1
|
Manigat F, Connell LB, Stewart BN, LePabic AR, Tessier CJG, Emlaw JR, Calvert ND, Rössl A, Shuhendler AJ, daCosta CJB, Campbell-Valois FX. pUdOs: Concise Plasmids for Bacterial and Mammalian Cells. ACS Synth Biol 2024; 13:485-497. [PMID: 38235654 PMCID: PMC10878396 DOI: 10.1021/acssynbio.3c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
The plasmids from the Université d'Ottawa (pUdOs) are 28 small plasmids each comprising one of four origins of replication and one of seven selection markers, which together afford flexible use in Escherichia coli and several related gram-negative bacteria. The promoterless multicloning site is insulated from upstream spurious promoters by strong transcription terminators and contains type IIP or IIS restriction sites for conventional or Golden Gate cloning. pUdOs can be converted into efficient expression vectors through the insertion of a promoter at the user's discretion. For example, we demonstrate the utility of pUdOs as the backbone for an improved version of a Type III Secretion System reporter in Shigella. In addition, we derive a series of pUdO-based mammalian expression vectors, affording distinct levels of expression and transfection efficiency comparable to commonly used mammalian expression plasmids. Thus, pUdOs could advantageously replace traditional plasmids in a wide variety of cell types and applications.
Collapse
Affiliation(s)
- France
O. Manigat
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Louise B. Connell
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Brittany N. Stewart
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Abdel-Rahman LePabic
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Christian J. G. Tessier
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Johnathon R. Emlaw
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Nicholas D. Calvert
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Anthony Rössl
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Adam J. Shuhendler
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- University
of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Corrie J. B. daCosta
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - François-Xavier Campbell-Valois
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Centre
for Infection, Immunity and Inflammation, Department of Biochemistry,
Microbiology and Immunology, University
of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
2
|
New Mechanism by Which Human Cytomegalovirus MicroRNAs Negate the Proinflammatory Response to Infection. mBio 2017; 8:mBio.00505-17. [PMID: 28420741 PMCID: PMC5395671 DOI: 10.1128/mbio.00505-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Viruses have evolved many novel mechanisms to promote infection and to mitigate the host cell response to that infection. In the article by M. H. Hancock et al. (mBio 8:e00109-17, 2017, https://doi.org/10.1128/mBio.00109-17), the authors describe a new mechanism by which human cytomegalovirus (HCMV) microRNAs (miRNAs; miR-US5-1 and miR-UL112-3p) negate the proinflammatory response to infection. The authors document that these two viral miRNAs downregulate the NF-κB response through direct targeting of the IKKα and IKKβ mRNAs, which in turn, through diminished IκB kinases (IKKs), block production of proinflammatory cytokines (interleukin-6 [IL-6], CCL5, and tumor necrosis factor alpha [TNF-α]). Because most signaling pathways that promote NF-κB activation and nuclear translocation ultimately converge on the activation of the IKK complex, this new study documents that HCMV can strongly dictate how infected cells respond to internal and/or external stimuli and thus positively influence the outcome of both lytic and latent infection.
Collapse
|
3
|
Hosogai M, Shima N, Nakatani Y, Inoue T, Iso T, Yokoo H, Yorifuji H, Akiyama H, Kishi S, Isomura H. Analysis of human cytomegalovirus replication in primary cultured human corneal endothelial cells. Br J Ophthalmol 2015; 99:1583-90. [PMID: 26261231 PMCID: PMC4680148 DOI: 10.1136/bjophthalmol-2014-306486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/21/2015] [Indexed: 12/28/2022]
Abstract
Background/aims Since the first case of human cytomegalovirus (HCMV)-induced corneal endotheliitis in which HCMV DNA was detected from the patient's aqueous humour using PCR, the clinical evidence for HCMV endotheliitis has been accumulating. However, it remains to be confirmed whether HCMV can efficiently replicate in corneal endothelial cells. We, therefore, sought to determine whether primary cultured human corneal endothelial cells (HCECs) could support HCMV replication. Methods Human foreskin fibroblasts (HFFs) have been shown to be fully permissive for HCMV replication, and are commonly used as an in vitro model for HCMV lytic replication. Therefore, primary cultured HCECs or HFFs were infected with the vascular endotheliotropic HCMV strain TB40/E or laboratory strain Towne. We then compared viral mRNA and protein expression, genome replication and growth between the TB40/E-infected and Towne-infected HCECs and HFFs. Results When HCECs were infected with TB40/E or Towne, rounded cells resembling owl's eyes as well as viral antigens were detected. Viral mRNA synthesis and protein expression proceeded efficiently in the HCECs and HFFs infected with TB40/E or Towne at a high multiplicity of infection (MOI). Similarly, the viral genome was also effectively replicated, with UL44—a viral DNA polymerase processivity factor—foci observed in the nuclei of HCECs. HCECs produced a substantial number of infectious virions after infection with TB40/E at both a high and low MOI. Conclusions Primary cultured HCECs could efficiently support HCMV replication after infection at both a high and low MOI.
Collapse
Affiliation(s)
- Mayumi Hosogai
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan Department of Ophthalmology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Nobuyuki Shima
- Department of Ophthalmology, University of Tokyo Hospital, Tokyo, Japan
| | - Yoko Nakatani
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Teruki Inoue
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tatsuya Iso
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroshi Yorifuji
- Department of Anatomy, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hideo Akiyama
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shoji Kishi
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroki Isomura
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|