1
|
Gaur S, Kaur M, Kalra R, Rene ER, Goel M. Application of microbial resources in biorefineries: Current trend and future prospects. Heliyon 2024; 10:e28615. [PMID: 38628756 PMCID: PMC11019186 DOI: 10.1016/j.heliyon.2024.e28615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
The recent growing interest in sustainable and alternative sources of energy and bio-based products has driven the paradigm shift to an integrated model termed "biorefinery." Biorefinery framework implements the concepts of novel eco-technologies and eco-efficient processes for the sustainable production of energy and value-added biomolecules. The utilization of microbial resources for the production of various value-added products has been documented in the literatures. However, the appointment of these microbial resources in integrated resource management requires a better understanding of their status. The main of aim of this review is to provide an overview on the defined positioning and overall contribution of the microbial resources, i.e., algae, fungi and bacteria, for various bioprocesses and generation of multiple products from a single biorefinery. By utilizing waste material as a feedstock, biofuels can be generated by microalgae while sequestering environmental carbon and producing value added compounds as by-products. In parallel, fungal biorefineries are prolific producers of lignocellulose degrading enzymes along with pharmaceutically important novel products. Conversely, bacterial biorefineries emerge as a preferred platform for the transformation of standard cells into proficient bio-factories, developing chassis and turbo cells for enhanced target compound production. This comprehensive review is poised to offer an intricate exploration of the current trends, obstacles, and prospective pathways of microbial biorefineries, for the development of future biorefineries.
Collapse
Affiliation(s)
- Suchitra Gaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Mehak Kaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Rishu Kalra
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Eldon R. Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft, 2601DA, the Netherlands
| | - Mayurika Goel
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| |
Collapse
|
2
|
Cha L, Feng H, Wu M, Xing J, Li J, Chen Q. Effects of extracellular enzymes secreted by wild edible fungi mycelia on the surface properties of local soil colloids. ENVIRONMENTAL TECHNOLOGY 2023; 44:3721-3730. [PMID: 35481458 DOI: 10.1080/09593330.2022.2071639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The extracellular enzymes secreted by wild edible fungi mycelia participate in a series of physiochemical reactions in soil, thereby changing the surface properties of local soil colloids irreversibly. However, the reaction process and mechanism were generally ignored, leading to a misunderstanding of local soil functions. In this work, the soil samples collected from areas where growing wild edible fungi were selected as model substances, and the effects of extracellular enzymes (α-amylase, β-glucosidase, and peroxidase) secreted by wild edible fungi mycelia on the physicochemical properties of soil colloids were explored. After adding extracellular enzymes, the pores and fissures between the lamellar sheets were observed more obviously and the surface heights decreased significantly, especially after adding α-amylase. The addition of extracellular enzymes increased the electronegativity and the suspension stability of soil colloids owing to the decrease in their polarity and water solubility. The added extracellular enzymes might be adsorbed on the organic and inorganic components in soil colloids and could promote the decomposition of soil organic matter, thereby changing the physicochemical properties of soil colloids and improving the soil quality. The results will lay a theoretical foundation for understanding the soil function in the areas where growing wild edible fungi.
Collapse
Affiliation(s)
- Lijuan Cha
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, People's Republic of China
| | - Hongjuan Feng
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, People's Republic of China
| | - Min Wu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, People's Republic of China
| | - Jing Xing
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, People's Republic of China
| | - Jing Li
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, People's Republic of China
| | - Quan Chen
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
3
|
Rizwanuddin S, Kumar V, Singh P, Naik B, Mishra S, Chauhan M, Saris PEJ, Verma A, Kumar V. Insight into phytase-producing microorganisms for phytate solubilization and soil sustainability. Front Microbiol 2023; 14:1127249. [PMID: 37113239 PMCID: PMC10128089 DOI: 10.3389/fmicb.2023.1127249] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/10/2023] [Indexed: 04/29/2023] Open
Abstract
The increasing demand for food has increased dependence on chemical fertilizers that promote rapid growth and yield as well as produce toxicity and negatively affect nutritional value. Therefore, researchers are focusing on alternatives that are safe for consumption, non-toxic, cost-effective production process, and high yielding, and that require readily available substrates for mass production. The potential industrial applications of microbial enzymes have grown significantly and are still rising in the 21st century to fulfill the needs of a population that is expanding quickly and to deal with the depletion of natural resources. Due to the high demand for such enzymes, phytases have undergone extensive research to lower the amount of phytate in human food and animal feed. They constitute efficient enzymatic groups that can solubilize phytate and thus provide plants with an enriched environment. Phytases can be extracted from a variety of sources such as plants, animals, and microorganisms. Compared to plant and animal-based phytases, microbial phytases have been identified as competent, stable, and promising bioinoculants. Many reports suggest that microbial phytase can undergo mass production procedures with the use of readily available substrates. Phytases neither involve the use of any toxic chemicals during the extraction nor release any such chemicals; thus, they qualify as bioinoculants and support soil sustainability. In addition, phytase genes are now inserted into new plants/crops to enhance transgenic plants reducing the need for supplemental inorganic phosphates and phosphate accumulation in the environment. The current review covers the significance of phytase in the agriculture system, emphasizing its source, action mechanism, and vast applications.
Collapse
Affiliation(s)
- Sheikh Rizwanuddin
- Department Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Pallavi Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Bindu Naik
- Department Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, India
- *Correspondence: Bindu Naik,
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Mansi Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Per Erik Joakim Saris,
| | - Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| |
Collapse
|
4
|
Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, Singh M, Soni R, Kumar R, Yadav A, Devi R, Kaur T, Kour D, Yadav AN. Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. MICROBIAL ECOLOGY 2022; 84:643-675. [PMID: 34647148 DOI: 10.1007/s00248-021-01849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Uttarakhand, India
| | - Saurabh Kumar
- Division of Crop Research, Research Complex for Eastern Region, Patna, Bihar, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Arun Narayan
- Forest Research Institute, Dehradun, 2480 06, India
| | - Krishna Giri
- Rain Forest Research Institute, Jorhat, 785 010, India
| | - Manali Singh
- Department of Biotechnology, Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, 243123, Uttar Pradesh, India
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
5
|
Attia MS, Abdelaziz AM, Al-Askar AA, Arishi AA, Abdelhakim AM, Hashem AH. Plant Growth-Promoting Fungi as Biocontrol Tool against Fusarium Wilt Disease of Tomato Plant. J Fungi (Basel) 2022; 8:775. [PMID: 35893143 PMCID: PMC9331501 DOI: 10.3390/jof8080775] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 12/23/2022] Open
Abstract
Plant growth-promoting fungi (PGPF) improve plant health and resist plant pathogens. The present study was carried out to biocontrol tomato Fusarium wilt using PGPF through antifungal activity and enhance tomato plant immune response. Four PGPF were identified genetically as Aspergillus flavus, Aspergillus niger, Mucor circinelloides and Pencillium oxalicum. In vitro antagonistic activity assay of PGPF against Fusariumoxysporum was evaluated, where it exhibited promising antifungal activity where MIC was in the range 0.25-0.5 mg/mL. Physiological markers of defense in a plant as a response to stimulation of induced systemic resistance (ISR) were recorded. Our results revealed that A. niger, M. circinelloides, A. flavus and P. oxalicum strains significantly reduced percentages of disease severity by 16.60% and 20.83% and 37.50% and 45.83 %, respectively. In addition, they exhibited relatively high protection percentages of 86.35%, 76.87%, 56.87% and 59.06 %, respectively. With concern to the control, it is evident that the percentage of disease severity was about 87.50%. Moreover, the application of M. circinelloides, P. oxalicum, A. niger and A. flavus successfully recovered the damage to morphological traits, photosynthetic pigments' total carbohydrate and total soluble protein of infected plants. Moreover, the application of tested PGPF enhanced the growth of healthy and infected tomato plants.
Collapse
Affiliation(s)
- Mohamed S. Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (M.S.A.); (A.M.A.)
| | - Amer M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (M.S.A.); (A.M.A.)
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Amr A. Arishi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Ahmed M. Abdelhakim
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (M.S.A.); (A.M.A.)
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (M.S.A.); (A.M.A.)
| |
Collapse
|
6
|
Supercritical CO 2 Plant Extracts Show Antifungal Activities against Crop-Borne Fungi. Molecules 2022; 27:molecules27031132. [PMID: 35164398 PMCID: PMC8838041 DOI: 10.3390/molecules27031132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal infections of cultivated food crops result in extensive losses of crops at the global level, while resistance to antifungal agents continues to grow. Supercritical fluid extraction using CO2 (SFE-CO2) has gained attention as an environmentally well-accepted extraction method, as CO2 is a non-toxic, inert and available solvent, and the extracts obtained are, chemically, of greater or different complexities compared to those of conventional extracts. The SFE-CO2 extracts of Achillea millefolium, Calendula officinalis, Chamomilla recutita, Helichrysum arenarium, Humulus lupulus, Taraxacum officinale, Juniperus communis, Hypericum perforatum, Nepeta cataria, Crataegus sp. and Sambucus nigra were studied in terms of their compositions and antifungal activities against the wheat- and buckwheat-borne fungi Alternaria alternata, Epicoccum nigrum, Botrytis cinerea, Fusarium oxysporum and Fusarium poae. The C. recutita and H. arenarium extracts were the most efficacious, and these inhibited the growth of most of the fungi by 80% to 100%. Among the fungal species, B. cinerea was the most susceptible to the treatments with the SFE-CO2 extracts, while Fusarium spp. were the least. This study shows that some of these SFE-CO2 extracts have promising potential for use as antifungal agents for selected crop-borne fungi.
Collapse
|
7
|
Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D, Singh J, Suyal DC, Kumar A, Rajput VD, Yadav AN, Singh K, Singh J, Sayyed RZ, Arora NK, Saxena AK. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24917-24939. [PMID: 33768457 DOI: 10.1007/s11356-021-13252-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/28/2021] [Indexed: 05/21/2023]
Abstract
Over the past few decades, the rapid development of agriculture and industries has resulted in contamination of the environment by diverse pollutants, including heavy metals, polychlorinated biphenyls, plastics, and various agrochemicals. Their presence in the environment is of great concern due to their toxicity and non-biodegradable nature. Their interaction with each other and coexistence in the environment greatly influence and threaten the ecological environment and human health. Furthermore, the presence of these pollutants affects the soil quality and fertility. Physicochemical techniques are used to remediate such environments, but they are less effective and demand high costs of operation. Bioremediation is an efficient, widespread, cost-effective, and eco-friendly cleanup tool. The use of microorganisms has received significant attention as an efficient biotechnological strategy to decontaminate the environment. Bioremediation through microorganisms appears to be an economically viable and efficient approach because it poses the lowest risk to the environment. This technique utilizes the metabolic potential of microorganisms to clean up contaminated environments. Many microbial genera have been known to be involved in bioremediation, including Alcaligenes, Arthrobacter, Aspergillus, Bacillus, Burkholderia, Mucor, Penicillium, Pseudomonas, Stenotrophomonas, Talaromyces, and Trichoderma. Archaea, including Natrialba and Haloferax, from extreme environments have also been reported as potent bioresources for biological remediation. Thus, utilizing microbes for managing environmental pollution is promising technology, and, in fact, the microbes provide a useful podium that can be used for an enhanced bioremediation model of diverse environmental pollutants.
Collapse
Affiliation(s)
- Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, Sirmour, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, Sirmour, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, Sirmour, India
| | - Ashok Yadav
- Department of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Manali Singh
- Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, Uttar Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Dehradun, Uttarakhand, India
| | - Jyoti Singh
- Department of Microbiology, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, 173101, India
| | - Ajay Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | | | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, Sirmour, India.
| | - Karan Singh
- Department of Chemistry, Indira Gandhi University, Haryana, 122502, Meerpur, Rewari, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Riyaz Z Sayyed
- Department of Microbiology, PSGVP Mandal's Arts, Science and Commerce College, Shahada, Maharashtra, India
| | - Naveen Kumar Arora
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central University), Rae Bareli Road, Uttar Pradesh, 226025, Lucknow, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kusmaur, Mau, 275103, India
| |
Collapse
|
8
|
Applications of Myconanoparticles in Remediation: Current Status and Future Challenges. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Human Fungal Pathogens: Diversity, Genomics, and Preventions. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Ghosh S, Godoy L, Anchang KY, Achilonu CC, Gryzenhout M. Fungal Cellulases: Current Research and Future Challenges. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Gezaf SA, Abo Nouh FA, Abdel-Azeem AM. Fungal Communities from Different Habitats for Tannins in Industry. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Fungi as a Gold Mine of Antioxidants. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Soliman TN, Wahba MI, Badr AN. Fungal Pigments for Food Industry. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Madbouly AK. Biodiversity of Genus Trichoderma and Their Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Bioprospecting and Applications of Fungi: A Game Changer in Present Scenario. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Singh U, Akhtar O, Mishra R, Zoomi I, Kehri HK, Pandey D. Arbuscular Mycorrhizal Fungi: Biodiversity, Interaction with Plants, and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
|
18
|
Abdel-Azeem AM, Abu-Elsaoud AM, Abo Nahas HH, Abdel-Azeem MA, Balbool BA, Mousa MK, Ali NH, Darwish AMG. Biodiversity and Industrial Applications of Genus Chaetomium. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Kour H, Kour S, Sharma Y, Singh S, Sharma I, Kour D, Yadav AN. Bioprospecting of Industrially Important Mushrooms. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
20
|
White-Rot Fungi for Bioremediation of Polychlorinated Biphenyl Contaminated Soil. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Industrially Important Fungal Enzymes: Productions and Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Bioprospecting of Thermophilic Fungal Enzymes and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Marine Fungal Communities: Metabolic Engineering for Secondary Metabolites and Their Industrial Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Vijayalakshmi D, Sivaprasad BV, Veera Brahmma Chari P, Reddy MK, Prasad DVR. Microbial Consortia for Effective Degradation and Decolorization of Textile Effluents. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Selvasekaran P, Mahalakshmi, Roshini F, Angalene LA, Chandini, Sunil T, Chidambaram R. Fungal Exopolysaccharides: Production and Biotechnological Industrial Applications in Food and Allied Sectors. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Abed RM. Exploring Fungal Biodiversity of Genus Epicoccum and Their Biotechnological Potential. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Dar FM, Dar PM. Fungal Xylanases for Different Industrial Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Piriformospora indica: Biodiversity, Ecological Significances, and Biotechnological Applications for Agriculture and Allied Sectors. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Fungal Laccases to Where and Where? Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
30
|
Nutraceutical Potential of Wild Edible Mushroom Hygrocybe alwisii. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Samiksha, Kumar S. Molecular Taxonomy, Diversity, and Potential Applications of Genus Fusarium. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Rani M, Jogawat A, Loha A. Sugar Transporters in Plant–Fungal Symbiosis. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Environmental and Industrial Perspective of Beneficial Fungal Communities: Current Research and Future Challenges. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Fernandez-Bunster G. Diversity, Phylogenetic Profiling of Genus Penicillium, and Their Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
|
36
|
Dikkala PK, Usmani Z, Kumar S, Gupta VK, Bhargava A, Sharma M. Fungal Production of Vitamins and Their Food Industrial Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Fungal Secondary Metabolites: Current Research, Commercial Aspects, and Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Abdel-Azeem MA, El-Maradny YA, Othman AM, Abdel-Azeem AM. Endophytic Fungi as a Source of New Pharmaceutical Biomolecules. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Fungi in Remediation of Hazardous Wastes: Current Status and Future Outlook. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Neoteric Trends in Medicinal Plant-AMF Association and Elicited Accumulation of Phytochemicals. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Fungal Secondary Metabolites for Bioremediation of Hazardous Heavy Metals. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Yadav AN, Kaur T, Devi R, Kour D, Yadav A, Dikilitas M, Usmani Z, Yadav N, Abdel-Azeem AM, Ahluwalia AS. Biodiversity and Biotechnological Applications of Industrially Important Fungi: Current Research and Future Prospects. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Bioprospecting for Biomolecules from Different Fungal Communities: An Introduction. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Abdel-Azeem AM, Abo Nahas HH, Abdel-Azeem MA, Tariq FJ, Yadav AN. Biodiversity and Ecological Perspective of Industrially Important Fungi An Introduction. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Gryzenhout M, Ghosh S, Tchotet Tchoumi JM, Vermeulen M, Kinge TR. Ganoderma: Diversity, Ecological Significances, and Potential Applications in Industry and Allied Sectors. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Fungal Biorefineries for Biofuel Production for Sustainable Future Energy Systems. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Yadav AN, Singh J, Rastegari AA, Yadav N. Phyllospheric Microbiomes: Diversity, Ecological Significance, and Biotechnological Applications. ACTA ACUST UNITED AC 2020. [PMCID: PMC7123684 DOI: 10.1007/978-3-030-38453-1_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The phyllosphere referred to the total aerial plant surfaces (above-ground portions), as habitat for microorganisms. Microorganisms establish compositionally complex communities on the leaf surface. The microbiome of phyllosphere is rich in diversity of bacteria, fungi, actinomycetes, cyanobacteria, and viruses. The diversity, dispersal, and community development on the leaf surface are based on the physiochemistry, environment, and also the immunity of the host plant. A colonization process is an important event where both the microbe and the host plant have been benefited. Microbes commonly established either epiphytic or endophytic mode of life cycle on phyllosphere environment, which helps the host plant and functional communication with the surrounding environment. To the scientific advancement, several molecular techniques like metagenomics and metaproteomics have been used to study and understand the physiology and functional relationship of microbes to the host and its environment. Based on the available information, this chapter describes the basic understanding of microbiome in leaf structure and physiology, microbial interactions, especially bacteria, fungi, and actinomycetes, and their adaptation in the phyllosphere environment. Further, the detailed information related to the importance of the microbiome in phyllosphere to the host plant and their environment has been analyzed. Besides, biopotentials of the phyllosphere microbiome have been reviewed.
Collapse
Affiliation(s)
- Ajar Nath Yadav
- Department of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab India
| | | | - Neelam Yadav
- Gopi Nath PG College, Veer Bahadur Singh Purvanchal University, Ghazipur, Uttar Pradesh India
| |
Collapse
|
48
|
Fungal Phytohormones: Plant Growth-Regulating Substances and Their Applications in Crop Productivity. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Selvasekaran P, Chidambaram R. Agriculturally Important Fungi for Crop Protection. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Sikandar S, Saqib AY, Afzal I. Fungal Secondary Metabolites and Bioactive Compounds for Plant Defense. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|