1
|
Harvey KE, Tang S, LaVigne EK, Pratt EPS, Hockerman GH. RyR2 regulates store-operated Ca2+ entry, phospholipase C activity, and electrical excitability in the insulinoma cell line INS-1. PLoS One 2023; 18:e0285316. [PMID: 37141277 PMCID: PMC10159205 DOI: 10.1371/journal.pone.0285316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
The ER Ca2+ channel ryanodine receptor 2 (RyR2) is required for maintenance of insulin content and glucose-stimulated insulin secretion, in part, via regulation of the protein IRBIT in the insulinoma cell line INS-1. Here, we examined store-operated and depolarization-dependent Ca2+entry using INS-1 cells in which either RyR2 or IRBIT were deleted. Store-operated Ca2+ entry (SOCE) stimulated with thapsigargin was reduced in RyR2KO cells compared to controls, but was unchanged in IRBITKO cells. STIM1 protein levels were not different between the three cell lines. Basal and stimulated (500 μM carbachol) phospholipase C (PLC) activity was also reduced specifically in RyR2KO cells. Insulin secretion stimulated by tolbutamide was reduced in RyR2KO and IRBITKO cells compared to controls, but was potentiated by an EPAC-selective cAMP analog in all three cell lines. Cellular PIP2 levels were increased and cortical f-actin levels were reduced in RyR2KO cells compared to controls. Whole-cell Cav channel current density was increased in RyR2KO cells compared to controls, and barium current was reduced by acute activation of the lipid phosphatase pseudojanin preferentially in RyR2KO cells over control INS-1 cells. Action potentials stimulated by 18 mM glucose were more frequent in RyR2KO cells compared to controls, and insensitive to the SK channel inhibitor apamin. Taken together, these results suggest that RyR2 plays a critical role in regulating PLC activity and PIP2 levels via regulation of SOCE. RyR2 also regulates β-cell electrical activity by controlling Cav current density and SK channel activation.
Collapse
Affiliation(s)
- Kyle E Harvey
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| | - Shiqi Tang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| | - Emily K LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Evan P S Pratt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Gregory H Hockerman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
2
|
Harvey KE, LaVigne EK, Dar MS, Salyer AE, Pratt EPS, Sample PA, Aryal UK, Gowher H, Hockerman GH. RyR2/IRBIT regulates insulin gene transcript, insulin content, and secretion in the insulinoma cell line INS-1. Sci Rep 2022; 12:7713. [PMID: 35562179 PMCID: PMC9095623 DOI: 10.1038/s41598-022-11276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
The role of ER Ca2+ release via ryanodine receptors (RyR) in pancreatic β-cell function is not well defined. Deletion of RyR2 from the rat insulinoma INS-1 (RyR2KO) enhanced IP3 receptor activity stimulated by 7.5 mM glucose, coincident with reduced levels of the protein IP3 Receptor Binding protein released with Inositol 1,4,5 Trisphosphate (IRBIT). Insulin content, basal (2.5 mM glucose) and 7.5 mM glucose-stimulated insulin secretion were reduced in RyR2KO and IRBITKO cells compared to controls. INS2 mRNA levels were reduced in both RyR2KO and IRBITKO cells, but INS1 mRNA levels were specifically decreased in RyR2KO cells. Nuclear localization of S-adenosylhomocysteinase (AHCY) was increased in RyR2KO and IRBITKO cells. DNA methylation of the INS1 and INS2 gene promotor regions was very low, and not different among RyR2KO, IRBITKO, and controls, but exon 2 of the INS1 and INS2 genes was more extensively methylated in RyR2KO and IRBITKO cells. Exploratory proteomic analysis revealed that deletion of RyR2 or IRBIT resulted in differential regulation of 314 and 137 proteins, respectively, with 41 in common. These results suggest that RyR2 regulates IRBIT levels and activity in INS-1 cells, and together maintain insulin content and secretion, and regulate the proteome, perhaps via DNA methylation.
Collapse
Affiliation(s)
- Kyle E Harvey
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Emily K LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN, USA
| | - Mohd Saleem Dar
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Amy E Salyer
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Evan P S Pratt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN, USA
| | - Paxton A Sample
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Uma K Aryal
- Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Gregory H Hockerman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Stožer A, Paradiž Leitgeb E, Pohorec V, Dolenšek J, Križančić Bombek L, Gosak M, Skelin Klemen M. The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling. Cells 2021; 10:1658. [PMID: 34359828 PMCID: PMC8304079 DOI: 10.3390/cells10071658] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic beta cells secrete insulin in response to stimulation with glucose and other nutrients, and impaired insulin secretion plays a central role in development of diabetes mellitus. Pharmacological management of diabetes includes various antidiabetic drugs, including incretins. The incretin hormones, glucagon-like peptide-1 and gastric inhibitory polypeptide, potentiate glucose-stimulated insulin secretion by binding to G protein-coupled receptors, resulting in stimulation of adenylate cyclase and production of the secondary messenger cAMP, which exerts its intracellular effects through activation of protein kinase A or the guanine nucleotide exchange protein 2A. The molecular mechanisms behind these two downstream signaling arms are still not fully elucidated and involve many steps in the stimulus-secretion coupling cascade, ranging from the proximal regulation of ion channel activity to the central Ca2+ signal and the most distal exocytosis. In addition to modifying intracellular coupling, the effect of cAMP on insulin secretion could also be at least partly explained by the impact on intercellular coupling. In this review, we systematically describe the possible roles of cAMP at these intra- and inter-cellular signaling nodes, keeping in mind the relevance for the whole organism and translation to humans.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Lidija Križančić Bombek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| |
Collapse
|
4
|
Islam MS. Stimulus-Secretion Coupling in Beta-Cells: From Basic to Bedside. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:943-963. [PMID: 31646540 DOI: 10.1007/978-3-030-12457-1_37] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin secretion in humans is usually induced by mixed meals, which upon ingestion, increase the plasma concentration of glucose, fatty acids, amino acids, and incretins like glucagon-like peptide 1. Beta-cells can stay in the off-mode, ready-mode or on-mode; the mode-switching being determined by the open state probability of the ATP-sensitive potassium channels, and the activity of enzymes like glucokinase, and glutamate dehydrogenase. Mitochondrial metabolism is critical for insulin secretion. A sound understanding of the intermediary metabolism, electrophysiology, and cell signaling is essential for comprehension of the entire spectrum of the stimulus-secretion coupling. Depolarization brought about by inhibition of the ATP sensitive potassium channel, together with the inward depolarizing currents through the transient receptor potential (TRP) channels, leads to electrical activities, opening of the voltage-gated calcium channels, and exocytosis of insulin. Calcium- and cAMP-signaling elicited by depolarization, and activation of G-protein-coupled receptors, including the free fatty acid receptors, are intricately connected in the form of networks at different levels. Activation of the glucagon-like peptide 1 receptor augments insulin secretion by amplifying calcium signals by calcium induced calcium release (CICR). In the treatment of type 2 diabetes, use of the sulfonylureas that act on the ATP sensitive potassium channel, damages the beta cells, which eventually fail; these drugs do not improve the cardiovascular outcomes. In contrast, drugs acting through the glucagon-like peptide-1 receptor protect the beta-cells, and improve cardiovascular outcomes. The use of the glucagon-like peptide 1 receptor agonists is increasing and that of sulfonylurea is decreasing. A better understanding of the stimulus-secretion coupling may lead to the discovery of other molecular targets for development of drugs for the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Department of Clinical Science and Education, Södersjukhuset, Research Center, Karolinska Institutet, Stockholm, Sweden. .,Department of Emergency Care and Internal Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|