1
|
Shamim A, Abdul Aziz M, Saeed F, Kumari R, Mary Joseph A, Ponnachan P, Kishore U, Masmoudi K. Revisiting surfactant protein D: an immune surveillance molecule bridging innate and adaptive immunity. Front Immunol 2024; 15:1491175. [PMID: 39742280 PMCID: PMC11685232 DOI: 10.3389/fimmu.2024.1491175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/12/2024] [Indexed: 01/03/2025] Open
Abstract
Surfactant protein D (SP-D) is a C-type lectin that was originally discovered as a lung surfactant associated phospholipid recognising protein. It was originally shown to be of great importance in surfactant turnover and homeostasis in conjunction with another hydrophilic surfactant protein i.e. SP-A. In addition, it was found to agglutinate bacteria in suspension and likely a key defence molecule in the lungs. Since its early days of characterization in 1990s, SP-D has turned out to be a central player in the mucosal immunity as pulmonary as well as extrapulmonary innate immune molecule. The most exciting development has been characterization of its C-type lectin or carbohydrate recognition domain (CRDs) that exists in a homotrimeric form in native as well as recombinant versions. SP-D has a range of strategies to recognise pathogen-associated molecular patterns (PAMPs) and thus act as a soluble PAMP-recognizing receptor (PRR), and subsequent destruction of the pathogens directly, or indirectly via phagocytic cells. SP-D also recognizes a range of allergens, competes out with specific IgE antibodies, and downregulates histamine release by basophils and mast cells. These anti-microbial and anti-allergic properties of SP-D have been validated by in vivo murine models of infection and allergy. The SP-D gene deficient mice exhibit remarkable phenotypes where lungs are leaky, showing features of fibrosis and emphysema. One of the seminal discoveries in the field has been the observation that activated eosinophils (and other immune cells) can be induced into apoptotic pathways by SP-D. This raised the possibility that SP-D can be an innate immune surveillance molecule. Studies have revealed the ability of a recombinant fragment of human SP-D containing homotrimeric neck and CRD region to induce apoptosis via intrinsic as well as extrinsic pathways; in addition, it also seems capable of interfering with epithelial-to-mesenchymal transition. These studies have opened up enormous possibilities for setting up pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Azra Shamim
- Department Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mughair Abdul Aziz
- Department Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Faryal Saeed
- Department Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rekha Kumari
- Department of Zoology, A.N College, Patliputra University, Patna, Bihar, India
| | - Ann Mary Joseph
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Pretty Ponnachan
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Uday Kishore
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled Masmoudi
- Department Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Hsieh MH, Chen PC, Hsu HY, Liu JC, Ho YS, Lin YJ, Kuo CW, Kuo WS, Kao HF, Wang SD, Liu ZG, Wu LSH, Wang JY. Surfactant protein D inhibits lipid-laden foamy macrophages and lung inflammation in chronic obstructive pulmonary disease. Cell Mol Immunol 2023; 20:38-50. [PMID: 36376488 PMCID: PMC9794778 DOI: 10.1038/s41423-022-00946-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Increased levels of surfactant protein D (SP-D) and lipid-laden foamy macrophages (FMs) are frequently found under oxidative stress conditions and/or in patients with chronic obstructive pulmonary disease (COPD) who are also chronically exposed to cigarette smoke (CS). However, the roles and molecular mechanisms of SP-D and FMs in COPD have not yet been determined. In this study, increased levels of SP-D were found in the bronchoalveolar lavage fluid (BALF) and sera of ozone- and CS-exposed mice. Furthermore, SP-D-knockout mice showed increased lipid-laden FMs and airway inflammation caused by ozone and CS exposure, similar to that exhibited by our study cohort of chronic smokers and COPD patients. We also showed that an exogenous recombinant fragment of human SP-D (rfhSP-D) prevented the formation of oxidized low-density lipoprotein (oxLDL)-induced FMs in vitro and reversed the airway inflammation and emphysematous changes caused by oxidative stress and CS exposure in vivo. SP-D upregulated bone marrow-derived macrophage (BMDM) expression of genes involved in countering the oxidative stress and lipid metabolism perturbations induced by CS and oxLDL. Our study demonstrates the crucial roles of SP-D in the lipid homeostasis of dysfunctional alveolar macrophages caused by ozone and CS exposure in experimental mouse emphysema, which may provide a novel opportunity for the clinical application of SP-D in patients with COPD.
Collapse
Affiliation(s)
- Miao-Hsi Hsieh
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- Graduate Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Pei-Chi Chen
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan, China
| | - Han-Yin Hsu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Jui-Chang Liu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Yu-Sheng Ho
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Yuh Jyh Lin
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan, China
| | - Chin-Wei Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Wen-Shuo Kuo
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Hui-Fang Kao
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan, China
| | - Shulhn-Der Wang
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan, China
| | - Zhi-Gang Liu
- Department of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lawrence Shih-Hsin Wu
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China.
- Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, China.
| | - Jiu-Yao Wang
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China.
- Department of Allergy, Immunology, and Rheumatology (AIR), China Medical University Children's Hospital, Taichung, Taiwan, China.
| |
Collapse
|
3
|
López-Serrano S, Neila-Ibáñez C, Costa-Hurtado M, Mahmmod Y, Martínez-Martínez J, Galindo-Cardiel IJ, Darji A, Rodríguez F, Sibila M, Aragon V. Sow Vaccination with a Protein Fragment against Virulent Glaesserella (Haemophilus) parasuis Modulates Immunity Traits in Their Offspring. Vaccines (Basel) 2021; 9:vaccines9050534. [PMID: 34065547 PMCID: PMC8160652 DOI: 10.3390/vaccines9050534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
Glaesserella (Haemophilus) parasuis, an early colonizer of the nasal cavity in piglets, is a highly heterogeneous species, comprising both commensal and virulent strains. Virulent G. parasuis strains can cause fibrinous polyserositis called Glässer’s disease. Colostrum is a source of passive immunity for young piglets. When vaccinating sows, protective antibodies are transferred to their offspring through the colostrum. Here, sow vaccination was performed with a protein fragment, F4, from the outer membrane trimeric autotransporters VtaAs exclusively found in virulent G. parasuis. Piglets were allowed to suckle for 3 weeks, following which a challenge with two virulent strains of G. parasuis was performed. A group of nonvaccinated sows and their piglets were included as a control. Antibodies against F4 were confirmed using ELISA in the vaccinated sows and their offspring before the G. parasuis challenge. Compared to the control group, F4-vaccination also resulted in an increased level of serum TGF-β both in vaccinated sows and in their offspring at early time points of life. After the challenge, a lower body temperature and a higher weight were observed in the group of piglets from vaccinated sows. One piglet from the non-vaccinated group succumbed to the infection, but no other significant differences in clinical signs were noticed. At necropsy, performed 2 weeks after the virulent challenge, the level of surfactant protein D (SP-D) in bronchoalveolar lavage was higher in the piglets from vaccinated sows. Vaccination did not inhibit the nasal colonization of the piglets by the challenge strains.
Collapse
Affiliation(s)
- Sergi López-Serrano
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
| | - Carlos Neila-Ibáñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
| | - Mar Costa-Hurtado
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
| | - Yasser Mahmmod
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Section of Veterinary Sciences, Health Sciences Division, Al Ain Men’s College, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates
| | - Jorge Martínez-Martínez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra, Spain
| | | | - Ayub Darji
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (S.L.-S.); (C.N.-I.); (M.C.-H.); (Y.M.); (J.M.-M.); (A.D.); (F.R.); (M.S.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
- Correspondence:
| |
Collapse
|
4
|
Kumar J, Murugaiah V, Sotiriadis G, Kaur A, Jeyaneethi J, Sturniolo I, Alhamlan FS, Chatterjee J, Hall M, Kishore U, Karteris E. Surfactant Protein D as a Potential Biomarker and Therapeutic Target in Ovarian Cancer. Front Oncol 2019; 9:542. [PMID: 31338320 PMCID: PMC6629871 DOI: 10.3389/fonc.2019.00542] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Surfactant protein D (SP-D) is an important innate immune molecule that is involved in clearing pathogens and regulating inflammation at pulmonary as well as extra-pulmonary sites. Recent studies have established the role of SP-D as an innate immune surveillance molecule against lung and pancreatic cancer, but little is known about its involvement in signaling pathways it can potentially activate in ovarian cancer. We focused our study on ovarian cancer by performing bioinformatics analysis (Oncomine) of datasets and survival analysis (Kaplan-Meier plotter), followed by immunohistochemistry using ovarian cancer tissue microarrays. SP-D mRNA was found to be expressed widely in different types of ovarian cancer irrespective of stage or grade. These in silico data were further validated by immunohistochemistry of clinical tissues. High transcriptional levels of SP-D were associated with unfavorable prognosis (overall and progression-free survival). We also detected SP-D protein in Circulating Tumor Cells of three ovarian cancer patients, suggesting that SP-D can also be used as a potential biomarker. Previous studies have shown that a recombinant fragment of human SP-D (rfhSP-D) induced apoptosis in pancreatic cancer cells via Fas-mediated pathway. In this study, we report that treatment of SKOV3 cells (an ovarian cancer cell line) with rfhSP-D led to a decrease in cell motility and cell proliferation. This was followed by an inhibition of the mTOR pathway activity, increase in caspase 3 cleavage, and induction of pro-apoptotic genes Fas and TNF-α. These data, suggesting a likely protective role of rfhSP-D against ovarian cancer, together with the observation that the ovarian cancer microenvironment overexperesses SP-D leading to poor prognosis, seems to suggest that the tumor microenvironment components manipulate the protective effect of SP-D in vivo.
Collapse
Affiliation(s)
- Juhi Kumar
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Valamarthy Murugaiah
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Georgios Sotiriadis
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Anuvinder Kaur
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Jeyarooban Jeyaneethi
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Isotta Sturniolo
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Fatimah S Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Jayanta Chatterjee
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Marcia Hall
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Uday Kishore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Emmanouil Karteris
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
5
|
Dodagatta-Marri E, Mitchell DA, Pandit H, Sonawani A, Murugaiah V, Idicula-Thomas S, Nal B, Al-Mozaini MM, Kaur A, Madan T, Kishore U. Protein-Protein Interaction between Surfactant Protein D and DC-SIGN via C-Type Lectin Domain Can Suppress HIV-1 Transfer. Front Immunol 2017; 8:834. [PMID: 28824609 PMCID: PMC5534670 DOI: 10.3389/fimmu.2017.00834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/03/2017] [Indexed: 01/01/2023] Open
Abstract
Surfactant protein D (SP-D) is a soluble C-type lectin, belonging to the collectin (collagen-containing calcium-dependent lectin) family, which acts as an innate immune pattern recognition molecule in the lungs at other mucosal surfaces. Immune regulation and surfactant homeostasis are salient functions of SP-D. SP-D can bind to a range of viral, bacterial, and fungal pathogens and trigger clearance mechanisms. SP-D binds to gp120, the envelope protein expressed on HIV-1, through its C-type lectin or carbohydrate recognition domain. This is of importance since SP-D is secreted by human mucosal epithelial cells and is present in the female reproductive tract, including vagina. Another C-type lectin, dendritic cell (DC)-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), present on the surface of the DCs, also binds to HIV-1 gp120 and facilitates viral transfer to the lymphoid tissues. DCs are also present at the site of HIV-1 entry, embedded in vaginal or rectal mucosa. In the present study, we report a direct protein-protein interaction between recombinant forms of SP-D (rfhSP-D) and DC-SIGN via their C-type lectin domains. Both SP-D and DC-SIGN competed for binding to immobilized HIV-1 gp120. Pre-incubation of human embryonic kidney cells expressing surface DC-SIGN with rfhSP-D significantly inhibited the HIV-1 transfer to activated peripheral blood mononuclear cells. In silico analysis revealed that SP-D and gp120 may occupy same sites on DC-SIGN, which may explain the reduced transfer of HIV-1. In summary, we demonstrate, for the first time, that DC-SIGN is a novel binding partner of SP-D, and this interaction can modulate HIV-1 capture and transfer to CD4+ T cells. In addition, the present study also reveals a novel and distinct mechanism of host defense by SP-D against HIV-1.
Collapse
Affiliation(s)
- Eswari Dodagatta-Marri
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Daniel A Mitchell
- Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital Coventry and Warwickshire Campus, Coventry, United Kingdom
| | - Hrishikesh Pandit
- Department of Innate Immunity, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Archana Sonawani
- Department of Innate Immunity, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Valarmathy Murugaiah
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Susan Idicula-Thomas
- Department of Innate Immunity, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Béatrice Nal
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Maha M Al-Mozaini
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Anuvinder Kaur
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Uday Kishore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
6
|
Pondman KM, Paudyal B, Sim RB, Kaur A, Kouser L, Tsolaki AG, Jones LA, Salvador-Morales C, Khan HA, Ten Haken B, Stenbeck G, Kishore U. Pulmonary surfactant protein SP-D opsonises carbon nanotubes and augments their phagocytosis and subsequent pro-inflammatory immune response. NANOSCALE 2017; 9:1097-1109. [PMID: 27991644 DOI: 10.1039/c6nr08807d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbon nanotubes (CNTs) are increasingly being developed for use in biomedical applications, including drug delivery. One of the most promising applications under evaluation is in treating pulmonary diseases such as tuberculosis. Once inhaled or administered, the nanoparticles are likely to be recognised by innate immune molecules in the lungs such as hydrophilic pulmonary surfactant proteins. Here, we set out to examine the interaction between surfactant protein D (SP-D), a key lung pattern recognition molecule and CNTs, and possible downstream effects on the immune response via macrophages. We show here that a recombinant form of human SP-D (rhSP-D) bound to oxidised and carboxymethyl cellulose (CMC) coated CNTs via its C-type lectin domain and enhanced phagocytosis by U937 and THP-1 macrophages/monocytic cell lines, together with an increased pro-inflammatory response, suggesting that sequestration of SP-D by CNTs in the lungs can trigger an unwanted and damaging immune response. We also observed that functionalised CNTs, opsonised with rhSP-D, continued to activate complement via the classical pathway, suggesting that C1q, which is the recognition sub-component of the classical pathway, and SP-D have distinct pattern recognition sites on the CNTs. Consistent with our earlier reports, complement deposition on the rhSP-D opsonised CNTs led to dampening of the pro-inflammatory immune response by THP-1 macrophages, as evident from qPCR, cytokine array and NF-κB nuclear translocation analyses. This study highlights the importance of understanding the interplay between innate immune humoral factors including complement in devising nanoparticle based drug delivery strategies.
Collapse
Affiliation(s)
- Kirsten M Pondman
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK. and Neuro Imaging, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Basudev Paudyal
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK. and Faculty of Science, Engineering and Computing, Kingston University Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, UK
| | - Robert B Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Anuvinder Kaur
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Lubna Kouser
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Anthony G Tsolaki
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Lucy A Jones
- Faculty of Science, Engineering and Computing, Kingston University Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, UK
| | - Carolina Salvador-Morales
- Bioengineering Department and Krasnow Institute for Advanced Study, George Mason University, Fairfax, 22030 Virginia, USA
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bennie Ten Haken
- Neuro Imaging, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Gudrun Stenbeck
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Uday Kishore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
7
|
Hadda V, Tiwari P, Madan K, Mohan A, Gupta N, Bharti SJ, Kumar V, Garg R, Trikha A, Jain D, Arava S, Khilnani GC, Guleria R. Pulmonary alveolar proteinosis: Experience from a tertiary care center and systematic review of Indian literature. Lung India 2016; 33:626-634. [PMID: 27890991 PMCID: PMC5112819 DOI: 10.4103/0970-2113.192876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pulmonary alveolar proteinosis (PAP) is a rare disorder characterized by deposition of lipoproteinaceous material within alveoli, with a variable clinical course. Here, we report an experience of management of PAP at our center. A systematic review of previously reported cases from India is also included in the article. MATERIALS AND METHODS This study included patients with primary PAP managed at our center from 2009 to 2015. Diagnosis of primary PAP was based on histopathologic diagnosis on bronchoalveolar lavage or transbronchial lung biopsy and absence of causes of secondary PAP. For systematic review of Indian publications, the literature search was performed using PubMed and EMBASE databases using the terms "pulmonary alveolar proteinosis'" or "alveolar proteinosis" and "India" or "Indian." RESULTS During the above-specified period, five patients with diagnosis of PAP were admitted at our center. Median age of patients was 32 years (interquartile range [IQR] 30.5-59); 80% were female. Mean duration (± standard deviation) of symptoms was 6.2 (±1.79) months. Anti-granulocyte-macrophage colony stimulating factor (GM-CSF) antibodies were elevated in 4 out of 5 patients (80%). For management, whole lung lavage (WLL) was done for four patients with median volume of 32.5 (IQR 18-74) L per patient. All the patients showed significant symptomatic as well as improvement in physiological parameters. Subcutaneous GM-CSF and ambroxol were given to 3 patients and 1 patient, respectively. The median follow-up of all patients was 18 (IQR 5-44) months. A systematic review of all Indian studies of PAP revealed thirty publications. CONCLUSIONS WLL is the most common, effective, and safe therapy in patients with PAP. GM-CSF administration is an efficacious treatment for patients with incomplete response after WLL.
Collapse
Affiliation(s)
- Vijay Hadda
- Department of Pulmonary Medicine and Sleep Disorders, All Institute of Medical Sciences, New Delhi, India
| | - Pawan Tiwari
- Department of Pulmonary Medicine and Sleep Disorders, All Institute of Medical Sciences, New Delhi, India
| | - Karan Madan
- Department of Pulmonary Medicine and Sleep Disorders, All Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Medicine and Sleep Disorders, All Institute of Medical Sciences, New Delhi, India
| | - Nishkarsh Gupta
- Department of Anaesthesiology, All Institute of Medical Sciences, New Delhi, India
| | | | - Vinod Kumar
- Department of Anaesthesiology, All Institute of Medical Sciences, New Delhi, India
| | - Rakesh Garg
- Department of Anaesthesiology, All Institute of Medical Sciences, New Delhi, India
| | - Anjan Trikha
- Department of Anaesthesiology, All Institute of Medical Sciences, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All Institute of Medical Sciences, New Delhi, India
| | - Sudheer Arava
- Department of Pathology, All Institute of Medical Sciences, New Delhi, India
| | - Gopi C Khilnani
- Department of Pulmonary Medicine and Sleep Disorders, All Institute of Medical Sciences, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary Medicine and Sleep Disorders, All Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Expression of surfactant proteins SP-A and SP-D in murine decidua and immunomodulatory effects on decidual macrophages. Immunobiology 2016; 221:377-86. [DOI: 10.1016/j.imbio.2015.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 12/23/2022]
|
9
|
Sotiriadis G, Dodagatta-Marri E, Kouser L, Alhamlan FS, Kishore U, Karteris E. Surfactant Proteins SP-A and SP-D Modulate Uterine Contractile Events in ULTR Myometrial Cell Line. PLoS One 2015; 10:e0143379. [PMID: 26641881 PMCID: PMC4671565 DOI: 10.1371/journal.pone.0143379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/04/2015] [Indexed: 01/27/2023] Open
Abstract
Pulmonary surfactant proteins SP-A and SP-D are pattern recognition innate immune molecules. However, there is extrapulmonary existence, especially in the amniotic fluid and at the feto-maternal interface. There is sufficient evidence to suggest that SP-A and SP-D are involved in the initiation of labour. This is of great importance given that preterm birth is associated with increased mortality and morbidity. In this study, we investigated the effects of recombinant forms of SP-A and SP-D (rhSP-A and rhSP-D, the comprising of trimeric lectin domain) on contractile events in vitro, using a human myometrial cell line (ULTR) as an experimental model. Treatment with rhSP-A or rhSP-D increased the cell velocity, distance travelled and displacement by ULTR cells. rhSP-A and rhSP-D also affected the contractile response of ULTRs when grown on collagen matrices showing reduced surface area. We investigated this effect further by measuring contractility-associated protein (CAP) genes. Treatment with rhSP-A and rhSP-D induced expression of oxytocin receptor (OXTR) and connexin 43 (CX43). In addition, rhSP-A and rhSP-D were able to induce secretion of GROα and IL-8. rhSP-D also induced the expression of IL-6 and IL-6 Ra. We provide evidence that SP-A and SP-D play a key role in modulating events prior to labour by reconditioning the human myometrium and in inducing CAP genes and pro-inflammatory cytokines thus shifting the uterus from a quiescent state to a contractile one.
Collapse
Affiliation(s)
- Georgios Sotiriadis
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Eswari Dodagatta-Marri
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Lubna Kouser
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Uday Kishore
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Emmanouil Karteris
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
- Institute of Environment, Heath and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| |
Collapse
|
10
|
Salgado D, Fischer R, Schillberg S, Twyman RM, Rasche S. Comparative evaluation of heterologous production systems for recombinant pulmonary surfactant protein D. Front Immunol 2014; 5:623. [PMID: 25538707 PMCID: PMC4259113 DOI: 10.3389/fimmu.2014.00623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022] Open
Abstract
Commercial surfactant products derived from animal lungs are used for the treatment of respiratory diseases in premature neonates. These products contain lipids and the hydrophobic surfactant proteins B and C, which help to lower the surface tension in the lungs. Surfactant products are less effective when pulmonary diseases involve inflammatory complications because two hydrophilic surfactant proteins (A and D) are lost during the extraction process, yet surfactant protein D (SP-D) is a component of the innate immune system that helps to reduce lung inflammation. The performance of surfactant products could, therefore, be improved by supplementing them with an additional source of SP-D. Recombinant SP-D (rSP-D) is produced in mammalian cells and bacteria (Escherichia coli), and also experimentally in the yeast Pichia pastoris. Mammalian cells produce full-size SP-D, but the yields are low and the cost of production is high. In contrast, bacteria produce a truncated form of SP-D, which is active in vitro and in vivo, and higher yields can be achieved at a lower cost. We compare the efficiency of production of rSP-D in terms of the total yields achieved in each system and the amount of SP-D needed to meet the global demand for the treatment of pulmonary diseases, using respiratory distress syndrome as a case study.
Collapse
Affiliation(s)
- Daniela Salgado
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Aachen , Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Aachen , Germany ; Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Aachen , Germany
| | | | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Aachen , Germany
| |
Collapse
|
11
|
Pandit H, Gopal S, Sonawani A, Yadav AK, Qaseem AS, Warke H, Patil A, Gajbhiye R, Kulkarni V, Al-Mozaini MA, Idicula-Thomas S, Kishore U, Madan T. Surfactant protein D inhibits HIV-1 infection of target cells via interference with gp120-CD4 interaction and modulates pro-inflammatory cytokine production. PLoS One 2014; 9:e102395. [PMID: 25036364 PMCID: PMC4103819 DOI: 10.1371/journal.pone.0102395] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/17/2014] [Indexed: 01/12/2023] Open
Abstract
Surfactant Protein SP-D, a member of the collectin family, is a pattern recognition protein, secreted by mucosal epithelial cells and has an important role in innate immunity against various pathogens. In this study, we confirm that native human SP-D and a recombinant fragment of human SP-D (rhSP-D) bind to gp120 of HIV-1 and significantly inhibit viral replication in vitro in a calcium and dose-dependent manner. We show, for the first time, that SP-D and rhSP-D act as potent inhibitors of HIV-1 entry in to target cells and block the interaction between CD4 and gp120 in a dose-dependent manner. The rhSP-D-mediated inhibition of viral replication was examined using three clinical isolates of HIV-1 and three target cells: Jurkat T cells, U937 monocytic cells and PBMCs. HIV-1 induced cytokine storm in the three target cells was significantly suppressed by rhSP-D. Phosphorylation of key kinases p38, Erk1/2 and AKT, which contribute to HIV-1 induced immune activation, was significantly reduced in vitro in the presence of rhSP-D. Notably, anti-HIV-1 activity of rhSP-D was retained in the presence of biological fluids such as cervico-vaginal lavage and seminal plasma. Our study illustrates the multi-faceted role of human SP-D against HIV-1 and potential of rhSP-D for immunotherapy to inhibit viral entry and immune activation in acute HIV infection.
Collapse
Affiliation(s)
- Hrishikesh Pandit
- Department of Innate Immunity, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Sandhya Gopal
- Department of Innate Immunity, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Archana Sonawani
- Biomedical Informatics Centre, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Ajit Kumar Yadav
- Department of Innate Immunity, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Asif S. Qaseem
- Centre for Infection, Immunity and Disease Mechanisms, Brunel University, London, United Kingdom
| | - Himangi Warke
- Department of Obstetrics and Gynecology, Seth G S Medical College and K E M Hospital, Mumbai, Maharashtra, India
| | - Anushree Patil
- Department of Clinical Research, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Rahul Gajbhiye
- Department of Clinical Research, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Vijay Kulkarni
- Department of Clinical Research, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Maha Ahmed Al-Mozaini
- Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
| | - Uday Kishore
- Centre for Infection, Immunity and Disease Mechanisms, Brunel University, London, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, National Institute for Research in Reproductive Health (ICMR), Mumbai, Maharashtra, India
- * E-mail:
| |
Collapse
|