1
|
Alkan A, Buyukasik Y, Uzun O, Demir AU, Coplu L. Invasive fungal infections in patients with acute leukemia: A retrospective cohort study at a tertiary-care hospital. Medicine (Baltimore) 2024; 103:e39959. [PMID: 39465746 PMCID: PMC11460920 DOI: 10.1097/md.0000000000039959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Indexed: 10/29/2024] Open
Abstract
Invasive fungal infection (IFI) is an important cause of morbidity and mortality in acute leukemia patients. In the past few decades, the incidence of IFI has dramatically increased. Nevertheless, the management of IFI has become more complicated owing to changes in the epidemiology of fungal diseases and therapeutic regimens. Therefore, it is important to establish an appropriate strategy for centers that provide the diagnosis and treatment of acute leukemia patients based on scientific data and with available resources. In this study we investigated the incidence of IFI, pathogens, the use of diagnostic methods, and risk factors for IFI in acute leukemia patients over a 17-year period. A total of 502 acute leukemia patients (male/female: 57%/43%, mean age: 57.7 ± 15.5 years) hospitalized at adult and oncology hospitals between 2003 and 2020 were reviewed retrospectively. The incidence of proven and probable IFI was 13.2% (33.1%, when possible cases were included). The most common IFI was aspergillosis (49 patients, 9.7%), followed by candidemia, mucormycosis, and Pneumocystis jirovecii pneumonia. The galactomannan antigen test was positive in the serum of 39 (23.5%) patients and in bronchoalveolar lavage (BAL) fluid in 6 (3.6%) patients. Thirteen (7.8%) sputum cultures (11 Aspergillus spp. and 2 Candida spp.) and 4 (2.4%) BAL fluid (1 Aspergillus spp., 2 Candida spp., 1 P jirovecii) were positive for a fungal pathogen. Neutropenia, intensive care unit (ICU) follow-up and mechanical ventilation (MV) increased the risk of IFI by 3.5, 2.5, and 1.8 times, respectively. The median survival was 5 (range: 1.9-8) months. ICU follow-up shortened the survival by 12 months and increased the death risk by 2.49-fold. MV shortened survival by 57 months and increased the death risk by 3.82-fold. IFI remains a significant contributor to the morbidity and mortality in acute leukemia patients. Pulmonary involvement is the most common site. Neutropenia, ICU follow-up and MV are associated with an increased risk for IFI and mortality. We recommend in the IFI approach, to be aware of IFI in patients receiving intensive chemotherapy and/or recipients of hematopoietic stem cell transplantation, and to evaluate with microbiological, serological and radiological tests during the clinical follow-up.
Collapse
Affiliation(s)
- Asli Alkan
- Ankara Etlik City Hospital, Chest Diseases Clinic, Ankara, Turkey
- Formerly Hacettepe University Faculty of Medicine, Department of Chest Diseases, Ankara, Turkey
| | - Yahya Buyukasik
- Hacettepe University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Omrum Uzun
- Hacettepe University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Ankara, Turkey
| | - Ahmet Ugur Demir
- Hacettepe University Faculty of Medicine, Department of Chest Diseases, Ankara, Turkey
| | - Lutfi Coplu
- Hacettepe University Faculty of Medicine, Department of Chest Diseases, Ankara, Turkey
| |
Collapse
|
2
|
Weaver D, Novak-Frazer L, Palmer M, Richardson M, Bromley M, Bowyer P. Development of a novel mycobiome diagnostic for fungal infection. BMC Microbiol 2024; 24:63. [PMID: 38373963 PMCID: PMC10875777 DOI: 10.1186/s12866-024-03197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/12/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Amplicon-based mycobiome analysis has the potential to identify all fungal species within a sample and hence could provide a valuable diagnostic assay for use in clinical mycology settings. In the last decade, the mycobiome has been increasingly characterised by targeting the internal transcribed spacer (ITS) regions. Although ITS targets give broad coverage and high sensitivity, they fail to provide accurate quantitation as the copy number of ITS regions in fungal genomes is highly variable even within species. To address these issues, this study aimed to develop a novel NGS fungal diagnostic assay using an alternative amplicon target. METHODS Novel universal primers were designed to amplify a highly diverse single copy and uniformly sized DNA target (Tef1) to enable mycobiome analysis on the Illumina iSeq100 which is a low cost, small footprint and simple to use next-generation sequencing platform. To enable automated analysis and rapid results, a streamlined bioinformatics workflow and sequence database were also developed. Sequencing of mock fungal communities was performed to compare the Tef1 assay and established ITS1-based method. The assay was further evaluated using clinical respiratory samples and the feasibility of using internal spike-in quantitative controls was assessed. RESULTS The Tef1 assay successfully identified and quantified Aspergillus, Penicillium, Candida, Cryptococcus, Rhizopus, Fusarium and Lomentospora species from mock communities. The Tef1 assay was also capable of differentiating closely related species such as A. fumigatus and A. fischeri. In addition, it outperformed ITS1 at identifying A. fumigatus and other filamentous pathogens in mixed fungal communities (in the presence or absence of background human DNA). The assay could detect as few as 2 haploid genome equivalents of A. fumigatus from clinical respiratory samples. Lastly, spike-in controls were demonstrated to enable semi-quantitation of A. fumigatus load in clinical respiratory samples using sequencing data. CONCLUSIONS This study has developed and tested a novel metabarcoding target and found the assay outperforms ITS1 at identifying clinically relevant filamentous fungi. The assay is a promising diagnostic candidate that could provide affordable NGS analysis to clinical mycology laboratories.
Collapse
Affiliation(s)
- Danielle Weaver
- Core Technology Facility, University of Manchester, Manchester, M13 9WU, UK
| | - Lilyann Novak-Frazer
- Core Technology Facility, University of Manchester, Manchester, M13 9WU, UK
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Maisie Palmer
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Malcolm Richardson
- Core Technology Facility, University of Manchester, Manchester, M13 9WU, UK
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Mike Bromley
- Core Technology Facility, University of Manchester, Manchester, M13 9WU, UK.
| | - Paul Bowyer
- Core Technology Facility, University of Manchester, Manchester, M13 9WU, UK.
| |
Collapse
|
3
|
Performance Evaluation of Bruker Biotyper, ASTA MicroIDSys, and VITEK-MS and Three Extraction Methods for Filamentous Fungal Identification in Clinical Laboratories. J Clin Microbiol 2022; 60:e0081222. [PMID: 36286489 PMCID: PMC9667760 DOI: 10.1128/jcm.00812-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filamentous fungi are a major cause of life-threatening infections in immunocompromised patients; thus, rapid and accurate identification is critical. Filamentous fungal identification by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has been demonstrated with high sensitivity and reproducibility; however, its wider application has been limited in clinical laboratories because of practical challenges such as database availability or lack of standardization.
Collapse
|
4
|
Abstract
Self-splicing proteins, called inteins, are present in many human pathogens, including the emerging fungal threats Cryptococcus neoformans (Cne) and Cryptococcus gattii (Cga), the causative agents of cryptococcosis. Inhibition of protein splicing in Cryptococcus sp. interferes with activity of the only intein-containing protein, Prp8, an essential intron splicing factor. Here, we screened a small-molecule library to find addititonal, potent inhibitors of the Cne Prp8 intein using a split-GFP splicing assay. This revealed the compound 6G-318S, with IC50 values in the low micromolar range in the split-GFP assay and in a complementary split-luciferase system. A fluoride derivative of the compound 6G-318S displayed improved cytotoxicity in human lung carcinoma cells, although there was a slight reduction in the inhibition of splicing. 6G-318S and its derivative inhibited splicing of the Cne Prp8 intein in vivo in Escherichia coli and in C. neoformans Moreover, the compounds repressed growth of WT C. neoformans and C. gattii In contrast, the inhibitors were less potent at inhibiting growth of the inteinless Candida albicans Drug resistance was observed when the Prp8 intein was overexpressed in C. neoformans, indicating specificity of this molecule toward the target. No off-target activity was observed, such as inhibition of serine/cysteine proteases. The inhibitors bound covalently to the Prp8 intein and binding was reduced when the active-site residue Cys1 was mutated. 6G-318S showed a synergistic effect with amphotericin B and additive to indifferent effects with a few other clinically used antimycotics. Overall, the identification of these small-molecule intein-splicing inhibitors opens up prospects for a new class of antifungals.
Collapse
|
5
|
Association between dectin-1 gene single nucleotide polymorphisms and fungal infection: a systemic review and meta-analysis. Biosci Rep 2020; 39:220866. [PMID: 31696220 PMCID: PMC6851518 DOI: 10.1042/bsr20191519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022] Open
Abstract
Objectives: To investigate the association between dectin-1 gene single nucleotide polymorphisms (SNPs) and susceptibility to fungal infection (FI). Methods: Databases were searched electronically and manually to identify case–control studies concerning dectin-1 SNPs and FI, which were published up to 12 November 2018. The Newcastle–Ottawa Quality Assessment Scale was used to determine the study quality and bias. The SNP frequencies of the B (the variant or minor allele) and A (the wild or major allele) alleles of the dectin-1 gene in both cases and controls were analyzed with regard to FI susceptibility. Results: Eight high-quality studies were included in the review. Systemic review of the included studies demonstrated that dectin-1 SNPs rs3901533 and rs7309123 might be associated with susceptibility to invasive pulmonary aspergillosis infection; moreover, rs16910527 SNP can possibly increase the susceptibility to oropharyngeal candidiasis in HIV-positive patients. The meta-analysis identified significant associations between dectin-1 SNPs and overall FI risk in the homozygote model (pooled odds ratio (OR) 1.77, P=0.04). When classified by subtypes, significant associations were also found for deep FI in the homozygote model (pooled OR 2.46, P=0.01) and the recessive model (pooled OR 2.85, P=0.002). There appeared to be no significant association between dectin-1 SNPs and superficial FI. Conclusion: Systemic review of the included studies suggested that dectin-1 SNPs rs3901533, rs7309123, and rs16910527 might play a role in FI susceptibility. The meta-analysis provided convincing evidence that dectin-1 SNPs might have an important role in FI susceptibility, especially for deep FI.
Collapse
|
6
|
Preclinical Evaluation of Acylhydrazone SB-AF-1002 as a Novel Broad-Spectrum Antifungal Agent. Antimicrob Agents Chemother 2020; 64:AAC.00946-20. [PMID: 32601165 DOI: 10.1128/aac.00946-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of invasive fungal infections is rising due to the increase in susceptible populations. Current clinically available drugs have therapeutic limitations due to toxicity, a narrow spectrum of activity, and, more importantly, the consistent rise of fungal species that are intrinsically resistant or that develop resistance due to prolonged therapy. Thus, there is an urgent need for new broad-spectrum antifungal agents with low toxicity and a novel mechanism of action. We previously reported a new class of potent antifungal compounds, acylhydrazones, that target the fungal sphingolipid pathway. Based upon our initial lead molecules, (E)-N'-(5-bromo-2-hydroxybenzylidene)-2-methylbenzohydrazide and D13, we performed a structure-activity relationship study, synthesizing ca. 300 new compounds. Of these, 5 compounds were identified to be the most promising for further studies, based on their broad-spectrum activity and low toxicity in mammalian cells lines. Among these top 5 lead compounds, we report here the impressive in vivo activity of 2,4-dibromo-N'-(5-bromo-2-hydroxybenzylidene)benzohydrazide (SB-AF-1002) in several models of systemic fungal infection. Our data show that SB-AF-1002 is efficacious and outperforms current standard-of-care drugs in models of invasive fungal infections, such as cryptococcosis, candidiasis, and aspergillosis. Specifically, animals treated with SB-AF-1002 not only survived the infection but also showed a clearing of fungal cells from key organs. Moreover, SB-AF-1002 was very effective in an aspergillosis model as a prophylactic therapy. SB-AF-1002 also displayed acceptable pharmacokinetic properties in mice, similar to those of the parent compound, D13. These results clearly indicate that our novel acylhydrazones constitute a new class of highly potent and efficacious antifungal agents which warrant further development for the treatment of invasive fungal infections.
Collapse
|
7
|
Osman M, Al Bikai A, Rafei R, Mallat H, Dabboussi F, Hamze M. Update on invasive fungal infections in the Middle Eastern and North African region. Braz J Microbiol 2020; 51:1771-1789. [PMID: 32623654 PMCID: PMC7335363 DOI: 10.1007/s42770-020-00325-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
In the recent years, the epidemiology of invasive fungal infections (IFIs) has changed worldwide. This is remarkably noticed with the significant increase in high-risk populations. Although surveillance of such infections is essential, data in the Middle Eastern and North African (MENA) region remain scarce. In this paper, we reviewed the existing data on the epidemiology of different IFIs in the MENA region. Epidemiological surveillance is crucial to guide optimal healthcare practices. This study can help to guide appropriate interventions and to implement antimicrobial stewardship and infection prevention and control programs in countries.
Collapse
Affiliation(s)
- Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Aisha Al Bikai
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Hassan Mallat
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| |
Collapse
|
8
|
Li Z, Fu B, Green CM, Liu B, Zhang J, Lang Y, Chaturvedi S, Belfort M, Liao G, Li H. Cisplatin protects mice from challenge of Cryptococcus neoformans by targeting the Prp8 intein. Emerg Microbes Infect 2019; 8:895-908. [PMID: 31223062 PMCID: PMC6598491 DOI: 10.1080/22221751.2019.1625727] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023]
Abstract
The Prp8 intein is one of the most widespread eukaryotic inteins, present in important pathogenic fungi, including Cryptococcus and Aspergillus species. Because the processed Prp8 carries out essential and non-redundant cellular functions, a Prp8 intein inhibitor is a mechanistically novel antifungal agent. In this report, we demonstrated that cisplatin, an FDA-approved cancer drug, significantly arrested growth of Prp8 intein-containing fungi C. neoformans and C. gattii, but only poorly inhibited growth of intein-free Candida species. These results suggest that cisplatin arrests fungal growth through specific inhibition of the Prp8 intein. Cisplatin was also found to significantly inhibit growth of C. neoformans in a mouse model. Our results further showed that cisplatin inhibited Prp8 intein splicing in vitro in a dose-dependent manner by direct binding to the Prp8 intein. Crystal structures of the apo- and cisplatin-bound Prp8 inteins revealed that two degenerate cisplatin molecules bind at the intein active site. Mutation of the splicing-site residues led to loss of cisplatin binding, as well as impairment of intein splicing. Finally, we found that overexpression of the Prp8 intein in cryptococcal species conferred cisplatin resistance. Overall, these results indicate that the Prp8 intein is a novel antifungal target worth further investigation.
Collapse
Affiliation(s)
- Zhong Li
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Bin Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Cathleen M. Green
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, USA
| | - Binbin Liu
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Jing Zhang
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Yuekun Lang
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Sudha Chaturvedi
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Hongmin Li
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| |
Collapse
|
9
|
Hu Z, Zhang J, Chen Z, Jin Z, Leng P, Zhou J, Xie X. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric identification and antifungal susceptibility analysis of Candida species isolated from patients with invasive yeast infections in five university hospitals. Braz J Microbiol 2018; 50:99-105. [PMID: 30637643 DOI: 10.1007/s42770-018-0027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/15/2018] [Indexed: 11/29/2022] Open
Abstract
In this multicenter study, we compared the performance of the Bruker Biotyper MS system and VITEK 2 YST systems for invasive yeast identification, investigated the distribution of isolated species, and evaluated the antifungal susceptibility profiles of Candida albicans, Candida parapsilosis, and Candida tropicalis. In cases of discrepant results lack of identification with either method, molecular identification techniques were employed. We tested 216 clinical isolates, and concordance between the two methods was observed for 192/216 isolates (88.9%). For five unidentified strains (2.3%), an internal transcribed spacer (ITS) sequencing approach was used. In brief, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) provided short turnaround times and more reliable results than those of Vitek 2 YST. In Wuhan, C. albicans, C. parapsilosis, Candida glabrata, and C. tropicalis were the most common pathogens (93.0%) in patients with candidemia. Cryptococcus neoformans was mainly detected in cerebrospinal fluid samples (88.9%). Trichosporon asahii were all isolated from drainage fluids in the Surgery. Candida albicans was clearly susceptible to azoles, while C. parapsilosis and C. tropicalis displayed differences in susceptibility to azoles. Our findings provide a basis for the practical application of MALDI-ToF MS for identification and for the use of ATB FUNGUS 3 to characterize the susceptibility of Candida spp., thereby providing significant data for therapeutic decisions.
Collapse
Affiliation(s)
- Zhimin Hu
- Department of Clinical Microbiology Laboratory, Wuhan No. 1 Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 215 Zhongshan Ave., Wuhan, 430022, China.
| | - Juling Zhang
- Department of Clinical Laboratory, PLA 302 Hospital, No. 100 West Fourth Ring Road, Peking, 100166, China
| | - Zhongju Chen
- Department of Clinical Microbiology Laboratory, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Liberation Ave., Wuhan, 430030, China
| | - Zhengjiang Jin
- Department of Clinical Microbiology Laboratory, Hubei Women and Children's Hospital, No. 745 Wuluo Road, Wuhan, 430070, China
| | - Pei Leng
- Department of Clinical Laboratory, Wuhan Women and Children Medical Care Center, No. 100 Xianggang Road, Wuhan, 430015, China
| | - Junying Zhou
- Department of Clinical Microbiology Laboratory, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuhan, 430071, China
| | - Xiaofang Xie
- Department of Clinical Microbiology Laboratory, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Soochow, 215006, China
| |
Collapse
|
10
|
Adisa IO, Reddy Pullagurala VL, Rawat S, Hernandez-Viezcas JA, Dimkpa CO, Elmer WH, White JC, Peralta-Videa JR, Gardea-Torresdey JL. Role of Cerium Compounds in Fusarium Wilt Suppression and Growth Enhancement in Tomato ( Solanum lycopersicum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5959-5970. [PMID: 29856619 DOI: 10.1021/acs.jafc.8b01345] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of nanoparticles in plant protection may reduce pesticide usage and contamination and increase food security. In this study, three-week-old Solanum lycopersicum seedlings were exposed, by root or foliar pathways, to CeO2 nanoparticles and cerium acetate at 50 and 250 mg/L prior to transplant into sterilized soil. One week later, the soil was inoculated with the fungal pathogen Fusarium oxysporum f. sp. lycopersici (1 g/kg), and the plants were cultivated to maturity in a greenhouse. Disease severity, biomass/yield, and biochemical and physiological parameters were analyzed in harvested plants. Disease severity was significantly reduced by 250 mg/L of nano-CeO2 and CeAc applied to the soil (53% and 35%, respectively) or foliage (57% and 41%, respectively), compared with non-treated infested controls. Overall, the findings show that nano-CeO2 has potential to suppress Fusarium wilt and improve the chlorophyll content in tomato plants.
Collapse
Affiliation(s)
- Ishaq O Adisa
- Environmental Science and Engineering PhD Program , The University of Texas at El Paso , 500 West University Avenue , El Paso , Texas 79968 , United States
- The Center for Nanotechnology and Agricultural Pathogen Suppression (CeNAPS) , New Haven , Connecticut 06511 , United States
| | - Venkata L Reddy Pullagurala
- Environmental Science and Engineering PhD Program , The University of Texas at El Paso , 500 West University Avenue , El Paso , Texas 79968 , United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso , 500 West University Avenue , El Paso , Texas 79968 , United States
| | - Swati Rawat
- Environmental Science and Engineering PhD Program , The University of Texas at El Paso , 500 West University Avenue , El Paso , Texas 79968 , United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso , 500 West University Avenue , El Paso , Texas 79968 , United States
| | - Jose A Hernandez-Viezcas
- Chemistry Department , The University of Texas at El Paso , 500 West University Avenue , El Paso , Texas 79968 , United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso , 500 West University Avenue , El Paso , Texas 79968 , United States
| | - Christian O Dimkpa
- International Fertilizer Development Center , Muscle, Shoals , Alabama 35662 , United States
- The Center for Nanotechnology and Agricultural Pathogen Suppression (CeNAPS) , New Haven , Connecticut 06511 , United States
| | - Wade H Elmer
- The Center for Nanotechnology and Agricultural Pathogen Suppression (CeNAPS) , New Haven , Connecticut 06511 , United States
- The Connecticut Agricultural Experiment Station , New Haven , Connecticut 06511 , United States
| | - Jason C White
- The Center for Nanotechnology and Agricultural Pathogen Suppression (CeNAPS) , New Haven , Connecticut 06511 , United States
- The Connecticut Agricultural Experiment Station , New Haven , Connecticut 06511 , United States
| | - Jose R Peralta-Videa
- Environmental Science and Engineering PhD Program , The University of Texas at El Paso , 500 West University Avenue , El Paso , Texas 79968 , United States
- Chemistry Department , The University of Texas at El Paso , 500 West University Avenue , El Paso , Texas 79968 , United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso , 500 West University Avenue , El Paso , Texas 79968 , United States
| | - Jorge L Gardea-Torresdey
- Environmental Science and Engineering PhD Program , The University of Texas at El Paso , 500 West University Avenue , El Paso , Texas 79968 , United States
- Chemistry Department , The University of Texas at El Paso , 500 West University Avenue , El Paso , Texas 79968 , United States
- The Center for Nanotechnology and Agricultural Pathogen Suppression (CeNAPS) , New Haven , Connecticut 06511 , United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso , 500 West University Avenue , El Paso , Texas 79968 , United States
| |
Collapse
|
11
|
Acylhydrazones as Antifungal Agents Targeting the Synthesis of Fungal Sphingolipids. Antimicrob Agents Chemother 2018; 62:AAC.00156-18. [PMID: 29507066 PMCID: PMC5923120 DOI: 10.1128/aac.00156-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/21/2018] [Indexed: 01/19/2023] Open
Abstract
The incidence of invasive fungal infections has risen dramatically in recent decades. Current antifungal drugs are either toxic, likely to interact with other drugs, have a narrow spectrum of activity, or induce fungal resistance. Hence, there is a great need for new antifungals, possibly with novel mechanisms of action. Previously our group reported an acylhydrazone called BHBM that targeted the sphingolipid pathway and showed strong antifungal activity against several fungi. In this study, we screened 19 derivatives of BHBM. Three out of 19 derivatives were highly active against Cryptococcus neoformansin vitro and had low toxicity in mammalian cells. In particular, one of them, called D13, had a high selectivity index and showed better activity in an animal model of cryptococcosis, candidiasis, and pulmonary aspergillosis. D13 also displayed suitable pharmacokinetic properties and was able to pass through the blood-brain barrier. These results suggest that acylhydrazones are promising molecules for the research and development of new antifungal agents.
Collapse
|
12
|
Czurda S, Lion T. Broad-Spectrum Molecular Detection of Fungal Nucleic Acids by PCR-Based Amplification Techniques. Methods Mol Biol 2018; 1508:257-266. [PMID: 27837509 DOI: 10.1007/978-1-4939-6515-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Over the past decade, the incidence of life-threatening invasive fungal infections has dramatically increased. Infections caused by hitherto rare and emerging fungal pathogens are associated with significant morbidity and mortality among immunocompromised patients. These observations render the coverage of a broad range of clinically relevant fungal pathogens highly important. The so-called panfungal or, perhaps more correctly, broad-range nucleic acid amplification techniques do not only facilitate sensitive detection of all clinically relevant fungal species but are also rapid and can be applied to analyses of any patient specimens. They have therefore become valuable diagnostic tools for sensitive screening of patients at risk of invasive fungal infections. This chapter summarizes the currently available molecular technologies employed in testing of a wide range of fungal pathogens, and provides a detailed workflow for patient screening by broad-spectrum nucleic acid amplification techniques.
Collapse
Affiliation(s)
- Stefan Czurda
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria.,LabDia Labordiagnostik GmbH, Vienna, Austria
| | - Thomas Lion
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria. .,LabDia Labordiagnostik GmbH, Vienna, Austria. .,Department of Pediatrics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
13
|
Chowdhary A, Hagen F, Sharma C, Al-Hatmi AMS, Giuffrè L, Giosa D, Fan S, Badali H, Felice MR, de Hoog S, Meis JF, Romeo O. Whole Genome-Based Amplified Fragment Length Polymorphism Analysis Reveals Genetic Diversity in Candida africana. Front Microbiol 2017; 8:556. [PMID: 28421052 PMCID: PMC5377543 DOI: 10.3389/fmicb.2017.00556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/16/2017] [Indexed: 01/12/2023] Open
Abstract
This study aimed at investigating the genetic diversity of a panel of Candida africana strains recovered from vaginal samples in different countries. All fungal strains were heterozygous at the mating-type-like locus and belonged to the genotype A of Candida albicans. Moreover, all examined C. africana strains lack N-acetylglucosamine assimilation and sequence analysis of the HXK1 gene showed a distinctive polymorphism that impair the utilization of this amino sugar in this yeast. Multi-locus sequencing of seven housekeeping genes revealed a substantial genetic homogeneity among the strains, except for the CaMPIb, SYA1 and VPS13 loci which contributed significantly to the classification of our set of C. africana strains into six existing diploid sequence types. Amplified fragment length polymorphism fingerprint analysis yielded greater genotypic heterogeneity among the C. africana strains. Overall the data reported here show that in C. africana genetic diversity occurs and the existence of this intriguing group of C. albicans strains with specific phenotypes associated could be useful for future comparative studies in order to better understand the genetics and evolution of this important human pathogen.
Collapse
Affiliation(s)
- Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of DelhiNew Delhi, India
| | - Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina HospitalNijmegen, Netherlands
| | - Cheshta Sharma
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of DelhiNew Delhi, India
| | - Abdullah M S Al-Hatmi
- Westerdijk Fungal Biodiversity InstituteUtrecht, Netherlands.,Directorate General of Health Services, Ministry of Health, Ibri HospitalIbri, Oman
| | - Letterio Giuffrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Domenico Giosa
- Scientific Institute for Research, Hospitalization and Health Care - Centro Neurolesi "Bonino-Pulejo",Messina, Italy
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen HospitalShenzhen, China
| | - Hamid Badali
- Department of Medical Mycology and Parasitology, Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical SciencesSari, Iran
| | - Maria Rosa Felice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity InstituteUtrecht, Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina HospitalNijmegen, Netherlands.,Center of Expertise in Mycology Radboudumc/Canisius-Wilhelmina ZiekenhuisNijmegen, Netherlands
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy.,Scientific Institute for Research, Hospitalization and Health Care - Centro Neurolesi "Bonino-Pulejo",Messina, Italy
| |
Collapse
|
14
|
Zhanataev AK, Eremina NV, Chayka ZV, Kazey VI, Andrianova EL, Purmal AA, Rydkina EB, Durnev AD. Genotoxicity of two new carbazole derivatives with antifungal activity. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 816-817:24-31. [PMID: 28464993 DOI: 10.1016/j.mrgentox.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
The class of carbazoles includes compounds with high biological activities and broad spectra of action. PLX01107 and PLX01008 are xenomycins, a new subclass of antimicrobial carbazole derivatives demonstrating strong antifungal activity in vitro. We performed three tests, a bacterial reverse mutation assay (Ames test), in vitro cytokinesis-block micronucleus assay, and chromosome aberration test in mouse bone marrow cells, to investigate the possible genotoxicity of these compounds. Despite their structural similarity, the two compounds had different genotoxicity profiles. PLX01008 showed positive effects in all assays. PLX01107 showed no mutagenicity in the Ames test but demonstrated strong cytogenetic activity in vitro and in vivo. PLX01107 was also tested in the in vivo alkaline comet assay, where a weak but statistically significant increase in DNA damage was seen in liver cells 24h after treatment. Significantly increased levels of formamidopyrimidine DNA glycosylase (FPG)-sensitive sites were found in bone marrow cells of PLX01107-treated mice (FPG-modified comet assay), suggesting induction of oxidative or alkylation damage to DNA.
Collapse
Affiliation(s)
- Aliy K Zhanataev
- Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., Moscow, 125315, Russia
| | - Natalya V Eremina
- Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., Moscow, 125315, Russia; Panacela Labs LLC, 12,Blvd.1, Krivokolennyi Per., Moscow, 101000, Russia.
| | - Zlata V Chayka
- Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., Moscow, 125315, Russia
| | - Vasily I Kazey
- Panacela Labs LLC, 12,Blvd.1, Krivokolennyi Per., Moscow, 101000, Russia
| | | | - Andrei A Purmal
- Сleveland BioLabs, Inc., 73 High St., Buffalo, NY, 14203, USA
| | - Elena B Rydkina
- Сleveland BioLabs, Inc., 73 High St., Buffalo, NY, 14203, USA
| | - Andrey D Durnev
- Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., Moscow, 125315, Russia
| |
Collapse
|
15
|
Serious fungal infections in Chile. Eur J Clin Microbiol Infect Dis 2017; 36:983-986. [PMID: 28188493 PMCID: PMC5442268 DOI: 10.1007/s10096-017-2925-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
Abstract
The incidence and prevalence of fungal infections in Chile are unknown. Here, we have estimated the burden of serious fungal diseases from data obtained from clinical reports, WHO reports, Chilean census, OECD reports and comprehensive literature search available on PubMed and SciELO, among other scientific resources. Due the lack of official data about fungal diseases, frequencies were calculated based on the specific populations at risk. Recurrent vulvovaginal candidiasis (>4 episodes/year) is estimated to occur in 3108/100,000. Using a low international average rate of 5/100,000, we estimate 878 candidaemia cases and 132 patients with intra-abdominal candidiasis. Due to the low incidence of pulmonary tuberculosis (TB) in Chile, limited numbers of patients with chronic pulmonary aspergillosis are likely: a total of 1212, 25% following TB. Invasive aspergillosis is estimated to affect 296 patients following leukaemia therapy, transplantation and chronic obstructive pulmonary disease (COPD), 1.7/100,000. In addition, allergic bronchopulmonary aspergillosis (ABPA) and severe asthma with fungal sensitisation (SAFS) were estimated to be around 97.9/100,000 and 127/100,000 respectively, in 675,772 adult asthmatics and 1700 CF patients. Given a 38,000 human immunodeficiency virus (HIV) population, with around 2189 new cases of acquired immune deficiency syndrome (AIDS) annually, cryptococcal meningitis and Pneumocystis pneumonia are estimated at 0.12/100,000 and 4.3/100,000, respectively. In total, 325,000 (1.9%) people in Chile develop serious fungal infections annually. Respiratory fungal disease predominates in Chile; a national action plan for fungal disease is urgently needed, including epidemiological studies to validate the estimates.
Collapse
|
16
|
Abstract
This Special Issue is designed to highlight the latest research and development on new antifungal compounds with mechanisms of action different from the ones of polyenes, azoles, and echinocandins. The papers presented here highlight new pathways and targets that could be exploited for the future development of new antifungal agents to be used alone or in combination with existing antifungals. A computational model for better predicting antifungal drug resistance is also presented.
Collapse
|
17
|
Rawat P, Singh RN, Sahu S, Niranjan P, Rani H, Saxena R, Ahmad S. Assessment of Antimicrobial Activity, Reactivity and Non-Linear Optical Properties of New Pyrazoline Derivatives having Pyrrole moiety. ChemistrySelect 2016. [DOI: 10.1002/slct.201600826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Poonam Rawat
- Department of Chemistry; University of Lucknow; Lucknow- 226007 U.P., India, Tel.: +919451308205
| | - R. N. Singh
- Department of Chemistry; University of Lucknow; Lucknow- 226007 U.P., India, Tel.: +919451308205
| | - Sangeeta Sahu
- Department of Chemistry; University of Lucknow; Lucknow- 226007 U.P., India, Tel.: +919451308205
| | - Priydarshni Niranjan
- Department of Chemistry; University of Lucknow; Lucknow- 226007 U.P., India, Tel.: +919451308205
| | - Himanshu Rani
- Department of Chemistry; University of Lucknow; Lucknow- 226007 U.P., India, Tel.: +919451308205
| | - Rajat Saxena
- Department of Chemistry; University of Lucknow; Lucknow- 226007 U.P., India, Tel.: +919451308205
| | - Sartaj Ahmad
- Department of Chemistry; University of Lucknow; Lucknow- 226007 U.P., India, Tel.: +919451308205
| |
Collapse
|
18
|
Debourgogne A, Dorin J, Machouart M. Emerging infections due to filamentous fungi in humans and animals: only the tip of the iceberg? ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:332-342. [PMID: 27058996 DOI: 10.1111/1758-2229.12404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
Over the last few decades, the number of patients susceptible to invasive filamentous fungal infections has steadily increased, especially in populations suffering from hematological diseases. The pathogens responsible for such mycoses are now quite well characterized, such as Aspergillus spp. - the most commonly isolated mold -, Mucorales, Fusarium spp., Scedosporium spp. or melanized fungi. An increase in the incidence of this category of 'emerging' fungi has been recently highlighted, evoking a shift in fungal ecology. Starting from these medical findings, taking a step back and adopt a wider perspective offers possible explanations of this phenomenon on an even larger scale than previously reported. In this review, we illustrate the link between emerging fungi in medicine and changes in ecology or human behaviours, and we encourage integrative approaches to apprehend the adverse effects of progress and develop preventive measures in vast domains, such as agriculture or medicine.
Collapse
Affiliation(s)
- Anne Debourgogne
- Structure de Parasitologie-Mycologie, Département de Microbiologie, Centre Hospitalo-Universitaire de Nancy (CHU-Nancy), Hôpitaux de Brabois, 11 allée du Morvan, 54511 Vandœuvre-les-Nancy, France
- Laboratoire Stress Immunité Pathogènes - EA 7300 - Université de Lorraine, 9 avenue de la forêt de Haye, 54511 Vandoeuvre-les-Nancy, France
| | - Joséphine Dorin
- Structure de Parasitologie-Mycologie, Département de Microbiologie, Centre Hospitalo-Universitaire de Nancy (CHU-Nancy), Hôpitaux de Brabois, 11 allée du Morvan, 54511 Vandœuvre-les-Nancy, France
| | - Marie Machouart
- Structure de Parasitologie-Mycologie, Département de Microbiologie, Centre Hospitalo-Universitaire de Nancy (CHU-Nancy), Hôpitaux de Brabois, 11 allée du Morvan, 54511 Vandœuvre-les-Nancy, France
- Laboratoire Stress Immunité Pathogènes - EA 7300 - Université de Lorraine, 9 avenue de la forêt de Haye, 54511 Vandoeuvre-les-Nancy, France
| |
Collapse
|
19
|
Hušeková B, Elicharová H, Sychrová H. Pathogenic Candida species differ in the ability to grow at limiting potassium concentrations. Can J Microbiol 2016; 62:394-401. [DOI: 10.1139/cjm-2015-0766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A high intracellular concentration of potassium (200–300 mmol/L) is essential for many yeast cell functions, such as the regulation of cell volume and pH, maintenance of membrane potential, and enzyme activation. Thus, cells use high-affinity specific transporters and expend a lot of energy to acquire the necessary amount of potassium from their environment. In Candida genomes, genes encoding 3 types of putative potassium uptake systems were identified: Trk uniporters, Hak symporters, and Acu ATPases. Tests of the tolerance and sensitivity of C. albicans, C. dubliniensis, C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis to various concentrations of potassium showed significant differences among the species, and these differences were partly dependent on external pH. The species most tolerant to potassium-limiting conditions were C. albicans and C. krusei, while C. parapsilosis tolerated the highest KCl concentrations. Also, the morphology of cells changed with the amount of potassium available, with C. krusei and C. tropicalis being the most influenced. Taken together, our results confirm potassium uptake and accumulation as important factors for Candida cell growth and suggest that the sole (and thus probably indispensable) Trk1 potassium uptake system in C. krusei and C. glabrata may serve as a target for the development of new antifungal drugs.
Collapse
Affiliation(s)
- B. Hušeková
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - H. Elicharová
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - H. Sychrová
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
20
|
Enguita FJ, Costa MC, Fusco-Almeida AM, Mendes-Giannini MJ, Leitão AL. Transcriptomic Crosstalk between Fungal Invasive Pathogens and Their Host Cells: Opportunities and Challenges for Next-Generation Sequencing Methods. J Fungi (Basel) 2016; 2:jof2010007. [PMID: 29376924 PMCID: PMC5753088 DOI: 10.3390/jof2010007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/12/2015] [Accepted: 12/12/2015] [Indexed: 12/22/2022] Open
Abstract
Fungal invasive infections are an increasing health problem. The intrinsic complexity of pathogenic fungi and the unmet clinical need for new and more effective treatments requires a detailed knowledge of the infection process. During infection, fungal pathogens are able to trigger a specific transcriptional program in their host cells. The detailed knowledge of this transcriptional program will allow for a better understanding of the infection process and consequently will help in the future design of more efficient therapeutic strategies. Simultaneous transcriptomic studies of pathogen and host by high-throughput sequencing (dual RNA-seq) is an unbiased protocol to understand the intricate regulatory networks underlying the infectious process. This protocol is starting to be applied to the study of the interactions between fungal pathogens and their hosts. To date, our knowledge of the molecular basis of infection for fungal pathogens is still very limited, and the putative role of regulatory players such as non-coding RNAs or epigenetic factors remains elusive. The wider application of high-throughput transcriptomics in the near future will help to understand the fungal mechanisms for colonization and survival, as well as to characterize the molecular responses of the host cell against a fungal infection.
Collapse
Affiliation(s)
- Francisco J Enguita
- Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa 1649-028, Portugal.
| | - Marina C Costa
- Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa 1649-028, Portugal.
| | - Ana Marisa Fusco-Almeida
- Núcleo de Proteômica, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista-UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14801-902, São Paulo, Brazil.
| | - Maria José Mendes-Giannini
- Núcleo de Proteômica, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista-UNESP, Rodovia Araraquara-Jaú Km 1, Araraquara 14801-902, São Paulo, Brazil.
| | - Ana Lúcia Leitão
- MEtRICs, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| |
Collapse
|
21
|
Mor V, Rella A, Farnoud AM, Singh A, Munshi M, Bryan A, Naseem S, Konopka JB, Ojima I, Bullesbach E, Ashbaugh A, Linke MJ, Cushion M, Collins M, Ananthula HK, Sallans L, Desai PB, Wiederhold NP, Fothergill AW, Kirkpatrick WR, Patterson T, Wong LH, Sinha S, Giaever G, Nislow C, Flaherty P, Pan X, Cesar GV, de Melo Tavares P, Frases S, Miranda K, Rodrigues ML, Luberto C, Nimrichter L, Del Poeta M. Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids. mBio 2015; 6:e00647. [PMID: 26106079 PMCID: PMC4479701 DOI: 10.1128/mbio.00647-15] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N'-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N'-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. IMPORTANCE Fungal infections are a significant cause of morbidity and mortality worldwide. Current antifungal drugs suffer from various drawbacks, including toxicity, drug resistance, and narrow spectrum of activity. In this study, we have demonstrated that pharmaceutical inhibition of fungal glucosylceramide presents a new opportunity to treat cryptococcosis and various other fungal infections. In addition to being effective against pathogenic fungi, the compounds discovered in this study were well tolerated by animals and additive to current antifungals. These findings suggest that these drugs might pave the way for the development of a new class of antifungals.
Collapse
Affiliation(s)
- Visesato Mor
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Antonella Rella
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Amir M Farnoud
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Ashutosh Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Mansa Munshi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Arielle Bryan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Shamoon Naseem
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Iwao Ojima
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, USA
| | - Erika Bullesbach
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alan Ashbaugh
- Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | | | | | - Margaret Collins
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Larry Sallans
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Pankaj B Desai
- Department of Pharmaceutical Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nathan P Wiederhold
- Department of Pathology, Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Annette W Fothergill
- Department of Pathology, Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - William R Kirkpatrick
- Division of Infectious Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Thomas Patterson
- Division of Infectious Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lai Hong Wong
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Colombia, Canada
| | - Sunita Sinha
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Colombia, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Colombia, Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Colombia, Canada
| | - Patrick Flaherty
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Xuewen Pan
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Gabriele Vargas Cesar
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia de Melo Tavares
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Leonardo Nimrichter
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
22
|
Mahto KK, Singh A, Khandelwal NK, Bhardwaj N, Jha J, Prasad R. An assessment of growth media enrichment on lipid metabolome and the concurrent phenotypic properties of Candida albicans. PLoS One 2014; 9:e113664. [PMID: 25423360 PMCID: PMC4244132 DOI: 10.1371/journal.pone.0113664] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/27/2014] [Indexed: 11/19/2022] Open
Abstract
A critical question among the researchers working on fungal lipid biology is whether the use of an enriched growth medium can affect the lipid composition of a cell and, therefore, contribute to the observed phenotypes. One presumption is that enriched medias, such as YPD (yeast extract, peptone and dextrose), are likely to contain lipids, which may homogenize with the yeast lipids and play a role in masking the actual differences in the observed phenotypes or lead to an altered phenotype altogether. To address this issue, we compared the lipids of Candida albicans, our fungus of interest, grown in YPD or in a defined media such as YNB (yeast nitrogen base). Mass spectrometry-based lipid analyses showed differences in the levels of phospholipids, including phosphatidylinositol, phosphatidylglycerol, lyso-phospholipids; sphingolipids, such as mannosyldiinositolphosphorylceramide; and sterols, such as ergostatetraenol. Significant differences were observed in 70 lipid species between the cells grown in the two media, but the two growth conditions did not affect the morphological characteristics of C. albicans. The lipid profiles of the YNB- and YPD-grown C. albicans cells did vary, but these differences did not influence their response to the majority of the tested agents. Rather, the observed differences could be attributed to the slow growth rate of the Candida cells in YNB compared to YPD. Notably, the altered lipid changes between the two media did impact the susceptibility to some drugs. This data provided evidence that changes in media can lead to certain lipid alterations, which may affect specific pathways but, in general, do not affect the majority of the phenotypic properties of C. albicans. It was determined that either YNB or YPD may be suitable for the growth and lipid analysis of C. albicans, depending upon the experimental requirements, but additional precautions are necessary when correlating the phenotypes with the lipids.
Collapse
Affiliation(s)
- Kaushal Kumar Mahto
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Biotechnology, Lalit Narayan Mithila University, Kameshwarnagar, Darbhanga, India
| | - Ashutosh Singh
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nitesh Kumar Khandelwal
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nitin Bhardwaj
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jaykar Jha
- Department of Biotechnology, Lalit Narayan Mithila University, Kameshwarnagar, Darbhanga, India
| | - Rajendra Prasad
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
23
|
Delfino D, Scordino F, Pernice I, Lo Passo C, Galbo R, David A, Barberi I, Criseo G, Cascio A, Romeo O. Potential association of specific Candida parapsilosis genotypes, bloodstream infections and colonization of health workers' hands. Clin Microbiol Infect 2014; 20:O946-51. [PMID: 24845557 DOI: 10.1111/1469-0691.12685] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 01/12/2023]
Abstract
Fungal nosocomial infections continue to be a serious problem among hospitalized patients, decreasing quality of life and adding millions of euros to healthcare costs. The aim of this study was to describe the pattern of fungi associated with the hands of healthcare workers and to genotype Candida parapsilosis isolates in order to understand whether their high clinical prevalence stems from endemic nosocomial genotypes or from the real emergence of epidemiologically-unrelated strains. Approximately 39% (50/129) of healthcare workers were positive for yeasts and among 77 different fungal isolates recovered, C. parapsilosis was the most frequent (44/77; 57%). Twenty-seven diverse genotypes were obtained by microsatellite analysis of 42 selected blood and hand isolates. Most of the isolates from hands showed a new, unrelated, genotype, whereas a particular group of closely related genotypes prevailed in blood samples. Some of the latter genotypes were also found on the hands of healthcare workers, indicating a persistence of these clones within our hospital. C. parapsilosis genotypes from the hands were much more heterogeneous than clinical ones, thus reflecting a high genetic diversity among isolates, which is notably unusual and unexpected for this species.
Collapse
Affiliation(s)
- D Delfino
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Crameri R, Garbani M, Rhyner C, Huitema C. Fungi: the neglected allergenic sources. Allergy 2014; 69:176-85. [PMID: 24286281 DOI: 10.1111/all.12325] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2013] [Indexed: 12/15/2022]
Abstract
Allergic diseases are considered the epidemics of the twentieth century estimated to affect more than 30% of the population in industrialized countries with a still increasing incidence. During the past two decades, the application of molecular biology allowed cloning, production and characterization of hundreds of recombinant allergens. In turn, knowledge about molecular, chemical and biologically relevant allergens contributed to increase our understanding of the mechanisms underlying IgE-mediated type I hypersensitivity reactions. It has been largely demonstrated that fungi are potent sources of allergenic molecules covering a vast variety of molecular structures including enzymes, toxins, cell wall components and phylogenetically highly conserved cross-reactive proteins. Despite the large knowledge accumulated and the compelling evidence for an involvement of fungal allergens in the pathophysiology of allergic diseases, fungi as a prominent source of allergens are still largely neglected in basic research as well as in clinical practice. This review aims to highlight the impact of fungal allergens with focus on asthma and atopic dermatitis.
Collapse
Affiliation(s)
- R. Crameri
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zürich; Davos Switzerland
| | - M. Garbani
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zürich; Davos Switzerland
| | - C. Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zürich; Davos Switzerland
| | - C. Huitema
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zürich; Davos Switzerland
| |
Collapse
|
25
|
Prasad R, Singh A. Lipids of Candida albicans and their role in multidrug resistance. Curr Genet 2013; 59:243-50. [PMID: 23974286 DOI: 10.1007/s00294-013-0402-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 12/20/2022]
Abstract
Over the years, lipids of non-pathogenic yeast such as Saccharomyces cerevisiae have been characterized to some details; however, a comparable situation does not exist for the human pathogenic fungi. This review is an attempt to bring in recent advances made in lipid research by employing high throughput lipidomic methods in terms of lipid analysis of pathogenic yeasts. Several pathogenic fungi exhibit multidrug resistance (MDR) which they acquire during the course of a treatment. Among the several causal factors, lipids by far have emerged as one of the critical contributors in the MDR acquisition in human pathogenic Candida. In this article, we have particularly focused on the role of lipids involved in cross talks between different cellular circuits that impact the acquisition of MDR in Candida.
Collapse
Affiliation(s)
- Rajendra Prasad
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India,
| | | |
Collapse
|