1
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
2
|
Yang Y, Liu P, Zhou M, Yin L, Wang M, Liu T, Jiang X, Gao H. Small-molecule drugs of colorectal cancer: Current status and future directions. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166880. [PMID: 37696461 DOI: 10.1016/j.bbadis.2023.166880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the world's fourth most deadly cancer. CRC, as a genetic susceptible disease, faces significant challenges in optimizing prognosis through optimal drug treatment modalities. In recent decades, the development of innovative small-molecule drugs is expected to provide targeted interventions that accurately address the different molecular characteristics of CRC. Although the clinical application of single-target drugs is limited by the heterogeneity and high metastasis of CRC, novel small-molecule drug treatment strategies such as dual/multiple-target drugs, drug repurposing, and combination therapies can help overcome these challenges and provide new insights for improving CRC treatment. In this review, we focus on the current status of a range of small molecule drugs that are being considered for CRC therapy, including single-target drugs, dual/multiple-target drugs, drug repurposing and combination strategies, which will pave the way for targeting CRC vulnerabilities with small-molecule drugs in future personalized treatment.
Collapse
Affiliation(s)
- Yiren Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Pengyu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Mingyang Zhou
- University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - Linzhou Yin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Miao Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ting Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
3
|
Dede M, Hart T. Recovering false negatives in CRISPR fitness screens with JLOE. Nucleic Acids Res 2023; 51:1637-1651. [PMID: 36727483 PMCID: PMC9976895 DOI: 10.1093/nar/gkad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
It is widely accepted that pooled library CRISPR knockout screens offer greater sensitivity and specificity than prior technologies in detecting genes whose disruption leads to fitness defects, a critical step in identifying candidate cancer targets. However, the assumption that CRISPR screens are saturating has been largely untested. Through integrated analysis of screen data in cancer cell lines generated by the Cancer Dependency Map, we show that a typical CRISPR screen has a ∼20% false negative rate, in addition to library-specific false negatives. Replicability falls sharply as gene expression decreases, while cancer subtype-specific genes within a tissue show distinct profiles compared to false negatives. Cumulative analyses across tissues improves our understanding of core essential genes and suggest only a small number of lineage-specific essential genes, enriched for transcription factors that define pathways of tissue differentiation. To recover false negatives, we introduce a method, Joint Log Odds of Essentiality (JLOE), which builds on our prior work with BAGEL to selectively rescue the false negatives without an increased false discovery rate.
Collapse
Affiliation(s)
- Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Xu J, Li Y, Fan Q, Shu Y, Yang L, Cui T, Gu K, Tao M, Wang X, Cui C, Xu N, Xiao J, Gao Q, Liu Y, Zhang T, Bai Y, Li W, Zhang Y, Dai G, Ma D, Zhang J, Bai C, Huang Y, Liao W, Wu L, Chen X, Yang Y, Wang J, Ji S, Zhou H, Wang Y, Ma Z, Wang Y, Peng B, Sun J, Mancao C. Clinical and biomarker analyses of sintilimab versus chemotherapy as second-line therapy for advanced or metastatic esophageal squamous cell carcinoma: a randomized, open-label phase 2 study (ORIENT-2). Nat Commun 2022; 13:857. [PMID: 35165274 PMCID: PMC8844279 DOI: 10.1038/s41467-022-28408-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
This randomized, open-label, multi-center phase 2 study (NCT03116152) assessed sintilimab, a PD-1 inhibitor, versus chemotherapy in patients with esophageal squamous cell carcinoma after first-line chemotherapy. The primary endpoint was overall survival (OS), while exploratory endpoint was the association of biomarkers with efficacy. The median OS in the sintilimab group was significantly improved compared with the chemotherapy group (median OS 7.2 vs.6.2 months; P = 0.032; HR = 0.70; 95% CI, 0.50-0.97). Incidence of treatment-related adverse events of grade 3-5 was lower with sintilimab than with chemotherapy (20.2 vs. 39.1%). Patients with high T-cell receptor (TCR) clonality and low molecular tumor burden index (mTBI) showed the longest median OS (15.0 months). Patients with NLR < 3 at 6 weeks post-treatment had a significantly prolonged median OS (16.6 months) compared with NLR ≥ 3. The results demonstrate a significant improvement in OS of sintilimab compared to chemotherapy as second-line treatment for advanced or metastatic ESCC.
Collapse
Affiliation(s)
- Jianming Xu
- Department of Gastrointestinal Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Yi Li
- Department of Gastrointestinal Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qingxia Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Yang
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Tongjian Cui
- Department of Medical Oncology, Fujian Provincial Hospital, Fuzhou, China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiuwen Wang
- Department of Chemotherapy, Qilu Hospital of Shandong University, Jinan, China
| | - Chengxu Cui
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Juxiang Xiao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Quanli Gao
- Department of Immunotherapy, Henan Cancer Hospital, Zhengzhou, China
| | - Yunpeng Liu
- Department of Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Tao Zhang
- Cancer Center, Union Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yuxian Bai
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yiping Zhang
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Guanghai Dai
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Dong Ma
- Department of Gastrointestinal Oncology, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Jingdong Zhang
- Department of Gastroenterology, Liaoning Cancer Hospital, Shenyang, China
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Yunnan Cancer Hospital, Kunming, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Wu
- Departmentof Thoracic Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Xi Chen
- Department of Oncology, No. 900 Hospital of The Joint Logistic Support Force, Fuzhou, China
| | - Yan Yang
- Department of Gastrointestinal Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Junye Wang
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Shoujian Ji
- Department of Gastrointestinal Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hui Zhou
- Innovent Biologics, Inc., Suzhou, China
| | - Yan Wang
- Innovent Biologics, Inc., Suzhou, China
| | - Zhuo Ma
- Innovent Biologics, Inc., Suzhou, China
| | | | - Bo Peng
- Innovent Biologics, Inc., Suzhou, China
| | - Jiya Sun
- Innovent Biologics, Inc., Suzhou, China
| | | |
Collapse
|
5
|
Sphyris N, Hodder MC, Sansom OJ. Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers (Basel) 2021; 13:1000. [PMID: 33673710 PMCID: PMC7957493 DOI: 10.3390/cancers13051000] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Sphyris
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
| | - Michael C. Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
6
|
Wnt-11 Expression Promotes Invasiveness and Correlates with Survival in Human Pancreatic Ductal Adeno Carcinoma. Genes (Basel) 2019; 10:genes10110921. [PMID: 31718047 PMCID: PMC6895970 DOI: 10.3390/genes10110921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 01/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer, proving difficult to manage clinically. Wnt-11, a developmentally regulated gene producing a secreted protein, has been associated with various carcinomas but has not previously been studied in PDAC. The present study aimed to elucidate these aspects first in vitro and then in a clinical setting in vivo. Molecular analyses of Wnt-11 expression as well as other biomarkers involved qRT-PCR, RNA-seq and siRNA. Proliferation was measured by MTT; invasiveness was quantified by Boyden chamber (Matrigel) assay. Wnt-11 mRNA was present in three different human PDAC cell lines. Wnt-11 loss affected epithelial-mesenchymal transition and expression of neuronal and stemness biomarkers associated with metastasis. Indeed, silencing Wnt-11 in Panc-1 cells significantly inhibited their Matrigel invasiveness without affecting their proliferative activity. Consistently with the in vitro data, human biopsies of PDAC showed significantly higher Wnt-11 mRNA levels compared with matched adjacent tissues. Expression was significantly upregulated during PDAC progression (TNM stage I to II) and maintained (TNM stages III and IV). Wnt-11 is expressed in PDAC in vitro and in vivo and plays a significant role in the pathophysiology of the disease; this evidence leads to the conclusion that Wnt-11 could serve as a novel, functional biomarker PDAC.
Collapse
|