1
|
Hagerty S, Daniels Y, Singletary M, Pustovyy O, Globa L, MacCrehan WA, Muramoto S, Stan G, Lau JW, Morrison EE, Sorokulova I, Vodyanoy V. After oxidation, zinc nanoparticles lose their ability to enhance responses to odorants. Biometals 2016; 29:1005-1018. [PMID: 27649965 DOI: 10.1007/s10534-016-9972-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/09/2016] [Indexed: 01/13/2023]
Abstract
Electrical responses of olfactory sensory neurons to odorants were examined in the presence of zinc nanoparticles of various sizes and degrees of oxidation. The zinc nanoparticles were prepared by the underwater electrical discharge method and analyzed by atomic force microscopy and X-ray photoelectron spectroscopy. Small (1.2 ± 0.3 nm) zinc nanoparticles significantly enhanced electrical responses of olfactory neurons to odorants. After oxidation, however, these small zinc nanoparticles were no longer capable of enhancing olfactory responses. Larger zinc oxide nanoparticles (15 nm and 70 nm) also did not modulate responses to odorants. Neither zinc nor zinc oxide nanoparticles produced olfactory responses when added without odorants. The enhancement of odorant responses by small zinc nanoparticles was explained by the creation of olfactory receptor dimers initiated by small zinc nanoparticles. The results of this work will clarify the mechanisms for the initial events in olfaction, as well as to provide new ways to alleviate anosmia related to the loss of olfactory receptors.
Collapse
Affiliation(s)
- Samantha Hagerty
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Yasmine Daniels
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Melissa Singletary
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Oleg Pustovyy
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Ludmila Globa
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - William A MacCrehan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Shin Muramoto
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Gheorghe Stan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - June W Lau
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Edward E Morrison
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Iryna Sorokulova
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA.
- Auburn University, 109 Greene Hall, Auburn, AL, 36849, USA.
| |
Collapse
|
2
|
Jia H, Pustovyy OM, Wang Y, Waggoner P, Beyers RJ, Schumacher J, Wildey C, Morrison E, Salibi N, Denney TS, Vodyanoy VJ, Deshpande G. Enhancement of Odor-Induced Activity in the Canine Brain by Zinc Nanoparticles: A Functional MRI Study in Fully Unrestrained Conscious Dogs. Chem Senses 2015; 41:53-67. [PMID: 26464498 DOI: 10.1093/chemse/bjv054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using noninvasive in vivo functional magnetic resonance imaging (fMRI), we demonstrate that the enhancement of odorant response of olfactory receptor neurons by zinc nanoparticles leads to increase in activity in olfaction-related and higher order areas of the dog brain. To study conscious dogs, we employed behavioral training and optical motion tracking for reducing head motion artifacts. We obtained brain activation maps from dogs in both anesthetized state and fully conscious and unrestrained state. The enhancement effect of zinc nanoparticles was higher in conscious dogs with more activation in higher order areas as compared with anesthetized dogs. In conscious dogs, voxels in the olfactory bulb and hippocampus showed higher activity to odorants mixed with zinc nanoparticles as compared with pure odorants, odorants mixed with gold nanoparticles as well as zinc nanoparticles alone. These regions have been implicated in odor intensity processing in other species including humans. If the enhancement effect of zinc nanoparticles observed in vivo are confirmed by future behavioral studies, zinc nanoparticles may provide a way for enhancing the olfactory sensitivity of canines for detection of target substances such as explosives and contraband substances at very low concentrations, which would otherwise go undetected.
Collapse
Affiliation(s)
- Hao Jia
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36832, USA, College of Information Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Oleg M Pustovyy
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, AL 36832, USA
| | - Yun Wang
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36832, USA
| | - Paul Waggoner
- Canine Detection Research Institute, Auburn University, Auburn, AL 36832, USA
| | - Ronald J Beyers
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36832, USA
| | - John Schumacher
- Department of Clinical Sciences, Auburn University, Auburn, AL 36832, USA
| | | | - Edward Morrison
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, AL 36832, USA
| | - Nouha Salibi
- MR R&D, Siemens Healthcare, Malvern, PA 19355, USA
| | - Thomas S Denney
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36832, USA, Department of Psychology, Auburn University, Auburn, AL 36832, USA and Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, AL, USA
| | - Vitaly J Vodyanoy
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, AL 36832, USA,
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36832, USA, Department of Psychology, Auburn University, Auburn, AL 36832, USA and Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, AL, USA
| |
Collapse
|
3
|
Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H. Overexpression of membrane proteins from higher eukaryotes in yeasts. Appl Microbiol Biotechnol 2014; 98:7671-98. [PMID: 25070595 DOI: 10.1007/s00253-014-5948-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 02/08/2023]
Abstract
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug-target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.
Collapse
Affiliation(s)
- Anita Emmerstorfer
- ACIB-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | | | | | | |
Collapse
|