesion and thus inhibited RPE cell proliferation. As compared with other culture conditions, RPE cells in the petri dish-N2B27 condition could maintain RPE phenotype with increased expression of RPE-specific genes and decreased expression of EMT-related genes. The AKT/mTOR pathway was also decreased in petri dish-N2B27 condition. Conclusion The current study provided an alternative method for easy isolation of RPE cells with high yield and maintenance of its epithelial morphology in the petri dish-N2B27 condition.
Collapse
|
18
|
Rastoin O, Pagès G, Dufies M. Experimental Models in Neovascular Age Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21134627. [PMID: 32610682 PMCID: PMC7370120 DOI: 10.3390/ijms21134627] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Neovascular age-related macular degeneration (vAMD), characterized by the neo-vascularization of the retro-foveolar choroid, leads to blindness within few years. This disease depends on angiogenesis mediated by the vascular endothelial growth factor A (VEGF) and to inflammation. The only available treatments consist of monthly intravitreal injections of antibodies directed against VEGF or VEGF/VEGFB/PlGF decoy receptors. Despite their relative efficacy, these drugs only delay progression to blindness and 30% of the patients are insensitive to these treatments. Hence, new therapeutic strategies are urgently needed. Experimental models of vAMD are essential to screen different innovative therapeutics. The currently used in vitro and in vivo models in ophthalmic translational research and their relevance are discussed in this review.
Collapse
Affiliation(s)
- Olivia Rastoin
- Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, University Cote d’Azur (UCA), 06000 Nice, France; (O.R.); (G.P.)
| | - Gilles Pagès
- Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, University Cote d’Azur (UCA), 06000 Nice, France; (O.R.); (G.P.)
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Maeva Dufies
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco
- Correspondence:
| |
Collapse
|
19
|
Boles NC, Fernandes M, Swigut T, Srinivasan R, Schiff L, Rada-Iglesias A, Wang Q, Saini JS, Kiehl T, Stern JH, Wysocka J, Blenkinsop TA, Temple S. Epigenomic and Transcriptomic Changes During Human RPE EMT in a Stem Cell Model of Epiretinal Membrane Pathogenesis and Prevention by Nicotinamide. Stem Cell Reports 2020; 14:631-647. [PMID: 32243845 PMCID: PMC7160390 DOI: 10.1016/j.stemcr.2020.03.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a biological process involved in tissue morphogenesis and disease that causes dramatic changes in cell morphology, migration, proliferation, and gene expression. The retinal pigment epithelium (RPE), which supports the neural retina, can undergo EMT, producing fibrous epiretinal membranes (ERMs) associated with vision-impairing clinical conditions, such as macular pucker and proliferative vitreoretinopathy (PVR). We found that co-treatment with TGF-β and TNF-α (TNT) accelerates EMT in adult human RPE stem cell-derived RPE cell cultures. We captured the global epigenomic and transcriptional changes elicited by TNT treatment of RPE and identified putative active enhancers associated with actively transcribed genes, including a set of upregulated transcription factors that are candidate regulators. We found that the vitamin B derivative nicotinamide downregulates these key transcriptional changes, and inhibits and partially reverses RPE EMT, revealing potential therapeutic routes to benefit patients with ERM, macular pucker and PVR.
Collapse
Affiliation(s)
| | - Marie Fernandes
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tomasz Swigut
- Department of Chemical and Systems Biology, Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Rajini Srinivasan
- Department of Chemical and Systems Biology, Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Lauren Schiff
- Neural Stem Cell Institute, Rensselaer NY 12144, USA
| | | | - Qingjie Wang
- Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | | | - Thomas Kiehl
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey H Stern
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | | | - Sally Temple
- Neural Stem Cell Institute, Rensselaer NY 12144, USA.
| |
Collapse
|
20
|
Singh MS, Park SS, Albini TA, Canto-Soler MV, Klassen H, MacLaren RE, Takahashi M, Nagiel A, Schwartz SD, Bharti K. Retinal stem cell transplantation: Balancing safety and potential. Prog Retin Eye Res 2020; 75:100779. [PMID: 31494256 PMCID: PMC7056514 DOI: 10.1016/j.preteyeres.2019.100779] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
Abstract
Stem cell transplantation holds great promise as a potential treatment for currently incurable retinal degenerative diseases that cause poor vision and blindness. Recently, safety data have emerged from several Phase I/II clinical trials of retinal stem cell transplantation. These clinical trials, usually run in partnership with academic institutions, are based on sound preclinical studies and are focused on patient safety. However, reports of serious adverse events arising from cell therapy in other poorly regulated centers have now emerged in the lay and scientific press. While progress in stem cell research for blindness has been greeted with great enthusiasm by patients, scientists, doctors and industry alike, these adverse events have raised concerns about the safety of retinal stem cell transplantation and whether patients are truly protected from undue harm. The aim of this review is to summarize and appraise the safety of human retinal stem cell transplantation in the context of its potential to be developed into an effective treatment for retinal degenerative diseases.
Collapse
Affiliation(s)
- Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Susanna S Park
- Department of Ophthalmology & Vision Science, University of California-Davis Eye Center, Sacramento, CA, 95817, USA
| | - Thomas A Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Henry Klassen
- Gavin Herbert Eye Institute and Stem Cell Research Center, Irvine, CA, 92697, USA
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford and Oxford University Eye Hospital, NHS Foundation Trust, NIHR Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, 650-0047, Japan
| | - Aaron Nagiel
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA; USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90007, USA
| | - Steven D Schwartz
- Stein Eye Institute, University of California Los Angeles Geffen School of Medicine, Los Angeles, CA, 90095, USA; Edythe and Eli Broad Stem Cell Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, MD, 90892, USA
| |
Collapse
|
21
|
Lakkaraju A, Umapathy A, Tan LX, Daniele L, Philp NJ, Boesze-Battaglia K, Williams DS. The cell biology of the retinal pigment epithelium. Prog Retin Eye Res 2020; 78:100846. [PMID: 32105772 PMCID: PMC8941496 DOI: 10.1016/j.preteyeres.2020.100846] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE), a monolayer of post-mitotic polarized epithelial cells, strategically situated between the photoreceptors and the choroid, is the primary caretaker of photoreceptor health and function. Dysfunction of the RPE underlies many inherited and acquired diseases that cause permanent blindness. Decades of research have yielded valuable insight into the cell biology of the RPE. In recent years, new technologies such as live-cell imaging have resulted in major advancement in our understanding of areas such as the daily phagocytosis and clearance of photoreceptor outer segment tips, autophagy, endolysosome function, and the metabolic interplay between the RPE and photoreceptors. In this review, we aim to integrate these studies with an emphasis on appropriate models and techniques to investigate RPE cell biology and metabolism, and discuss how RPE cell biology informs our understanding of retinal disease.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Ankita Umapathy
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Xuan Tan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Daniele
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Smith JR, Ashander LM, Ma Y, Rochet E, Furtado JM. Model Systems for Studying Mechanisms of Ocular Toxoplasmosis. Methods Mol Biol 2020; 2071:297-321. [PMID: 31758460 DOI: 10.1007/978-1-4939-9857-9_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The most common human disease caused by infection with Toxoplasma gondii is ocular toxoplasmosis, which typically is manifest as recurrent attacks of necrotizing retinal inflammation with subsequent scarring. The multilayered retina contains specialized cell populations, including endothelial cells, epithelial cells, neurons and supporting cells, all of which may be involved in this condition. In vitro investigations of basic mechanisms operating in human ocular toxoplasmosis use cellular and molecular methods that are common to the study of many pathological processes, and the novel aspect of this research is the use of human retinal cell subsets. Most in vivo research on ocular toxoplasmosis is conducted in the laboratory mouse. Experimental models involve local or systemic inoculation of parasites to induce acute disease, or sequential systemic and local parasite inoculations to trigger recurrent disease. We present methods for in vitro and in vivo studies of ocular toxoplasmosis, including dissection of the human eye, and culture and infection of differentiated cell populations from the retina, as well as induction of mouse ocular toxoplasmosis by intraocular, or sequential systemic and intraocular, inoculations, and imaging of toxoplasmic retinal lesions.
Collapse
Affiliation(s)
- Justine R Smith
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Yuefang Ma
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Elise Rochet
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - João M Furtado
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
23
|
Zhang Q, Presswalla F, Calton M, Charniga C, Stern J, Temple S, Vollrath D, Zacks DN, Ali RR, Thompson DA, Miller JML. Highly Differentiated Human Fetal RPE Cultures Are Resistant to the Accumulation and Toxicity of Lipofuscin-Like Material. Invest Ophthalmol Vis Sci 2019; 60:3468-3479. [PMID: 31408109 PMCID: PMC6692057 DOI: 10.1167/iovs.19-26690] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose The accumulation of undigestible autofluorescent material (UAM), termed lipofuscin in vivo, is a hallmark of aged RPE. Lipofuscin derives, in part, from the incomplete degradation of phagocytized photoreceptor outer segments (OS). Whether this accumulated waste is toxic is unclear. We therefore investigated the effects of UAM in highly differentiated human fetal RPE (hfRPE) cultures. Methods Unmodified and photo-oxidized OS were fed daily to confluent cultures of ARPE-19 RPE or hfRPE. The emission spectrum, composition, and morphology of resulting UAM were measured and compared to in vivo lipofuscin. Effects of UAM on multiple RPE phenotypes were assessed. Results Compared to ARPE-19, hfRPE were markedly less susceptible to UAM buildup. Accumulated UAM in hfRPE initially resembled the morphology of lipofuscin from AMD eyes, but compacted and shifted spectrum over time to resemble lipofuscin from healthy aged human RPE. UAM accumulation mildly reduced transepithelial electrical resistance, ketogenesis, certain RPE differentiation markers, and phagocytosis efficiency, while inducing senescence and rare, focal pockets of epithelial-mesenchymal transition. However, it had no effects on mitochondrial oxygen consumption rate, certain other RPE differentiation markers, secretion of drusen components or polarity markers, nor cell death. Conclusions hfRPE demonstrates a remarkable resistance to UAM accumulation, suggesting mechanisms for efficient OS processing that may be lost in other RPE culture models. Furthermore, while UAM alters hfRPE phenotype, the effects are modest, consistent with conflicting reports in the literature on the toxicity of lipofuscin. Our results suggest that healthy RPE may adequately adapt to and tolerate lipofuscin accumulation.
Collapse
Affiliation(s)
- Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Feriel Presswalla
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Melissa Calton
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States
| | - Carol Charniga
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Jeffrey Stern
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States
| | - David N Zacks
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Robin R Ali
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States.,UCL Institute of Ophthalmology, London, United Kingdom
| | - Debra A Thompson
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Jason M L Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
24
|
Gu J, Wang Y, Cui Z, Li H, Li S, Yang X, Yan X, Ding C, Tang S, Chen J. The Construction of Retinal Pigment Epithelium Sheets with Enhanced Characteristics and Cilium Assembly Using iPS Conditioned Medium and Small Incision Lenticule Extraction Derived Lenticules. Acta Biomater 2019; 92:115-131. [PMID: 31075513 DOI: 10.1016/j.actbio.2019.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/18/2019] [Accepted: 05/06/2019] [Indexed: 01/06/2023]
Abstract
In vitro generation of a functional retinal pigment epithelium (RPE) monolayer sheet is useful and promising for RPE cell therapy. Here, for the first time, we used induced pluripotent stem (iPS) supernatant as the conditioned medium (iPS-CM) and femtosecond laser intrastromal lenticule (FLI-lenticule) as a scaffold to construct an engineered RPE sheet. There are significant enhancements in RPE cell density, transepithelial electrical resistance (TER) and inhibitions of ultraviolet C (UVC)-irradiated apoptosis when RPE cells are cultured in iPS supernatant/Dulbecco's modified Eagle's medium (DMEM)-F12 of 1/2 (iPS-CM) compared with those in normal medium (NM, DMEM-F12). Using the assay of a panel of cytokines, combined with transcriptome and protein analyses, we discover that iPS-CM contains high levels of platelet-derived growth factor AA (PDGF-AA), insulin-like growth factor binding protein (IGFBP)-2, transforming growth factor (TGF)-α and IGFBP-6, which are responsible for the upregulation of gene and protein markers with RPE phenotypes and downregulation of gene and protein markers with epithelial-mesenchymal transition (EMT) phenotypes for RPE cells in iPS-CM when compared to those in NM. Moreover, compared to cultures on tissue culture plates (TCP), RPE cells on FLI-lenticule display more microvilli and cilium in accordance with the results in terms of RNA-Seq data, quantitative polymerase chain reaction (qPCR) expression, immunofluorescence staining, and western blot assays. Furthermore, acellular FLI-lenticule exhibits biocompatibility after rabbit subretinal implantation by 30 days through electroretinography and histological examination. Thus, we determined that engineered RPE sheets treated by iPS-CM in conjunction with FLI-lenticule scaffold aid in enhanced RPE characteristics and cilium assembly. Such a strategy to construct RPE sheets is a promising avenue for developing RPE cell therapy, disease models and drug screening tools. STATEMENT OF SIGNIFICANCE: In vitro generation of a functional RPE monolayer sheet is useful and promising for RPE cell therapy. Here, we constructed engineered RPE sheets treated by iPS-CM in conjunction with FLI-lenticule scaffolds to help in enhanced RPE characteristics and cilium assembly. Such a strategy to generate RPE sheets is a promising avenue for developing RPE cell therapy, disease models and drug screening tools.
Collapse
Affiliation(s)
- Jianing Gu
- Aier School of Ophthalmology, Central South University, Changsha 410015, Hunan, PR China; Aier Eye Institute, Changsha 410015, Hunan Province, PR China
| | - Yini Wang
- Aier School of Ophthalmology, Central South University, Changsha 410015, Hunan, PR China; Aier Eye Institute, Changsha 410015, Hunan Province, PR China
| | - Zekai Cui
- Aier Eye Institute, Changsha 410015, Hunan Province, PR China
| | - Hong Li
- Aier School of Ophthalmology, Central South University, Changsha 410015, Hunan, PR China
| | - Shenyang Li
- Aier School of Ophthalmology, Central South University, Changsha 410015, Hunan, PR China
| | - Xu Yang
- Aier Eye Institute, Changsha 410015, Hunan Province, PR China
| | - Xin Yan
- Aier School of Ophthalmology, Central South University, Changsha 410015, Hunan, PR China
| | - Chengcheng Ding
- Aier Eye Institute, Changsha 410015, Hunan Province, PR China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha 410015, Hunan, PR China; Aier Eye Institute, Changsha 410015, Hunan Province, PR China.
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha 410015, Hunan, PR China; Aier Eye Institute, Changsha 410015, Hunan Province, PR China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, PR China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
25
|
McGill TJ, Osborne L, Lu B, Stoddard J, Huhn S, Tsukamoto A, Capela A. Subretinal Transplantation of Human Central Nervous System Stem Cells Stimulates Controlled Proliferation of Endogenous Retinal Pigment Epithelium. Transl Vis Sci Technol 2019; 8:43. [PMID: 31245172 PMCID: PMC6586077 DOI: 10.1167/tvst.8.3.43] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/26/2019] [Indexed: 12/03/2022] Open
Abstract
Purpose The loss of retinal pigment epithelial (RPE) cells is a feature common to age-related macular degeneration (AMD) and retinitis pigmentosa (RP) and multiple early phase clinical trials are underway testing the safety of RPE cell replacement for these diseases. We examined whether transplantation of human neural stem cells into the subretinal space could enhance the endogenous proliferative capacity of the host RPE cell to regenerate. Methods Human central nervous system stem cells (HuCNS-SC) were isolated from enzymatically treated brain tissue using flow cytometry. Pigmented dystrophic Royal College of Surgeons (RCS) and S334ter-4 rats treated with oral bromodeoxyuridine (BrdU) received a unilateral subretinal injection of 1.0 × 105 HuCNS-SC cells at either postnatal day 21 or 60. Animals were sacrificed at 90, 120, and 150 days of age. Eyes were fixed processed for cryostat sectioning. Sections were immunostained with Stem101, Ku80, RPE65, OTX1/2, BrdU, and CRALBP antibodies and analyzed via confocal microscopy. Results RCS rats that received transplantation of HuCNS-SC had significantly more (approximately 3-fold) Ki67-positive or BrdU-labelled host RPE cells adjacent to the HuCNS-SC graft than controls. Significantly increased host RPE cell proliferation as a result of HuCNS-SC transplantation also was confirmed in S334ter-line 4 transgenic rats with higher proliferation observed in animals with longer posttransplantation periods. Conclusions These results suggest that controlled proliferation of endogenous RPE by HuCNS-SC may provide another mechanism by which RPE cell diseases could be treated. Translational Relevance Engaging the capacity for endogenous RPE cell regeneration in atrophic diseases may be a novel therapeutic strategy for degenerative diseases of the RPE and retina.
Collapse
Affiliation(s)
- Trevor J McGill
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | - Bin Lu
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonathan Stoddard
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | - Ann Tsukamoto
- StemCells, Inc., Newark, CA, USA.,Current address: BOCO Silicon Valley, Palo Alto, CA, USA
| | | |
Collapse
|
26
|
Schiff L, Boles NC, Fernandes M, Nachmani B, Gentile R, Blenkinsop TA. P38 inhibition reverses TGFβ1 and TNFα-induced contraction in a model of proliferative vitreoretinopathy. Commun Biol 2019; 2:162. [PMID: 31069271 PMCID: PMC6499805 DOI: 10.1038/s42003-019-0406-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a metaplasia in the vitreous of the eye manifested by the transformation of retinal pigment epithelial (RPE) cells and the development of contracting epiretinal membranes (ERM), which lead to retinal detachment and vision loss. While TGFβ1 and TNFα have been associated with PVR, here we show that these cytokines act synergistically to induce an aggressive contraction phenotype on adult human (ah)RPE. Connected RPE detach upon contraction and form motile membranes that recruit more cells. TGFβ1 and TNFα (TNT)-induced contracting membranes uniquely express muscle and extracellular rearrangement genes. Whole transcriptome RNA sequencing of patient-dissected PVR membranes showed activation of the p38-MAPK signaling pathway. Inhibition of p38 during TNT treatment blocks ahRPE transformation and membrane contraction. Furthermore, TNT-induced membrane contractility can be reversed by p38 inhibition after induction. Therefore, targeting the p38-MAPK pathway may have therapeutic benefits for patients with PVR even after the onset of contracting ERMs.
Collapse
Affiliation(s)
- Lauren Schiff
- Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Black Family Stem Cell Institute, New York, NY 10029 USA
| | | | - Marie Fernandes
- Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Bar Nachmani
- Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Black Family Stem Cell Institute, New York, NY 10029 USA
| | - Ronald Gentile
- Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Timothy A. Blenkinsop
- Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Black Family Stem Cell Institute, New York, NY 10029 USA
| |
Collapse
|
27
|
Lie S, Rochet E, Segerdell E, Ma Y, Ashander LM, Shadforth AMA, Blenkinsop TA, Michael MZ, Appukuttan B, Wilmot B, Smith JR. Immunological Molecular Responses of Human Retinal Pigment Epithelial Cells to Infection With Toxoplasma gondii. Front Immunol 2019; 10:708. [PMID: 31118929 PMCID: PMC6506780 DOI: 10.3389/fimmu.2019.00708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/15/2019] [Indexed: 11/13/2022] Open
Abstract
Ocular toxoplasmosis is the commonest clinical manifestation of infection with obligate intracellular parasite, Toxoplasma gondii. Active ocular toxoplasmosis is characterized by replication of T. gondii tachyzoites in the retina, with reactive inflammation. The multifunctional retinal pigment epithelium is a key target cell population for T. gondii. Since the global gene expression profile is germane to understanding molecular involvements of retinal pigment epithelial cells in ocular toxoplasmosis, we performed RNA-Sequencing (RNA-Seq) of human cells following infection with T. gondii tachyzoites. Primary cell isolates from eyes of cadaveric donors (n = 3), and the ARPE-19 human retinal pigment epithelial cell line, were infected for 24 h with GT-1 strain T. gondii tachyzoites (multiplicity of infection = 5) or incubated uninfected as control. Total and small RNA were extracted from cells and sequenced on the Illumina NextSeq 500 platform; results were aligned to the human hg19 reference sequence. Multidimensional scaling showed good separation between transcriptomes of infected and uninfected primary cell isolates, which were compared in edgeR software. This differential expression analysis revealed a sizeable response in the total RNA transcriptome-with significantly differentially expressed genes totaling 7,234 (28.9% of assigned transcripts)-but very limited changes in the small RNA transcriptome-totaling 30 (0.35% of assigned transcripts) and including 8 microRNA. Gene ontology and pathway enrichment analyses of differentially expressed total RNA in CAMERA software, identified a strong immunologic transcriptomic signature. We conducted RT-qPCR for 26 immune response-related protein-coding and long non-coding transcripts in epithelial cell isolates from different cadaveric donors (n = 3), extracted by a different isolation protocol but similarly infected with T. gondii, to confirm immunological activity of infected cells. For microRNA, increases in miR-146b and miR-212 were detected by RT-qPCR in 2 and 3 of these independent cell isolates. Biological network analysis in the InnateDB platform, including 735 annotated differentially expressed genes plus 2,046 first-order interactors, identified 10 contextural hubs and 5 subnetworks in the transcriptomic immune response of cells to T. gondii. Our observations provide a solid base for future studies of molecular and cellular interactions between T. gondii and the human retinal pigment epithelium to illuminate mechanisms of ocular toxoplasmosis.
Collapse
Affiliation(s)
- Shervi Lie
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Elise Rochet
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Erik Segerdell
- Department of Biostatistics, Oregon Health and Sciences University, Portland, OR, United States
| | - Yuefang Ma
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Liam M. Ashander
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Audra M. A. Shadforth
- Queensland Eye Institute, Brisbane, QLD, Australia
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Timothy A. Blenkinsop
- Departments of Cell, Developmental and Regenerative Biology, and Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michael Z. Michael
- Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Binoy Appukuttan
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
- Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| | - Beth Wilmot
- Department of Biostatistics, Oregon Health and Sciences University, Portland, OR, United States
| | - Justine R. Smith
- Eye and Vision Health, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
- Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| |
Collapse
|
28
|
Tian Y, Davis R, Zonca MR, Stern JH, Temple S, Xie Y. Screening and optimization of potential injection vehicles for storage of retinal pigment epithelial stem cell before transplantation. J Tissue Eng Regen Med 2018; 13:76-86. [DOI: 10.1002/term.2770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/27/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yangzi Tian
- Colleges of Nanoscale Science and Engineering; SUNY Polytechnic Institute; Albany New York
| | - Richard Davis
- Department of Retina Research; Neural Stem Cell Institute; Rensselaer New York
| | - Michael R. Zonca
- Colleges of Nanoscale Science and Engineering; SUNY Polytechnic Institute; Albany New York
| | - Jeffrey H. Stern
- Department of Retina Research; Neural Stem Cell Institute; Rensselaer New York
| | - Sally Temple
- Department of Retina Research; Neural Stem Cell Institute; Rensselaer New York
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering; SUNY Polytechnic Institute; Albany New York
| |
Collapse
|
29
|
Aberrant early endosome biogenesis mediates complement activation in the retinal pigment epithelium in models of macular degeneration. Proc Natl Acad Sci U S A 2018; 115:9014-9019. [PMID: 30126999 DOI: 10.1073/pnas.1805039115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abnormally enlarged early endosomes (EEs) are pathological features of neurodegenerative diseases, yet insight into the mechanisms and consequences of EE expansion remains elusive. Here, we report swollen apical EEs in the retinal pigment epithelium (RPE) of aged human donors and in the pigmented Abca4-/- mouse model of Stargardt early-onset macular degeneration. Using high-resolution live-cell imaging, we show that age-related and pathological accumulation of lipofuscin bisretinoids increases ceramide at the apical surface of the RPE, which promotes inward budding and homotypic fusion of EEs. These enlarged endosomes internalize the complement protein C3 into the RPE, resulting in the intracellular generation of C3a fragments. Increased C3a in turn activates the mechanistic target of rapamycin (mTOR), a regulator of critical metabolic processes such as autophagy. The antidepressant desipramine, which decreases ceramide levels by inhibiting acid sphingomyelinase, corrects EE defects in the RPE of Abca4-/- mice. This prevents C3 internalization and limits the formation of C3a fragments within the RPE. Although uncontrolled complement activation is associated with macular degenerations, how complement contributes to pathology in a progressive disease is not well understood. Our studies link expansion of the EE compartment with intracellular complement generation and aberrant mTOR activation, which could set the stage for chronic metabolic reprogramming in the RPE as a prelude to disease. The pivotal role of ceramide in driving EE biogenesis and fusion in the Abca4-/- mice RPE suggests that therapeutic targeting of ceramide could be effective in Stargardt disease and other macular degenerations.
Collapse
|
30
|
Lynn SA, Keeling E, Dewing JM, Johnston DA, Page A, Cree AJ, Tumbarello DA, Newman TA, Lotery AJ, Ratnayaka JA. A convenient protocol for establishing a human cell culture model of the outer retina. F1000Res 2018; 7:1107. [PMID: 30271583 PMCID: PMC6137423 DOI: 10.12688/f1000research.15409.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
The retinal pigment epithelium (RPE) plays a key role in the pathogenesis of several blinding retinopathies. Alterations to RPE structure and function are reported in Age-related Macular Degeneration, Stargardt and Best disease as well as pattern dystrophies. However, the precise role of RPE cells in disease aetiology remains incompletely understood. Many studies into RPE pathobiology have utilised animal models, which only recapitulate limited disease features. Some studies are also difficult to carry out in animals as the ocular space remains largely inaccessible to powerful microscopes. In contrast, in-vitro models provide an attractive alternative to investigating pathogenic RPE changes associated with age and disease. In this article we describe the step-by-step approach required to establish an experimentally versatile in-vitro culture model of the outer retina incorporating the RPE monolayer and supportive Bruch's membrane (BrM). We show that confluent monolayers of the spontaneously arisen human ARPE-19 cell-line cultured under optimal conditions reproduce key features of native RPE. These models can be used to study dynamic, intracellular and extracellular pathogenic changes using the latest developments in microscopy and imaging technology. We also discuss how RPE cells from human foetal and stem-cell derived sources can be incorporated alongside sophisticated BrM substitutes to replicate the aged/diseased outer retina in a dish. The work presented here will enable users to rapidly establish a realistic in-vitro model of the outer retina that is amenable to a high degree of experimental manipulation which will also serve as an attractive alternative to using animals. This in-vitro model therefore has the benefit of achieving the 3Rs objective of reducing and replacing the use of animals in research. As well as recapitulating salient structural and physiological features of native RPE, other advantages of this model include its simplicity, rapid set-up time and unlimited scope for detailed single-cell resolution and matrix studies.
Collapse
Affiliation(s)
- Savannah A. Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Jennifer M. Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - David A. Johnston
- Biomedical Imaging Unit, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Anton Page
- Biomedical Imaging Unit, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Angela J. Cree
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - David A. Tumbarello
- Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| | - Tracey A. Newman
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| |
Collapse
|
31
|
Fernandes M, McArdle B, Schiff L, Blenkinsop TA. Stem Cell-Derived Retinal Pigment Epithelial Layer Model from Adult Human Globes Donated for Corneal Transplants. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2018; 45:e53. [PMID: 30040247 DOI: 10.1002/cpsc.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An adult human retinal pigment epithelial layer (ahRPE) model derived from stem cells isolated from native RPE monolayers (ahRPE-SCs) exhibits key physiological characteristics of native tissue and therefore provides the means to create a human "disease in a dish" model to study RPE diseases. Traditionally, RPE lines are established from whole globes dedicated to research. Here we describe a new technique for establishing primary RPE lines from the posterior poles of globes used for corneal transplants. Since tissues from corneal transplants are derived from younger and healthier donors than those used for research, we have hypothesized that RPE cells isolated from corneal transplantation globes will result in improved primary RPE line establishment. Our new procedure increases the rate of establishing successful RPE cultures and improves the total cell number yield. Use of this advanced methodology can provide a new source of high-quality primary RPE line cultures. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marie Fernandes
- Icahn School of Medicine at Mount Sinai, Cell, Development, and Regenerative Biology, Black Family Stem Cell Institute, New York
| | | | - Lauren Schiff
- Icahn School of Medicine at Mount Sinai, Cell, Development, and Regenerative Biology, Black Family Stem Cell Institute, New York
| | - Timothy A Blenkinsop
- Icahn School of Medicine at Mount Sinai, Cell, Development, and Regenerative Biology, Black Family Stem Cell Institute, New York
| |
Collapse
|
32
|
Cellular regeneration strategies for macular degeneration: past, present and future. Eye (Lond) 2018; 32:946-971. [PMID: 29503449 PMCID: PMC5944658 DOI: 10.1038/s41433-018-0061-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 01/12/2023] Open
Abstract
Despite considerable effort and significant therapeutic advances, age-related macular degeneration (AMD) remains the commonest cause of blindness in the developed world. Progressive late-stage AMD with outer retinal degeneration currently has no proven treatment. There has been significant interest in the possibility that cellular treatments may slow or reverse visual loss in AMD. A number of modes of action have been suggested, including cell replacement and rescue, as well as immune modulation to delay the neurodegenerative process. Their appeal in this enigmatic disease relate to their generic, non-pathway-specific effects. The outer retina in particular has been at the forefront of developments in cellular regenerative therapies being surgically accessible, easily observable, as well as having a relatively simple architecture. Both the retinal pigment epithelium (RPE) and photoreceptors have been considered for replacement therapies as both sheets and cell suspensions. Studies using autologous RPE, and to a lesser extent, foetal retina, have shown proof of principle. A wide variety of cell sources have been proposed with pluripotent stem cell-derived cells currently holding the centre stage. Recent early-phase trials using these cells for RPE replacement have met safety endpoints and hinted at possible efficacy. Animal studies have confirmed the promise that photoreceptor replacement, even in a completely degenerated outer retina may restore some vision. Many challenges, however, remain, not least of which include avoiding immune rejection, ensuring long-term cellular survival and maximising effect. This review provides an overview of progress made, ongoing studies and challenges ahead.
Collapse
|
33
|
Peynshaert K, Devoldere J, De Smedt SC, Remaut K. In vitro and ex vivo models to study drug delivery barriers in the posterior segment of the eye. Adv Drug Deliv Rev 2018; 126:44-57. [PMID: 28939376 DOI: 10.1016/j.addr.2017.09.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/18/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
Many ocular disorders leading to blindness could benefit from efficient delivery of therapeutics to the retina. However, despite extensive research into drug delivery vehicles and administration techniques, efficacy remains limited because of the many static and dynamic barriers present in the eye. Comprehension of the various barriers and especially how to overcome them can improve our ability to estimate the potential of existent drug delivery vectors and support the design of new ones. To this end, this review gives an overview of the most important ocular barriers for each administration route to the back of the eye. For each barrier, its biological composition and its role as an obstacle towards macromolecules, nanoparticles and viral vectors will be discussed; special attention will be paid to the influence of size, charge and lipophilicity of drug(s) (carrier) on their ability to overcome each barrier. Finally, the most significant available in vitro and ex vivo methods and models to test the potential of a therapeutic to cross each barrier are listed.
Collapse
|
34
|
Müller C, Charniga C, Temple S, Finnemann SC. Quantified F-Actin Morphology Is Predictive of Phagocytic Capacity of Stem Cell-Derived Retinal Pigment Epithelium. Stem Cell Reports 2018; 10:1075-1087. [PMID: 29456184 PMCID: PMC5918243 DOI: 10.1016/j.stemcr.2018.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 01/22/2023] Open
Abstract
With stem cell-derived retinal pigment epithelial (RPE) replacement therapies in clinical testing, establishing potency of RPE prior to transplantation is imperative. Phagocytosis of photoreceptor outer segment fragments (POS) is a key indicator of RPE functionality. Comparing RPE derived from different donor human adult RPE stem cell lines, we found that cells were either high-phagocytic or low-phagocytic despite sharing phagocytic receptors and ligands, junctional ZO-1, and lack of epithelial-mesenchymal transition. We found that low-phagocytic cells harbored F-actin stress fibers but lacked contiguous lateral circumferential F-actin and ezrin-rich microvilli of high-phagocytic cells. Rho kinase inhibition reversed the F-actin phenotype and restored phagocytic capacity to low-phagocytic RPE. Conversely, RhoA activation induced stress fiber formation and reduced phagocytic function of high-phagocytic RPE. These results demonstrate that a stress fiber-rich microfilament cytoskeleton causes phagocytic dysfunction of RPE cells. We propose F-actin assessment as a rapid, sensitive, and quantitative test to identify RPE populations lacking phagocytic capacity. F-actin stress fibers predict low phagocytic activity of adult stem cell-derived RPE Rho kinase inhibition eliminates stress fibers and restores phagocytic function F-actin scoring allows rapid, sensitive, and quantitative RPE quality assessment
Collapse
Affiliation(s)
- Claudia Müller
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Bronx, NY 10458, USA
| | | | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Silvia C Finnemann
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Bronx, NY 10458, USA.
| |
Collapse
|
35
|
Abstract
Recent clinical reports indicate that infection with dengue virus (DENV) commonly has ocular manifestations. The most serious threat to vision is dengue retinopathy, including retinal vasculopathy and macular edema. Mechanisms of retinopathy are unstudied, but observations in patients implicate retinal pigment epithelial cells and retinal endothelial cells. Human retinal cells were inoculated with DENV-2 and monitored for up to 72 hours. Epithelial and endothelial cells supported DENV replication and release, but epithelial cells alone demonstrated clear cytopathic effect, and infection was more productive in those cells. Infection induced type I interferon responses from both cells, but this was stronger in epithelial cells. Endothelial cells increased expression of adhesion molecules, with sustained overexpression of vascular adhesion molecule-1. Transcellular impedance decreased for epithelial monolayers, but not endothelial monolayers, coinciding with cytopathic effect. This reduction was accompanied by disorganization of intracellular filamentous-actin and decreased expression of junctional molecules, zonula occludens 1, and catenin-β1. Changes in endothelial expression of adhesion molecules are consistent with the retinal vasculopathy seen in patients infected with DENV; decreases in epithelial junctional protein expression, paralleling loss of integrity of the epithelium, provide a molecular basis for DENV-associated macular edema. These molecular processes present potential therapeutic targets for vision-threatening dengue retinopathy.
Collapse
|
36
|
Ferrington DA, Ebeling MC, Kapphahn RJ, Terluk MR, Fisher CR, Polanco JR, Roehrich H, Leary MM, Geng Z, Dutton JR, Montezuma SR. Altered bioenergetics and enhanced resistance to oxidative stress in human retinal pigment epithelial cells from donors with age-related macular degeneration. Redox Biol 2017; 13:255-265. [PMID: 28600982 PMCID: PMC5466586 DOI: 10.1016/j.redox.2017.05.015] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/23/2017] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness among older adults. It has been suggested that mitochondrial defects in the retinal pigment epithelium (RPE) underlies AMD pathology. To test this idea, we developed primary cultures of RPE to ask whether RPE from donors with AMD differ in their metabolic profile compared with healthy age-matched donors. Analysis of gene expression, protein content, and RPE function showed that these cultured cells replicated many of the cardinal features of RPE in vivo. Using the Seahorse Extracellular Flux Analyzer to measure bioenergetics, we observed RPE from donors with AMD exhibited reduced mitochondrial and glycolytic function compared with healthy donors. RPE from AMD donors were also more resistant to oxidative inactivation of these two energy-producing pathways and were less susceptible to oxidation-induced cell death compared with cells from healthy donors. Investigation of the potential mechanism responsible for differences in bioenergetics and resistance to oxidative stress showed RPE from AMD donors had increased PGC1α protein as well as differential expression of multiple genes in response to an oxidative challenge. Based on our data, we propose that cultured RPE from donors phenotyped for the presence or absence of AMD provides an excellent model system for studying "AMD in a dish". Our results are consistent with the ideas that (i) a bioenergetics crisis in the RPE contributes to AMD pathology, and (ii) the diseased environment in vivo causes changes in the cellular profile that are retained in vitro.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Mara C Ebeling
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Rebecca J Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marcia R Terluk
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Cody R Fisher
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jorge R Polanco
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Heidi Roehrich
- Histology Core for Vision Research, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Michaela M Leary
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Zhaohui Geng
- Stem Cell Institute and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - James R Dutton
- Stem Cell Institute and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
37
|
Davis RJ, Alam NM, Zhao C, Müller C, Saini JS, Blenkinsop TA, Mazzoni F, Campbell M, Borden SM, Charniga CJ, Lederman PL, Aguilar V, Naimark M, Fiske M, Boles N, Temple S, Finnemann SC, Prusky GT, Stern JH. The Developmental Stage of Adult Human Stem Cell-Derived Retinal Pigment Epithelium Cells Influences Transplant Efficacy for Vision Rescue. Stem Cell Reports 2017; 9:42-49. [PMID: 28625537 PMCID: PMC5511099 DOI: 10.1016/j.stemcr.2017.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a common cause of central visual loss in the elderly. Retinal pigment epithelial (RPE) cell loss occurs early in the course of AMD and RPE cell transplantation holds promise to slow disease progression. We report that subretinal transplantation of RPE stem cell (RPESC)-derived RPE cells (RPESC-RPE) preserved vision in a rat model of RPE cell dysfunction. Importantly, the stage of differentiation that RPESC-RPE acquired prior to transplantation influenced the efficacy of vision rescue. Whereas cells at all stages of differentiation tested rescued photoreceptor layer morphology, an intermediate stage of RPESC-RPE differentiation obtained after 4 weeks of culture was more consistent at vision rescue than progeny that were differentiated for 2 weeks or 8 weeks of culture. Our results indicate that the developmental stage of RPESC-RPE significantly influences the efficacy of RPE cell replacement, which affects the therapeutic application of these cells for AMD.
Collapse
Affiliation(s)
- Richard J Davis
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Nazia M Alam
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10605, USA; Center for Visual Restoration, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
| | - Cuiping Zhao
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Claudia Müller
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Bronx, NY 10458, USA
| | - Janmeet S Saini
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Timothy A Blenkinsop
- Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesca Mazzoni
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Bronx, NY 10458, USA
| | - Melissa Campbell
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Susan M Borden
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Carol J Charniga
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Patty L Lederman
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Vanessa Aguilar
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Michael Naimark
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Michael Fiske
- Upstate Stem Cell cGMP Facility, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nathan Boles
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Sally Temple
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA
| | - Silvia C Finnemann
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Bronx, NY 10458, USA
| | - Glen T Prusky
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10605, USA; Center for Visual Restoration, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
| | - Jeffrey H Stern
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY 12144, USA.
| |
Collapse
|
38
|
Ezati R, Etemadzadeh A, Soheili ZS, Samiei S, Ranaei Pirmardan E, Davari M, Najafabadi HS. The influence of rAAV2-mediated SOX2 delivery into neonatal and adult human RPE cells; a comparative study. J Cell Physiol 2017; 233:1222-1235. [PMID: 28480968 DOI: 10.1002/jcp.25991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022]
Abstract
Cell replacement is a promising therapy for degenerative diseases like age-related macular degeneration (AMD). Since the human retina lacks regeneration capacity, much attention has been directed toward persuading for cells that can differentiate into retinal neurons. In this report, we have investigated reprogramming of the human RPE cells and concerned the effect of donor age on the cellular fate as a critical determinant in reprogramming competence. We evaluated the effect of SOX2 over-expression in human neonatal and adult RPE cells in cultures. The coding region of human SOX2 gene was cloned into adeno-associated virus (AAV2) and primary culture of human neonatal/adult RPE cells were infected by recombinant virus. De-differentiation of RPE to neural/retinal progenitor cells was investigated by quantitative real-time PCR and ICC for neural/retinal progenitor cells' markers. Gene expression analysis showed 80-fold and 12-fold over-expression for SOX2 gene in infected neonatal and adult hRPE cells, respectively. The fold of increase for Nestin in neonatal and adult hRPE cells was 3.8-fold and 2.5-fold, respectively. PAX6 expression was increased threefold and 2.5-fold in neonatal/adult treated cultures. Howbeit, we could not detect rhodopsin, and CHX10 expression in neonatal hRPE cultures and expression of rhodopsin in adult hRPE cells. Results showed SOX2 induced human neonatal/adult RPE cells to de-differentiate toward retinal progenitor cells. However, the increased number of PAX6, CHX10, Thy1, and rhodopsin positive cells in adult hRPE treated cultures clearly indicated the considerable generation of neuro-retinal terminally differentiated cells.
Collapse
Affiliation(s)
- Razie Ezati
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Azadeh Etemadzadeh
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra-Soheila Soheili
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahram Samiei
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | | | - Malihe Davari
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hoda Shams Najafabadi
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
39
|
Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res 2017; 58:1-27. [PMID: 28111323 PMCID: PMC5441967 DOI: 10.1016/j.preteyeres.2017.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments.
Collapse
Affiliation(s)
- Melissa K Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, USA.
| |
Collapse
|
40
|
Saini JS, Corneo B, Miller JD, Kiehl TR, Wang Q, Boles NC, Blenkinsop TA, Stern JH, Temple S. Nicotinamide Ameliorates Disease Phenotypes in a Human iPSC Model of Age-Related Macular Degeneration. Cell Stem Cell 2017; 20:635-647.e7. [PMID: 28132833 DOI: 10.1016/j.stem.2016.12.015] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 10/14/2016] [Accepted: 12/30/2016] [Indexed: 12/22/2022]
Abstract
Age-related macular degeneration (AMD) affects the retinal pigment epithelium (RPE), a cell monolayer essential for photoreceptor survival, and is the leading cause of vision loss in the elderly. There are no disease-altering therapies for dry AMD, which is characterized by accumulation of subretinal drusen deposits and complement-driven inflammation. We report the derivation of human-induced pluripotent stem cells (hiPSCs) from patients with diagnosed AMD, including two donors with the rare ARMS2/HTRA1 homozygous genotype. The hiPSC-derived RPE cells produce several AMD/drusen-related proteins, and those from the AMD donors show significantly increased complement and inflammatory factors, which are most exaggerated in the ARMS2/HTRA1 lines. Using a panel of AMD biomarkers and candidate drug screening, combined with transcriptome analysis, we discover that nicotinamide (NAM) ameliorated disease-related phenotypes by inhibiting drusen proteins and inflammatory and complement factors while upregulating nucleosome, ribosome, and chromatin-modifying genes. Thus, targeting NAM-regulated pathways is a promising avenue for developing therapeutics to combat AMD.
Collapse
Affiliation(s)
- Janmeet S Saini
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany - SUNY, Albany, NY 12201, USA
| | - Barbara Corneo
- Stem Cell Core Facility, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | - Qingjie Wang
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | | | - Timothy A Blenkinsop
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
41
|
Grigoryan EN, Markitantova YV. Cellular and Molecular Preconditions for Retinal Pigment Epithelium (RPE) Natural Reprogramming during Retinal Regeneration in Urodela. Biomedicines 2016; 4:E28. [PMID: 28536395 PMCID: PMC5344269 DOI: 10.3390/biomedicines4040028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/26/2016] [Accepted: 11/26/2016] [Indexed: 12/25/2022] Open
Abstract
Many regeneration processes in animals are based on the phenomenon of cell reprogramming followed by proliferation and differentiation in a different specialization direction. An insight into what makes natural (in vivo) cell reprogramming possible can help to solve a number of biomedical problems. In particular, the first problem is to reveal the intrinsic properties of the cells that are necessary and sufficient for reprogramming; the second, to evaluate these properties and, on this basis, to reveal potential endogenous sources for cell substitution in damaged tissues; and the third, to use the acquired data for developing approaches to in vitro cell reprogramming in order to obtain a cell reserve for damaged tissue repair. Normal cells of the retinal pigment epithelium (RPE) in newts (Urodela) can change their specialization and transform into retinal neurons and ganglion cells (i.e., actualize their retinogenic potential). Therefore, they can serve as a model that provides the possibility to identify factors of the initial competence of vertebrate cells for reprogramming in vivo. This review deals mainly with the endogenous properties of native newt RPE cells themselves and, to a lesser extent, with exogenous mechanisms regulating the process of reprogramming, which are actively discussed.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Yuliya V Markitantova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
42
|
Schäfer N, Grosche A, Reinders J, Hauck SM, Pouw RB, Kuijpers TW, Wouters D, Ehrenstein B, Enzmann V, Zipfel PF, Skerka C, Pauly D. Complement Regulator FHR-3 Is Elevated either Locally or Systemically in a Selection of Autoimmune Diseases. Front Immunol 2016; 7:542. [PMID: 27965669 PMCID: PMC5124756 DOI: 10.3389/fimmu.2016.00542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/16/2016] [Indexed: 12/30/2022] Open
Abstract
The human complement factor H-related protein-3 (FHR-3) is a soluble regulator of the complement system. Homozygous cfhr3/1 deletion is a genetic risk factor for the autoimmune form of atypical hemolytic-uremic syndrome (aHUS), while also found to be protective in age-related macular degeneration (AMD). The precise function of FHR-3 remains to be fully characterized. We generated four mouse monoclonal antibodies (mAbs) for FHR-3 (RETC) without cross-reactivity to the complement factor H (FH)-family. These antibodies detected FHR-3 from human serum with a mean concentration of 1 μg/mL. FHR-3 levels in patients were significantly increased in sera from systemic lupus erythematosus, rheumatoid arthritis, and polymyalgia rheumatica but remained almost unchanged in samples from AMD or aHUS patients. Moreover, by immunostaining of an aged human donor retina, we discovered a local FHR-3 production by microglia/macrophages. The mAb RETC-2 modulated FHR-3 binding to C3b but not the binding of FHR-3 to heparin. Interestingly, FHR-3 competed with FH for binding C3b and the mAb RETC-2 reduced the interaction of FHR-3 and C3b, resulting in increased FH binding. Our results unveil a previously unknown systemic involvement of FHR-3 in rheumatoid diseases and a putative local role of FHR-3 mediated by microglia/macrophages in the damaged retina. We conclude that the local FHR-3/FH equilibrium in AMD is a potential therapeutic target, which can be modulated by our specific mAb RETC-2.
Collapse
Affiliation(s)
- Nicole Schäfer
- Department of Ophthalmology, University Hospital Regensburg , Regensburg , Germany
| | - Antje Grosche
- Institute of Human Genetics, University of Regensburg , Regensburg , Germany
| | - Joerg Reinders
- Institute of Functional Genomics, University of Regensburg , Regensburg , Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) , Neuherberg , Germany
| | - Richard B Pouw
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Academic Medical Center, Emma Children's Hospital, Amsterdam, Netherlands; Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Boris Ehrenstein
- Klinik und Poliklinik für Rheumatologie und Klinische Immunologie, Asklepios Klinikum Bad Abbach , Bad Abbach , Germany
| | - Volker Enzmann
- Department of Ophthalmology, Inselspital, University of Bern , Bern , Switzerland
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany; Friedrich Schiller University, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology , Jena , Germany
| | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg , Regensburg , Germany
| |
Collapse
|
43
|
Fronk AH, Vargis E. Methods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations. J Tissue Eng 2016; 7:2041731416650838. [PMID: 27493715 PMCID: PMC4959307 DOI: 10.1177/2041731416650838] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/23/2016] [Indexed: 12/17/2022] Open
Abstract
The retinal pigment epithelium is an important part of the vertebrate eye, particularly in studying the causes and possible treatment of age-related macular degeneration. The retinal pigment epithelium is difficult to access in vivo due to its location at the back of the eye, making experimentation with age-related macular degeneration treatments problematic. An alternative to in vivo experimentation is cultivating the retinal pigment epithelium in vitro, a practice that has been going on since the 1970s, providing a wide range of retinal pigment epithelial culture protocols, each producing cells and tissue of varying degrees of similarity to natural retinal pigment epithelium. The purpose of this review is to provide researchers with a ready list of retinal pigment epithelial protocols, their effects on cultured tissue, and their specific possible applications. Protocols using human and animal retinal pigment epithelium cells, derived from tissue or cell lines, are discussed, and recommendations for future researchers included.
Collapse
Affiliation(s)
- Aaron H Fronk
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| | - Elizabeth Vargis
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| |
Collapse
|
44
|
Abstract
Mouse models are powerful tools for the study of ocular diseases. Alterations in the morphology and function of the retinal pigment epithelium (RPE) are common features shared by many ocular disorders. We report a detailed protocol to collect, seed, culture and characterize RPE cells from mice. We describe a reproducible method that we previously developed to collect and culture murine RPE cells on Transwells as functional polarized monolayers. The collection of RPE cells takes ∼3 h, and the cultures mimic in vivo RPE cell features within 1 week. This protocol also describes methods to characterize the cells on Transwells within 1-2 weeks by transmission and scanning electron microscopy (TEM and SEM, respectively), immunostaining of vibratome sections and flat mounts, and measurement of transepithelial electrical resistance. The RPE cell cultures are suitable to study the biology of the RPE from wild-type and genetically modified strains of mice between the ages of 10 d and 12 months. The RPE cells can also be manipulated to investigate molecular mechanisms underlying the RPE pathology in the numerous mouse models of ocular disorders. Furthermore, modeling the RPE pathology in vitro represents a new approach to testing drugs that will help accelerate the development of therapies for vision-threatening disorders such as macular degeneration (MD).
Collapse
|
45
|
Davis RJ, Blenkinsop TA, Campbell M, Borden SM, Charniga CJ, Lederman PL, Frye AM, Aguilar V, Zhao C, Naimark M, Kiehl TR, Temple S, Stern JH. Human RPE Stem Cell-Derived RPE Preserves Photoreceptors in the Royal College of Surgeons Rat: Method for Quantifying the Area of Photoreceptor Sparing. J Ocul Pharmacol Ther 2016; 32:304-9. [PMID: 27182605 DOI: 10.1089/jop.2015.0162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Numerous preclinical studies have shown that transplantation of stem cell-derived retinal pigment epithelial cell (RPE) preserves photoreceptor cell anatomy in the dystrophic Royal College of Surgeons (RCS) rat. How rescue is spatially distributed over the eye, relative to the transplantation site, is less clear. To understand spatial variations in transplant efficacy, we have developed a method to measure the spatial distribution of rescued photoreceptor cells. METHODS Human RPE Stem Cell-derived RPE (RPESC-RPE) cells were subretinally injected into RCS rat eyes. After tissue recovery and orientating the globe, a series of retinal sections were cut through the injected area. Sections were stained with DAPI (4',6-diamidino-2-phenylindole) and a number of photoreceptor nuclei were counted across the nasal-temporal and superior-inferior axes. These data were used to construct 2D maps of the area of photoreceptor cell saving. RESULTS Photoreceptor cell preservation was detected in the injected temporal hemisphere and occupied areas greater than 4 mm(2) centered near the injection sites. Rescue was directed toward the central retina and superior and inferior poles, with maximal number of rescued photoreceptor cells proximal to the injection sites. CONCLUSIONS RPESC-RPE transplantation preserves RCS photoreceptor cells. The photoreceptor cell contour maps readily convey the extent of rescue across the eye. The consistent alignment and quantification of results using this method allow the application of other downstream statistical analyses and comparisons to better understand transplantation therapy in the eye.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amber M Frye
- 1 Neural Stem Cell Institute , Rensselaer, New York
| | | | - Cuiping Zhao
- 1 Neural Stem Cell Institute , Rensselaer, New York
| | | | | | - Sally Temple
- 1 Neural Stem Cell Institute , Rensselaer, New York
| | | |
Collapse
|
46
|
Guo X, Zhu D, Lian R, Han Y, Guo Y, Li Z, Tang S, Chen J. Matrigel and Activin A promote cell-cell contact and anti-apoptotic activity in cultured human retinal pigment epithelium cells. Exp Eye Res 2016; 147:37-49. [PMID: 27130547 DOI: 10.1016/j.exer.2016.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 03/12/2016] [Accepted: 04/25/2016] [Indexed: 01/07/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness among the aging population. Currently, replacement of diseased retinal pigment epithelium (RPE) cells with transplanted healthy RPE cells could be a feasible approach for AMD therapy. However, maintaining cell-cell contact and good viability of RPE cells cultured in vitro is difficult and fundamentally determines the success of RPE cell transplantation. This study was conducted to examine the role of Matrigel and Activin A (MA) in regulating cell-cell contact and anti-apoptotic activity in human RPE (hRPE) cells, as assessed by atomic force microscopy (AFM), scanning electron microscope (SEM), immunofluorescence staining, quantitative polymerase chain reaction (qPCR) analysis, Annexin V/propidium iodide (PI) analysis, mitochondrial membrane potential (△Ψ m) assays, intracellular reactive oxygen species (ROS) assays and Western blotting. hRPE cells cultured in vitro could maintain their epithelioid morphology after MA treatment over at least 4 passages. The contact of N-cadherin to the lateral cell border was promoted in hRPE cells at P2 by MA. MA treatment also enhanced the expression of tight junction-associated genes and proteins, such as Claudin-1, Claudin-3, Occludin and ZO-1, as well as polarized ZO-1 protein distribution and barrier function, in cultured hRPE cells. Moreover, MA treatment decreased apoptotic cells, ROS and Bax and increased △Ψ m and Bcl2 in hRPE cells under serum withdrawal-induced apoptosis. In addition, MA treatment elevated the protein expression levels of β-catenin and its target proteins, including Cyclin D1, c-Myc and Survivin, as well as the gene expression levels of ZO-1, β-catenin, Survivin and TCF-4, all of which could be down-regulated by the Wnt/β-catenin pathway inhibitor XAV-939. Taken together, MA treatment could effectively promote cell-cell contact and anti-apoptotic activity in hRPE cells, partly involving the Wnt/β-catenin pathway. This study will benefit the understanding of hRPE cells and future cell therapy.
Collapse
Affiliation(s)
- Xiaoling Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Deliang Zhu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Ruiling Lian
- The Department of Ophthalmology, the First Clinical Medical College, Jinan University, Guangzhou 510632, China
| | - Yuting Han
- The Department of Ophthalmology, the First Clinical Medical College, Jinan University, Guangzhou 510632, China
| | - Yonglong Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Zhijie Li
- Institute of Ophthalmology, Medical College, Jinan University, Jinan University, Guangzhou 510632, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Furong Middle Road 198#, Changsha 410015, China.
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China; Institute of Ophthalmology, Medical College, Jinan University, Jinan University, Guangzhou 510632, China; The Department of Ophthalmology, the First Clinical Medical College, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
47
|
Blenkinsop TA, Saini JS, Maminishkis A, Bharti K, Wan Q, Banzon T, Lotfi M, Davis J, Singh D, Rizzolo LJ, Miller S, Temple S, Stern JH. Human Adult Retinal Pigment Epithelial Stem Cell-Derived RPE Monolayers Exhibit Key Physiological Characteristics of Native Tissue. Invest Ophthalmol Vis Sci 2016; 56:7085-99. [PMID: 26540654 DOI: 10.1167/iovs.14-16246] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE We tested what native features have been preserved with a new culture protocol for adult human RPE. METHODS We cultured RPE from adult human eyes. Standard protocols for immunohistochemistry, electron microscopy, electrophysiology, fluid transport, and ELISA were used. RESULTS Confluent monolayers of adult human RPE cultures exhibit characteristics of native RPE. Immunohistochemistry demonstrated polarized expression of RPE markers. Electron microscopy illustrated characteristics of native RPE. The mean transepithelial potential (TEP) was 1.19 ± 0.24 mV (mean ± SEM, n = 31), apical positive, and the mean transepithelial resistance (RT) was 178.7 ± 9.9 Ω·cm2 (mean ± SEM, n = 31). Application of 100 μM adenosine triphosphate (ATP) apically increased net fluid absorption (Jv) by 6.11 ± 0.53 μL·cm2·h-1 (mean ± SEM, n = 6) and TEP by 0.33 ± 0.048 mV (mean ± SEM, n = 25). Gene expression of cultured RPE was comparable to native adult RPE (n = 5); however, native RPE RNA was harvested between 24 and 40 hours after death and, therefore, may not accurately reflect healthy native RPE. Vascular endothelial growth factor secreted preferentially basally 2582 ± 146 pg/mL/d, compared to an apical secretion of 1548 ± 162 pg/mL/d (n = 14, P < 0.01), while PEDF preferentially secreted apically 1487 ± 280 ng/mL/d compared to a basolateral secretion of 864 ± 132 ng/mL/d (n = 14, P < 0.01). CONCLUSIONS The new culture model preserves native RPE morphology, electrophysiology, and gene and protein expression patterns, and may be a useful model to study RPE physiology, disease, and transplantation.
Collapse
Affiliation(s)
| | - Janmeet S Saini
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Arvydas Maminishkis
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Qin Wan
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tina Banzon
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mostafa Lotfi
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Janine Davis
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Deepti Singh
- Yale University, New Haven, Connecticut, United States
| | | | - Sheldon Miller
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Jeffrey H Stern
- Neural Stem Cell Institute, Rensselaer, New York, United States
| |
Collapse
|
48
|
Zarbin M. Cell-Based Therapy for Degenerative Retinal Disease. Trends Mol Med 2016; 22:115-134. [PMID: 26791247 DOI: 10.1016/j.molmed.2015.12.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022]
Abstract
Stem cell-derived retinal pigment epithelium (RPE) and photoreceptors (PRs) have restored vision in preclinical models of human retinal degenerative disease. This review discusses characteristics of stem cell therapy in the eye and the challenges to clinical implementation that are being confronted today. Based on encouraging results from Phase I/II trials, the first Phase II clinical trials of stem cell-derived RPE transplantation are underway. PR transplant experiments have demonstrated restoration of visual function in preclinical models of retinitis pigmentosa and macular degeneration, but also indicate that no single approach is likely to succeed in overcoming PR loss in all cases. A greater understanding of the mechanisms controlling synapse formation as well as the immunoreactivity of transplanted retinal cells is urgently needed.
Collapse
Affiliation(s)
- Marco Zarbin
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
49
|
Müller C, Blenkinsop TA, Stern JH, Finnemann SC. Efficiency of Membrane Protein Expression Following Infection with Recombinant Adenovirus of Polarized Non-Transformed Human Retinal Pigment Epithelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:731-7. [PMID: 26427482 DOI: 10.1007/978-3-319-17121-0_97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transient expression of exogenous proteins facilitates studies of molecular mechanisms and utility for transplantation of retinal pigment epithelial (RPE) cells in culture. Here, we compared expression of the membrane protein β5 integrin-GFP (β5-GFP) in two recently established models of differentiated human RPE, adult RPE stem cell-derived RPE and primary fetal RPE, upon infection with recombinant adenovirus or transfection with DNA in liposomes. We varied viral titer and duration of virus incubation and examined β5-GFP and the tight junction marker ZO-1 in manipulated cells by confocal microscopy. Fewer than 5 % of cells expressed β5-GFP after liposome-mediated transfection. The percentage of cells with detectable β5-GFP exceeded 90 % after adenovirus infection for as little as 1 h. Decreasing virus titer two-fold did not alter the fraction of cells expressing β5-GFP but increased variability of β5-GFP level among cells. In cells with low expression levels, β5-GFP localized mostly to the apical plasma membrane like endogenous αvβ5 integrin. In cells with high expression levels, β5-GFP localized to the cytoplasm in addition to the apical surface suggesting accumulation in trafficking compartments. Altogether, adenovirus delivery yields efficient exogenous membrane protein expression of correct polarity in differentiated human RPE cells in culture.
Collapse
Affiliation(s)
- Claudia Müller
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Larkin Hall, 441 East Fordham Road, 10458, Bronx, NY, USA.
| | - Timothy A Blenkinsop
- Department of Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Icahn Medical Institute, 10029, New York, NY, USA.
| | | | - Silvia C Finnemann
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Larkin Hall, 441 East Fordham Road, 10458, Bronx, NY, USA.
| |
Collapse
|
50
|
Human Retinal Pigment Epithelium Stem Cell (RPESC). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:557-62. [DOI: 10.1007/978-3-319-17121-0_74] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|